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1. INTRODUCTION 
 
The Simultaneous Multiple Pulse Repetition 

Frequency (SMPRF) algorithm is a radar pulsing 
scheme developed by J. Pirttila, M. Lehtinen, et. 
al. (1999; 2005) whose purpose in weather radar 
applications is to alleviate the effects of 
range/velocity ambiguity, also known as the 
range/Doppler dilemma. 

The development of the SMPRF algorithm is 
explained and illustrated with mathematical 
examples (Pirtilla et al. 2005; Lehtinen 1999).  
The performance of the algorithm is then 
demonstrated by recovering a mean power and 
mean velocity profile calculated using actual 
weather signals.  The results are presented 
graphically. 

In this study, the performance of the SMPRF 
algorithm used for mean power recovery is 
analyzed in a more rigorous manner and 
limitations of such are recognized.  After 
describing the background of the problem and 
operation of the SMPRF algorithm, simulation of 
an example code presented in (Pirtilla et al. 
2005) for 4 power profiles is performed.  The 
effects of the main factors affecting performance 
of the SMPRF algorithm are examined.  These 
factors relate to the variability between inversion 
variables and power level separation of such.  
The report is concluded with a summary of 
results and observations with a discussion of 
such. 

This study also introduces and investigates 
the methodology for estimating mean velocity 
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using a spectral maxima technique used in the 
SMPRF algorithm. 

2. DESCRIPTION OF THE SMPRF 
ALGORITHM 

 
The SMPRF algorithm is an extension of the 

staggered PRT algorithm (Zrnic and Mahapatra 
1985) in the sense an arbitrary number of pulses 
sent at different PRTs is used opposed to the 
two pulses used in the staggered PRT algorithm.  
In the SMPRF algorithm, the code is comprised 
of multiple pulses that are sent at different 
PRTs.  This sequence is repeated to generate 
overlaid time series from which moment 
estimates are recovered. 

To illustrate the operation of the SMPRF 
code, consider the example illustrative code 
given in (Pirtilla et al. 2005).  This code is 
comprised of 4 PRTs: 750µs, 1200µs, 1500µs, 
and 1050µs.  To simplify notation and make the 
example more tractable, it is noted that the 
greatest common denominator between each 
PRT in the set of PRTs comprising the code is 
∆t = 150µs.  Each PRT can then be described 
as a multiple of this basic time unit.  In this way, 
it is said the code consists of PRTs of 5, 8, 10, 
and 7 time units.  This code is annotated as the 
“SMPRF(150); 5, 8, 10, 7” code.   

As will be shown later, the SMPRF algorithm 
can be written in matrix notation.  The effect of 
choosing a larger ∆t increases the spacing of 
the subset of resolution volumes that are used in 
the inversion process in the SMPRF algorithm.  
This translates to fewer variables to recover in 
the inversion process but the spacing of the 
actual radar samples remains the same as 
dictated by the pulse width.  The trade-off is that 
more repetitions of the inversion process must 



be performed.  If sampling in weather radar is 
normally performed at ∆t = 1µs, the inversion 
process will need to be performed K = 150 times 
for ∆t = 150µs.  This separation of the main 
inversion problem into K mutually independent 
smaller inversion problems is not necessary as 
one large matrix dealing with more ranges can 
be inverted.  For example, for a range resolution 
of 150 m, the inversion matrix will have 450 
km/150 m = 3000 columns.  The inversion of this 
larger matrix is less efficient and thus more 
computationally complex.  The computational 
savings of this reduction are described in 
(Lehtinen 1999). 

For the purposes of this study, the samples 
and ranges are restricted to integer multiples of 
∆t.  This serves the purpose of clarity in 
explanation and illustration for the performance 
of the mean power recovery of the SMPRF 
algorithm. 

Figure 1 illustrates the operation of the 
SMPRF(150); 5, 8, 10, 7 code. 

To illustrate the operation of the code, the 
return at time 31 is studied, as labeled in Figure 
1.  Pulses are transmitted according to the given 
code at times 0, 5, 13, 23, and 30 and repeated 
at times 35, 43, 53, 60, etc. for the number of 
blocks chosen to be transmitted.  The number of 
transmitted blocks corresponds to the dwell time 
for measurements and translates to the length of 
the return time series at each measurement 
volume.  In this study, the number of transmitted 
code blocks, i.e. the length of each time series 
for each measurement volume, is represented 
by M. 

