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1. Introduction

Severe weather phenomena such as tornados, thun-
derstorms, hail, and floods, annually cause signifi-
cant loss of life, property and crop destruction, and
disruption of the transportation systems. The annual
economic impact of these phenomena is estimated
to be greater than 13 billion dollars (Pielke and Car-
bone 2002). Any mitigation of the effects of these
storms would be beneficial.

We propose to enhance our understanding of
the formation of severe weather events, specif-
ically focusing on tornadoes, through data min-
ing/knowledge discovery techniques. The process of
knowledge discovery is about making sense of data.
Generally, the data are too complex for humans to
quickly identify and understand the important pat-
terns. Instead, knowledge discovery techniques can
be used to highlight salient patterns. We are devel-
oping new data mining techniques for use on storm-
scale weather data.

The long-term goals of our work are to improve
the understanding of tornado formation to the point
where refined detection and prediction algorithms
can be created. We will do this by engaging in an in-
terdisciplinary knowledge discovery process where

we develop new data mining techniques (computer
science) to understand the data and analyze the re-
sults (meteorology). This becomes a cycle where
the results inform new techniques and new tech-
niques produce new results. The results presented
in this paper represent the beginning of this re-
search.

2. Meteorological Data

With our goal of improving the detection and antic-
ipation of tornadoes, we are not taking the tradi-
tional route of examining radar reflectivity and ra-
dial velocity gathered by a specific radar system.
These radar systems may be limited in their ability
to detect and anticipate tornadoes due to inherent
radar characteristics such as a beam increasing in
altitude and spreading as it travels away from the
radar causing the resolution volume to be too large
to accurately identify tornadic circulations (e.g. Don-
aldson 1970; Brown et al. 1978; Wood and Brown
1997). Additionally, analyzing only radar reflectiv-
ity and radial velocity provides a limited number of
variables to use in depicting the true state of the at-
mosphere. We therefore make use of new research
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on data assimilation that will eventually enable us
to predict and detect severe weather on a real-time
three-dimensional gridded data set containing all the
fundamental and derived meteorological quantities.
Examples of the fundamental quantities include the
three components of air motion, temperature, pres-
sure, and precipitation. Examples of the derived vari-
ables include divergence, temperature gradient, ver-
tical vorticity, and the pressure gradient force. The
ability to have all fundamental and derived meteo-
rological quantities at all grid points results in an im-
proved and significantly broadened representation of
the atmosphere. This new representation necessi-
tates the development of more sophisticated detec-
tion and anticipation techniques.

Figure 1 gives a sample of the gridded data cre-
ated using an ensemble Kalman filter assimilation of
real observations (Tong and Xue 2005). The top two
panels display the observed reflectivity and Doppler
wind measurements in the May 29, 2004 tornado
in Oklahoma City. The remaining panels show as-
similated radar reflectivity and retrieved temperature,
pressure, and vertical vorticity.

Because the technology to create real-time three-
dimensional gridded data from actual observations
is currently under development, we are using simu-
lated storm data produced from the Advanced Re-
gional Prediction System (ARPS), which is a three-
dimensional, nonhydrostatic model that is one of the
top weather forecasting systems for mesoscale data
(Xue et al. 2000, 2001, 2003). The computational
grid for our study has a horizontal spacing of 0.5 km
within a 100 km by 100 km by 20 km domain. There
are 49 levels in the vertical with a stretched grid from
50 m at the ground to 750 m near the top of the do-
main. The model is run for three hours with history
files saved every 30 seconds.

Soundings are used to initialize horizontally ho-
mogeneous base state environments wherein a
thermal bubble initiates convection. The thermo-
dynamic profiles of the soundings are analytically
constructed using the Weisman and Klemp (1982)
method with variations in the surface mixing ratios.
The hodographs have variations in magnitude and
shape similar to Adlerman and Droegemeier (2005)
(e.g. half circle, quarter circle, quarter circle with
tail, and straight). Only supercell storms are studied
in this research and therefore indices such as 0-6
km Bulk Richardson Number (Weisman and Klemp
1982) and storm-relative helicity (Davies-Jones et al.
1990) are used to identify suitable soundings. Our
preliminary results used soundings having surface
mixing ratios of 13, 14, 15, 16, and 17 g kg−1 with
a half circle hodograph of radius 10 m s−1 turning

through 4 km. We also used a sounding from the
20 May 1977 Del City, Oklahoma tornado (Ray et al.
1981)

2a. Data Extraction

Our eventual goal is to examine the data using high-
level features such as a hook echo, gust front, rear
flank downdraft, occlusion downdrafts, etc. However,
automated identification and tracking of these high-
level features is computationally difficult. Identifying
them requires creating a description that a majority
of meteorologists will agree on or at least creating a
large enough labeled data set such that a machine
learning algorithm could learn to extract these fea-
tures. We will be addressing these issues in future
work.