Reception of weather returns begins at time 
31.  This received complex value will have 
contributions from the previous pulses sent at 
times 30, 23 and 13.  If it is desired to cover 
cloud tops up to 18 km, at the lowest elevation 
angle of 0.5o and taking into account the 
curvature of the earth, the maximum 
measurement range of the radar is 
approximately 450 km.  Since the maximum 
limiting range for weather returns is 450 km, any 
contribution from returns beyond 20 time units is 
disregarded, as, 
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The time series of measurements collected 
at times 31, 61, 91, etc., , will be comprised 

of the illumination of the 1st resolution volume 
corresponding to the pulse transmitted at times 
30, 60, 90, etc., the 8th resolution volume 
corresponding to the pulse transmitted at times 
23, 53, 83, etc., and the 18th resolution volume 
corresponding to the pulse transmitted at times 
13, 43, 73, etc.  The curved arrows in Figure 1 
depict this relationship of pulses comprising the 
overlaid return time series. 

31V

The equations describing the measured 
returns { }31, 32,..., 60nV ; n ∈  are constructed.  
This set of returns for the SMPRF(150); 5, 8, 10, 7 
code is shown in Equation 2.  The time indices 
representing individual samples of each length-
M return time series, β, are omitted for 
convenience. 

There will be no reception when the radar is 
transmitting, i.e., at times 35, 43, 53, 60, etc. 

3. MOMENT CALCULATIONS USING THE 
SMPRF ALGORITHM 
The following section outlines the procedure 

for estimation of the mean power and velocity 
from the received time series described by 
Equation 2. 

3.1 MEAN POWER CALCULATION 
The mean power is estimated for the ith 

volume from the measured time series 
corresponding to the jth PRT as shown, 
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The measured overlaid estimated power, 
 corresponding to  can be written, 31Z� 31V
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As a consequence of the independence 
between measurement volumes, Equation 4 can 
be written as shown in Equation 5 shown on the 
next page. 

The equations for the measured overlaid 
estimated powers, { } 31, 32,..., 60nZ ; n ∈�  can 
be written in matrix notation as shown in 
Equation 6. 
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Equation 6 can be written more succinctly 
as, 
Z AP=� �  (7)

This study considers evaluation of the 
SMPRF algorithm under the condition of infinite 
SNR.  In the presence of noise, an additive 
noise term would be included in the equation 
above. 

The least squares solution to Equation 7 
yields the mean power estimate and is given by 
(Lehtinen 1999), 

( ) 1T TP̂ A A A Z A
− += = �Z

=

 (8)

In Equation 8, A+ is the Moore-Penrose 
matrix inverse (Ben-Israel and Greville 1977) 

3.2 MEAN VELOCITY CALCULATION 
As shown in (Pirtilla et al. 2005) and 

following the steps in the derivation of the 
maximum unambiguous velocity for the 
staggered PRT algorithm described above (Zrnic 
and Mahapatra 1985), the maximum 
unambiguous velocity for the SMPRF algorithm 
is given by, 

MAX,SMPRFv
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i j
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Similar to the maximum unambiguous 
velocity for the staggered PRT algorithm, the 
maximum unambiguous velocity for the SMPRF 
algorithm is a function of the radar’s wavelength 
and minimum time separation between the 
PRTs in the given code. 

For the SMPRF(150); 5, 8, 10, 7 code with ∆t = 
150µs, this yields, 

MAX,SMPRFv
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This value, which corresponds to a velocity 
of about 200 miles per hour, is adequate for the 
measurement of weather phenomena. 

Whereas matrix inversion was used to 
recover average power estimates, when dealing 
with mean velocity recovery, the matrix inversion 
procedure is unnecessary if pulses in the code 
are not equal to integer multiples of other pulses 
within the code.  This ensures no autocorrelation 
function (ACF) sample ambiguity (Pirtilla et al. 
2005). 

The mean velocity procedure is now 
explained.  All overlaid return time series are 

correlated pairwise.  Based on the property that 
measurements from different measurement 
volumes are independent, unevenly spaced 
samples of the ACF plus a noise term are 
generated.  A high-resolution power spectrum is 
computed from these ACF samples using 
statistical inversion techniques.  The peak of this 
spectrum is taken to be the mean velocity 
estimate.  

The block diagram for the SMPRF mean 
velocity recovery procedure is shown in Figure 
2. 

The correlation is shown to be, 
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To illustrate this, consider this procedure 
illustrated for the returns from measurements 
volumes 31 and 36, 

31 1 8 18V β β β= + +  (17)

36 1 6 13V β β β= + +  (18)

[ ]31 36 1E V V R [ 5] η= +  (19)
All returns without contributions from 

common volumes will be independent and such 
ACF lag values are set to zero.  It is believed 
that the noise generated by this process will be 
the limiting factor for the mean velocity recovery 
process.  As will be illustrated later in this report, 
the variance of the noise term in the equations 
above depends upon the amount of overlaid 
power. 

Using the example SMPRF(150); 5, 8, 10, 7 code, 
the complete set of ACF lag values is shown in 
Table 1, 



Volume (i) Lag values (n) 
1 5, 8, 10, 13, 18, 

23 
2 5, 8, 10, 13, 18, 

23 
3 5, 8, 10, 13, 18, 

23 
4 5, 8, 10, 13, 18, 

23 
5 8, 10, 18 
6 5, 8, 10, 13, 18, 

23 
7 5, 8, 13 
8 7, 13, 20 
9 5, 7, 8, 12, 13, 20 

10 5, 7, 12 
11 5, 7, 8, 12, 13, 20 
12 5, 8, 13 
13 8, 12, 20 
14 5, 7, 8, 12, 13, 20 
15 5, 7, 8, 12, 13, 20 
16 5, 7, 8, 12, 13, 20 
17 5, 7, 12 
18 7, 10, 17 
19 5, 7, 8, 12, 13, 20 
20 5, 17, 22 

Table 1. ACF lag values computed using 
SMPRF(150);5, 8, 10, 7 code. 

It is shown in Table 1 that different ranges 
will have both different number and different 
values of the ACF lags.  In general, there will be 
n(n – 1)/2 + 1 ACF samples, n(n – 1) from the 
pairwise correlations and 1 from the mean 
power estimate.  The lack of ability to receive 
while transmitting accounts for the lower number 
of recovered ACF lags in certain volumes. 

The calculation of the spectrum from the 
unevenly spaced ACF values for each 
measurement volume is performed as follows.  
The Discrete Fourier Transform (DFT) is applied 
to each measurement volume ACF sample 
vector producing the sample power spectrum, as 
shown, 

2 jN 1 nk
N

i i
n 0

S [ k ] R ( n )e ; k 0,...,N 1

π
− −

=

= =∑� � −  (20)

The number of points used in the DFT 
calculation is chosen freely, with the resulting 
zero padding producing linear interpolation in 
the frequency domain (Roberts and Mullis 
1987). 

The location of the peak of the resulting 
sample power spectrum translated to the 

velocity domain is taken to be the mean velocity 
estimate. 

4. SIMULATION RESULTS OF MEAN 
POWER RECOVERY USING THE SMPRF 
ALGORITHM 
Four power profiles are simulated and 

recovered using the SMPRF algorithm: a flat 10 
dB range profile, a triangular range profile with 
50 dB power level separation, a triangular range 
profile with 15 dB power level separation, and a 
range profile consisting of one range gate with a 
signal level of 20 dB and the rest set to –100 dB.  
The results are compared to those for a uniform 
PRT scheme using the same power profiles. 

The maximum unambiguous range of the 
uniform PRT scheme is set to 450 km and the 
maximum unambiguous velocity will be, 

MAX,UNIFORMv

 m/s

/(4 * PRT ))

0.0536 /(0.012 )

4.47

λ= ±

= ±

= ±

 (21)

The uniform PRT value used for comparison 
to the SMPRF results will be equal to the N 
value for the SMPRF code, i.e., 20 time units = 
3000µs. 