For the results in this paper, we chose to extract
a set of 24 fundamental and derived meteorologi-
cal quantities. These quantities are listed in Table
1. These represent the most important meteorolog-
ical quantities and enable us to observe each storm
with a significant reduction in data size over examin-
ing each variable at each grid point.

Any given storm simulation may generate several
separate storm cells. We define a storm cell based
on the maximum updraft. The algorithm for identi-
fying and tracking individual storms cells is given in
Table 2. At each time step, we identify the domain-
wide maximum vertical wind speed at 4 km height.
Once a single storm is being tracked, new storms
will not be identified until their maximum vertical wind
speed exceeds that of the main storm. A 20 km by
20 km full height box is drawn around the location
of the maximum vertical wind speed at 4 km height
for each storm. We then measure the maximum and
minimum of each quantity listed in Table 1 within the
box. We measure the maximums and minimums for
each variable for the surface to 2 km in height and
then from 2 km to the top. For some variables, we
also store the maximum and minimum values at the
surface. This allows us to identify whether a maxi-
mum or minimum value is associated with a surface,
low, or mid to upper level feature.

In current work, we are examining the use of
a modified Storm Cell Identification and Tracking
(SCIT) algorithm (Johnson et al. 1998) for improved
storm identification and tracking. The original SCIT
algorithm used reflectivity to identify and track each
storm. Because we do not have to depend only on
reflectivity, we instead use discrete areas of signifi-
cant updrafts and track around each updraft.
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Observed Radar Reflectivity Observed Radar Radial Velocity

Assimilated Radar Reflectivity Retrieved Pressure

Retrieved Temperature Retrieved Vorticity

Figure 1: An example of real data (top panels) being used to create gridded data (center and bottom
panels). This example is from the May 29, 2004 tornado in Oklahoma City and is courtesy of Fritchie and
Droegemeier at the University of Oklahoma.
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Table 1: Maximum and minimum quantities extracted for each storm cell. The bars represent averages.

Variable Equation Units

vertical velocity w m s−1

vertical velocity horizontal gradient

√(
∆hw
∆x

)2
+

(
∆hw
∆y

)2

s−1

vertical vorticity ∆hv
∆x −

∆hu
∆y s−1

rainwater mixing ratio qr kg kg−1

rainwater mixing ratio horizontal gradient

√(
∆hqr
∆x

)2

+
(

∆hqr
∆y

)2

kg kg−1 m−1

rainwater mixing ratio vertical gradient

√(
∆vqr
∆z

)2

kg kg−1 m−1

perturbation potential temperature pt - ptbar K

pressure perturbation (p’) p - pbar Pa

vertical perturbation pressure gradient force −1
rho ∗

∆vp′

∆z m s2

horizontal divergence ∆hu
∆x + ∆hv

∆y s−1

hail mixing ratio qh kg kg−1

hail mixing ratio horizontal gradient

√(
∆hqh
∆x

)2

+
(

∆hqh
∆y

)2

kg kg−1 m−1

hail mixing ratio vertical gradient

√(
∆hqh
∆z

)2

kg kg−1 m−1

horizontal wind speed
√

u2 + v2 m s−1

vertical stretching −
(

∆hv
∆x −

∆hu
∆y

) (
∆hu
∆x + ∆hv

∆y

)
s−1

tilting term
(

∆hw
∆y ∗

∆hu
∆z

)
−

(
∆hw
∆x ∗

∆hv
∆z

)
s−1

baroclinic generation
(

1
(rho)2 ∗

∆h(rho)
∆x ∗ ∆hp

∆y

)
−

(
∆h(rho)

∆y ∗ ∆hp
∆x

)
s−1

vertical velocity (w) and vertical vorticity (ζ)
correlation

Σ(wij−ww>1)(ζij−ζw>1)√
Σ(wij−ww>1)