For all power profile recovery simulations, 
one polarization channel of the dual-polarization 
radar simulation technique described in 
(Chandrasekar et al. 1986) is simulated.  The 
mean velocity is randomized between +/- va and 
spectrum width of 4 m/s is selected, which is at 
the center of the range of spectrum width values 
simulated in (Sachidananda et al. 1998).  The 
radar frequency is 5.6GHz (λ = 5.36 cm).  Two 
hundred iterations are run for statistics.  Fifteen 
blocks are used for the SMPRF(150); 5, 8, 10, 7 code, 
which translates to a dwell time of 67.5ms.  
Length 22 time series are used for the uniform 
PRT schemes for comparison to both SMPRF 
codes translating to a dwell time of 66 ms. 
These are reasonable dwell times relative to 
those Volume Coverage Patterns (VCPs) used 
by NEXRAD (NEXRAD ROC 2006). 

In the figures illustrating average power 
profile recovery, the red horizontal lines at each 
range gate represent the mean value of the 
average power estimates for that range gate 
calculated over the set of 200 iterations.  The 
blue rectangle represents one standard 
deviation of the average power estimate at the 
corresponding range gate centered about the 
mean.  The whiskers extending from this 
rectangle represent a width of 4 standard 
deviations centered about the mean, i.e. 2 



standard deviation above and 2 standard 
deviations below the mean.  It should be noted 
that for a normal distribution, approximately 95% 
of the data would lie within 2 standard deviations 
on either side of the mean.  In the results 
presented below, since decibel scale is used, 
this will not be the case.  Outlier values are 
denoted by the red “+”s. 

The simulation results for the SMPRF(150); 5, 8, 

10, 7 code with maximum unambiguous 
measurement range of 450 km and 
corresponding uniform PRT scheme are seen in 
Figure 3 through Figure 10. 

The results show that for a similar dwell 
time, the SMPRF(150); 5, 8, 10, 7 code lends to 
recovered estimates which are biased if the 
power separation between range gates is 
approximately 15-20 dB and for any level of 
power separation, the variance of the recovered 
estimates is higher versus estimates recovered 
using a uniform PRT scheme.  As will be shown 
later, the most likely reasons for this reduced 
number of samples used for the estimates for a 
given dwell time and the numerical imprecision 
associated with the variability of the parameters 
used in the inversion process. 

4.2 ANALYSIS OF FACTORS AFFECTING 
MEAN POWER RECOVERY 
PERFORMANCE OF THE SMPRF 
ALGORITHM 

 
There will inherently be variation in the 

power estimates for each range from each PRT 
that comprise the inversion variables.  This 
effectively creates a condition where the 
inversion equation becomes underdetermined, 
i.e., instead of 20 variables to recover in the 
inversion process, there will now be 80. 

The finite-length effects of the time series on 
the performance of the SMPRF algorithm are 
examined.  It is well known that the variance for 
average power estimates will be higher for such 
parameters computed from shorter-length time 
series (Bringi and Chandrasekar 2001).  To this 
effect, the recovery of the average power 
estimates of the 50 dB and flat 10 dB profiles as 
used previously are simulated using the 
SMPRF(150);5, 8, 10, 7 code with a maximum 
unambiguous range of 450 km with 4000 
repetitions, i.e., dwell time is equal to 18 
seconds.  The results are shown in Figure 11 
and Figure 12, for the two profiles respectively. 

Upon comparison of Figure 11 with Figure 5, 
it is apparent there is much less biasing and 
variance in the average power estimate at each 

range gate.  Figure 5 shows the power 
separation before biasing occurs is about 15 dB.  
Figure 11 shows as the dwell time is increased 
and the mean power estimates improve, i.e., 
have lower variance, this separation is increased 
to about 25 dB. 

Next, the SMPRF(150);5, 8, 10, 7 with maximum 
unambiguous range of 450 km code is used to 
recover the 50 dB triangular profile to illustrate 
the effect of recovering average power 
estimates calculated from time series simulated 
with various spectrum widths.  Figure 13 through 
Figure 15 show this effect with σv = 8 m/s, σv = 1 
m/s, and σv = 0 m/s (deterministic), respectively. 

Figure 13 through Figure 15 show that as σv 
is reduced, there is more correlation between 
members of the received overlaid time series 
from which mean power estimates are 
calculated.  This translates to less variability 
between variables in the inversion process.  In 
the case of deterministic, i.e., σv = 0, signals, the 
accuracy of the recovery process is limited by 
the precision of the computer generating the 
estimates. 

Next, the variance of the differences in 
average power estimates calculated from the 
received time series are explored.  The time 
series are length M = 30, ∆t = 30*150µs= 4.5 
ms, with a power of 10 dB.  The number of 
iterations run to generate the variance statistics 
is 50,000.  The results are shown in Figure 16. 

For a more rigorous analysis of the effects of 
the variability between average power estimates 
calculated from a given range volume, the 
following tables using the parameters from the 
SMPRF(150);5, 8, 10, 7 code, i.e. 4 PRTs and ∆t = 
150µs are presented, depicting, 
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A 1000-bin histogram of this difference (in 
dB) between the mean power calculated from 
time series collected from illuminations by the 
(arbitrarily chosen) first and second PRTs, i.e., 
PRTs pulsed at time 30, 60, 90, etc. and 5, 35, 
65, etc., generated over 50,000 iterations is 
shown in Figure 17. 

Table 2 and Table 3 show the mean and 
standard deviation for the difference in mean 
power estimates (in dB) for all pair differences 
across the 4 PRTs for σv = 4 m/s and σv = 1 m/s. 
 



µ j = 1 2 3 4
i = 1 0 0.0045 0.0414 0.0046

2 -0.0045 0 0.0369 0.0001
3 -0.0414 -0.0369 0 -0.0369
4 -0.0046 -0.0001 0.0369 0
σ j = 1 2 3 4

i = 1 0 0.8682 1.1705 0.6889
2 0.8682 0 1.0186 0.9854
3 1.1705 1.0186 0 0.9578
4 0.6889 0.9854 0.9578 0

Table 2. Mean and standard deviation of 
average power estimates between PRTs for first 
range gate in 50dB triangular profile, σv = 4 m/s. 

 
µ j = 1 2 3 4

i = 1 0 -0.0021 -0.0028 0.0005
2 -0.0021 0 -0.0007 0.0026
3 -0.0028 -0.0007 0 0.0033
4 0.0005 0.0026 0.0033 0
σ j = 1 2 3 4

i = 1 0 0.0621 0.1353 0.1746
2 0.0621 0 0.0847 0.1331
3 0.1353 0.0847 0 0.0636
4 0.1746 0.1331 0.0636 0

Table 3. Mean and standard deviation of 
average power estimates between PRTs for first 
range gate in 50dB triangular profile, σv = 1 m/s. 
 

Table 2 and Table 3 show the differences in 
mean power estimates from similar range 
resolutions that cause variability in the inversion 
parameters.  While the mean values of the 
differences are small for σv = 1 m/s and σv = 4 
m/s, the standard deviation values are 
significant.  This point along with the fact large 
power separation cause biasing in the mean 
power estimates are the main factors limiting the 
performance of the SMPRF algorithm for mean 
power recovery. 

5. INVESTIGATION OF THE 
PERFORMANCE OF THE SPECTRAL 
MAXIMA TECHNIQUE USED IN THE 
SMPRF ALGORITHM TO RECOVER 
MEAN VELOCITY 
The technique used in (Pirtilla et al. 2005) to 

estimate the mean velocity of the weather signal 
is noteworthy in its difference from the popular 
pulse pair technique.  In this technique, the 
power spectrum is computed from the unevenly 
sampled ACF lag values using the Fast Fourier 
Transform (FFT) and the location of the peak of 
this spectrum, translated from the frequency 
domain to the velocity domain, is taken to be the 
estimate for the mean velocity. 

The following simulations illustrate this 
technique in a fashion relative to the SMPRF 
algorithm.  In Figure 18, the power spectrum 
(NFFT = 512) of a simulated 64-point weather 
signal is shown, with σv = 2 m/s, v = 30 m/s, P = 
20 dB, and PRT = 150 µs. 

The peak location of the power spectrum 
shown in Figure 18 is located at bin kmax = 175 
which translated to the velocity estimate, v ’ by, 
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The unevenly spaced samples of the ACF of 
the return weather signal calculated using the 
SMPRF algorithm can be modeled as the 
modulation of an evenly spaced ACF with 
spacing equal to the PRT by a binary masking 
sequence in which the positions of the ACF lag 
values estimated using the SMPRF algorithm 
are set to a value of “1” and the rest set to “0”.  
This amounts to a convolution in the frequency 
domain of the two respective spectra. 

This is illustrated using the unevenly spaced 
ACF of the first volume, R1[k], calculated using 
the SMPRF(150); 5, 8, 10, 7 code shown in Equation 
25. 

In this example, the binary masking 
sequence, M1[k], is given by Equation 27. 

The power spectrum of the binary masking 
sequence, M1[k], is shown in Figure 19. 

The unevenly spaced ACF of the first 
measurement volume, R1[k], is then given by, 

[ ] [ ] [ ]1 1R k M k X k= ⋅  (29)
Where, 
[ ] is the original ACF of the weather signal. X k  

The power spectrum of the return weather 
signal using the SMPRF(150); 5, 8, 10, 7 code, S1(ω), 
given as the Discrete Fourier Transform of R1[k], 
is shown in Figure 20. 

In Figure 20,the peak of the spectra is 
located at kmax = 174 corresponding to a velocity 
of v’ = 28.61 m/s. 

Several factors affect the performance of the 
spectral maxima technique to estimate mean 
velocity.  These include the number of FFT 
points taken (NFFT), spectrum width (σv) of the 
weather signal, signal-to-noise ratio (SNR) of the 
weather signal return, and structure of SMPRF 
code, i.e., structure of the binary mask.  Each is 
investigated in further detail below. 
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{ }                       1M [ k ] 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1=  (27)

Where, 

1 1M [ k ] M [ k ]− =  (28)

5.1 EFFECT OF NFFT ON THE 
PERFORMANCE OF THE SPECTRAL 
MAXIMA TECHNIQUE FOR MEAN 
VELOCITY RECOVERY 
The number of FFT points used in 

calculation of the power spectrum from which 
the peak is determined to acquire the mean 
velocity estimate affects the resolution of the 
power spectrum, with a higher-resolution 
spectrum equating to a smoother spectrum. 
Figure 21 and Figure 22 illustrate the power 
spectra of weather signals recovered using the 
SMPRF(150); 5, 8, 10, 7 code using NFFT = 64 and 
NFFT = 4096, respectively. 

The mean error and standard deviation of 
the mean velocity estimate as a function of the 
number of FFT points used in the calculated 
power spectrum using the simulation parameters 
above is shown in Figure 23 and Figure 24. 

The results presented in Figure 23 and 
Figure 24 show the best performance of the 
spectral maxima technique to estimate mean 
velocity is attained when using more points, 
however in the interest of saving computational 
power, the number of points can be as low as 
1024 can be used with similar accuracy of the 
estimates. 

5.2 EFFECT OF SPECTRUM WIDTH ON THE 
PERFORMANCE OF THE SPECTRAL 
MAXIMA TECHNIQUE FOR MEAN 
VELOCITY RECOVERY 
The spectrum width of the weather signal 

plays a substantial role in the accuracy of the 
mean velocity estimates.  For larger spectrum 
widths, the location of the peak value in the 
power spectrum will be adversely affected by 
overlap incurred during the frequency-domain 
convolution of the power spectrum of the return 
weather signal with that of the binary masking 
sequence.  This point is illustrated in Figure 25 

and Figure 26, which depict the power 
spectrums of recovered weather signals with 
spectrum widths of σv = 1 m/s and σv = 8 m/s, 
respectively, using the SMPRF algorithm. 

Upon examination of Figure 25 and Figure 
26, it is evident that mean velocity estimates of 
weather signals with larger spectrum widths will 
be less accurate due to the spreading of the 
respective power spectrum and the resulting 
alteration of the location of the spectral peak. 

The mean error and standard deviation of 
the mean velocity estimate as a function of the 
spectrum width is shown in Figure 27 and Figure 
28, where it is seen that the performance of this 
technique begins to deteriorate for spectral 
widths above 2 m/s. 

5.3 EFFECT OF SNR ON THE 
PERFORMANCE OF THE SPECTRAL 
MAXIMA TECHNIQUE FOR MEAN 
VELOCITY RECOVERY 
When the ACF lag values are computed 

using the SMPRF algorithm, correlation between 
different resolution volumes appears as noise.  
This creates an effective SNR dependent upon 
the amount of overlaid power in each received 
return signal. 

To this point, all simulations were run using 
infinite SNR. Figure 29 and Figure 30 depict 
power spectra of weather signals recovered 
using the SMPRF algorithm with SNR = 10 dB 
and SNR = -10 dB, respectively. 

The mean error and standard deviation of 
the mean velocity estimate as a function of the 
SNR is shown in Figure 31 and Figure 32, where 
it is seen that the performance begins to 
deteriorate for SNRs less than about 10 dB. 



5.4 EFFECT OF SMPRF CODE SELECTION 
ON THE PERFORMANCE OF THE 
SPECTRAL MAXIMA TECHNIQUE FOR 
MEAN VELOCITY RECOVERY 
The choice of code will influence the 

number and position of ACF lag estimates used 
to recover the mean velocity of the received 
weather signal.  

The mean power estimate is a component in 
the ACF used to recover the mean velocity 
estimate and was shown to have considerable 
error and variance when power separations 
between resolution volumes at greater than 
about 15 dB.  The power spectrum is computed 
and shown without the mean power estimate in 
Figure 33. 

The spectrum for a weather signal 
recovered using only ACF lags 0, 5 and 8 is 
shown in Figure 34. 

The mean error and standard deviation of 
mean velocity estimates using various lag 
values in the computation is shown in Table 4. 
 

Lag values 
used in 

estimate 
µ (m/s) σ (m/s) 

23, 18, 13, 10, 
8, 5 0.39 1.37 

18, 13, 10, 8, 5, 
0 0.30 1.23 

13, 10, 8, 5, 0 0.40 1.08 
10, 8, 5, 0 0.36 1.03 

8, 5, 0 0.45 2.44 
5, 0 36.0 51.0 

Table 4.  Performance comparison of mean 
velocity estimates using various lag values in 
computation. 

6. CONCLUSIONS 
There is a trade-off inherent to the SMPRF 

algorithm in that as the maximum unambiguous 
range and velocity values are increased, more 
overlays are present in a given coding scheme 
that creates larger variance and bias in the 
mean power estimate.  It was shown using the 
example code given in (Pirtilla et al. 2005) that 
the SMPRF algorithm provides reasonable 
recovery of mean power up to range overlay 
separations up to about 15 dB.  This power 
separation is largely affected by the structure of 
the inversion matrix A, i.e., the number of ones 
in each row of A. 

The SMPRF code structure choices 
influence the greatest common denominator 

between the pulses, i.e., ∆t, which is a factor in 
determining the maximum unambiguous velocity 
of the code.  According to the equation 
describing the maximum unambiguous velocity, 
it is beneficial in this sense to have two pulses in 
the code separated by one time unit to yield the 
highest possible maximum unambiguous 
velocity for a given code. 

The mean velocity estimation using the 
SMPRF code is accomplished by correlating 
range-overlaid return signals, taking the 
spectrum of the resulting unevenly spaced ACF, 
and translating the location of the peak in the 
frequency domain to a mean velocity estimate.  
It was shown that this spectral maxima 
technique is noisier than the standard pulse pair 
technique when used on uniform PRT weather 
return time series and is adversely affected by 
factors such as using less than 512-point FFTs, 
spectrum widths above about 2 m/s, SNR lower 
than about 10 dB, and an SMPRF code choice 
yielding less than 3 ACF lags used to estimate 
the mean velocity. 

In general, the range/Doppler dilemma still 
exists for the SMPRF algorithm but in a different 
sense than that for the uniform PRT scheme.  In 
the uniform PRT scheme, the range/Doppler 
dilemma resulted in range/velocity folding and 
thus ambiguity of range and/or velocity 
estimates.  In the case of the SMPRF scheme, 
this ambiguity is exhibited in decreased quality 
of the recovered moment estimates. 
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Figure 1. Illustration and operation of the SMPRF code; 5, 8, 10, 7 PRTs, ∆t = 150µs. 

 
 

 
 

Figure 2. Block diagram of SMPRF mean velocity recovery procedure. 

 

 
Figure 3. Power profile recovery for 10 dB flat profile, SMPRF(150); 5, 8, 10, 7 code. 

 



 
Figure 4. Power profile recovery for 10 dB flat profile, uniform PRT. 

 

 
Figure 5. Power profile recovery for 50 dB triangular profile, SMPRF(150); 5, 8, 10, 7 code. 



 
Figure 6. Power profile recovery for 50 dB triangular profile, uniform PRT. 

 
Figure 7. Power profile recovery for 15 dB triangular profile, SMPRF(150); 5, 8, 10, 7 code. 



 
Figure 8. Power profile recovery for 15 dB triangular profile, uniform PRT. 

 
Figure 9. Power profile recovery for 20 dB single-gate profile, SMPRF(150); 5, 8, 10, 7 code. 



 
Figure 10. Power profile recovery for 20 dB single-gate profile, uniform PRT. 

 
Figure 11. Power profile recovery for 50 dB triangular profile, SMPRF(150); 5, 8, 10, 7 with maximum 
unambiguous range of 450 km, 4000 blocks used for simulation. 



 
Figure 12. Power profile recovery for 10 dB flat profile, SMPRF(150); 5, 8, 10, 7 with maximum unambiguous 
range of 450 km, 4000 blocks used for simulation. 

 
Figure 13. Power profile recovery for 50 dB triangular profile, SMPRF(150); 5, 8, 10, 7 with maximum 
unambiguous range of 450 km, σv = 8 m/s. 



 
Figure 14. Power profile recovery for 50 dB triangular profile, SMPRF(150); 5, 8, 10, 7 with maximum 
unambiguous range of 450 km, σv = 1 m/s. 

 
Figure 15. Power profile recovery for 50 dB triangular profile, SMPRF(150); 5, 8, 10, 7 with maximum 
unambiguous range of 450 km, σv = 0 m/s (deterministic). 



 
Figure 16. Standard deviation of average power estimate vs. spectrum width. 

 
Figure 17. Histogram of the difference of average power estimates for range gate one between the time 
series collected from illuminations by the first and second PRT. 



 
Figure 18. Power spectrum of weather signal. 

 
Figure 19. Power spectrum of binary masking sequence. 



 
Figure 20. Power spectrum of weather signal recovered using the SMPRF(150);5,8,10,7 code. 

 
Figure 21. Spectrum of weather signal recovered using SMPRF(150);5, 8, 10, 7 code, NFFT = 64. 



 
Figure 22. Spectrum of weather signal recovered using SMPRF(150);5, 8, 10, 7 code, NFFT = 4096. 

 
Figure 23. Mean error of mean velocity estimate using the spectral maxima technique and the SMPRF 
algorithm vs. NFFT. 



 
Figure 24. Standard deviation of mean velocity estimate using the spectral maxima technique and the 
SMPRF algorithm vs. NFFT. 

 
Figure 25. Spectrum of weather signal recovered using SMPRF(150);5, 8, 10, 7 code, σv = 1 m/s. 



 
Figure 26. Spectrum of weather signal recovered using SMPRF(150);5, 8, 10, 7 code, σv = 8 m/s. 

 
Figure 27. Mean error of mean velocity estimate using the spectral maxima technique and the SMPRF 
algorithm vs. σv. 



 
Figure 28. Standard deviation of mean velocity estimate using the spectral maxima technique and the 
SMPRF algorithm vs. σv. 

 
Figure 29. Spectrum of weather signal recovered using SMPRF(150);5, 8, 10, 7 code, SNR = 10 dB. 



 
Figure 30. Spectrum of weather signal recovered using SMPRF(150);5, 8, 10, 7 code, SNR = -10 dB. 

 
Figure 31. Mean error of mean velocity estimate using the spectral maxima technique and the SMPRF 
algorithm vs. SNR. 



 
Figure 32. Standard deviation of mean velocity estimate using the spectral maxima technique and the 
SMPRF algorithm vs. SNR. 

 
Figure 33. Spectrum of weather signal recovered using SMPRF(150);5, 8, 10, 7 code, lag zero = 0. 



 
Figure 34. Spectrum of weather signal recovered using SMPRF(150);5, 8, 10, 7 code, using lags 0, 5, and 8. 
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