√
Σ(ζij−ζw>1)

horizontal potential temperature gradient

√(
∆hpt
∆x

)2

+
(

∆hpt
∆y

)2

K m−1

radar reflectivity ref = 10 ∗ LOG10 (Zerain + Zesnow + Zehail) dBZ

radar reflectivity horizontal gradient

√(
∆h(ref)

∆x

)2

+
(

∆h(ref)
∆y

)2

dBZ m−1

radar reflectivity vertical gradient

√(
∆v(ref)

∆z

)2

dBZ m−1

horizontal Laplacian of radar reflectivity ∇2(ref) dBZ m−2

vertical velocity and horizontal Laplacian of
radar reflectivity correlation

Σ(wij−ww>1)(∇2(ref)ij−∇2(ref)w>1)
√

Σ(wij−ww>1)
2

√
Σ(∇2(ref)ij−∇2(ref)w>1)

2
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Table 2: Summary of how we identify individual storm cells and extract the maximum and minimum quanti-
ties from each storm.

Identify-storm-cells(time t)
wmax ← domain-wide maximum vertical wind velocity (w) at 4 km height
If wmax < 15 m s−1

return
Otherwise

Measure the Euclidean distance from the location of wmax to the storms identified at time t-1
If the closest previous storm is less than 5 km away, assume it is the same storm
Otherwise, mark this as a new storm.

For all storms identified on the previous step and the new storm if it exists
Extract the maximum and minimum quantities in a 20 km by 20 km full height box around wmax

If wmax within a storm drops below 10 m s−1, stop tracking this storm

0 16 32 48 64
0
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48

64

x in km

y 
in

 k
m

Location of storm segment1 from time 660 to 9090

Figure 2: Locations of the maximum vertical velocity (w) at 4km within a storm on the WK14 run. The blue
dot shows the ending location. This storm existed from 660 seconds into the simulation until 9090 seconds
(nearly the end).
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Figure 3: Maximum and minimum pressure pertubations recorded in a 20km by 20km box around the
location of the maximum vertical wind speed. Each of the values is recorded for a specific range of height
values. The vertical lines highlight several regions of interest for a low-level rotation.
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Figure 4: Maximum and minimum vertical vorticities recorded in a 20km by 20km box around the location
of the maximum vertical wind speed. Each of the values is recorded for a specific range of height values.
The vertical lines highlight several regions of interest for a low-level rotation.
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Figure 5: Maximum and minimum vertical stretching recorded in a 20km by 20km box around the location
of the maximum vertical wind speed. Each of the values is recorded for a specific range of height values.
The vertical lines highlight several regions of interest for a low-level rotation.
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Figure 6: Maximum and minimum horizontal wind speed recorded in a 20km by 20km box around the
location of the maximum vertical wind speed. Each of the values is recorded for a specific range of height
values. The vertical lines highlight several regions of interest for a low-level rotation.
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2b. Identifying storm features

The horizontal grid spacing (0.5 km) used by the
ARPS model to produce the simulated thunder-
storms in this study is of the same order as the di-
ameter of tornadoes. Consequently a tornado can-
not be resolved in the model output. However, the
model’s grid spacing is sufficient to resolve the tor-
nado’s parent mesoscale circulation, which is what
we use in these results.

Given the inability to resolve a tornado with a 500
m grid spacing, we manually examined the tempo-
ral data for evidence of mesoscale circulation which
might indicate the presence of a tornado. Current
tornado detection algorithms also search for evi-
dence of the mesoscale circulation because the tor-
nadoes themselves are too small to be observed un-
less they occur near the radar (Lakshmanan et al.
2006). However, radar-based algorithms rely only on
reflectivity and radial velocity while we can use any
of the retrieved fields. We found that prominent sig-
natures for the following four parameters within the
lowest 2 km and at the surface were associated with
the development of a low-altitude circulation within
a given storm: perturbation pressure, vertical com-
ponent of vorticity, horizontal wind speed, and the
stretching term of the vertical vorticity equation. In
particular, we looked for coincident localized pres-
sure minima, vertical vorticity maxima, wind speed
maxima, and stretching term maxima. Maximum
vertical velocity above 2 km, which is important in the
development of a tornado’s parent circulation, was
not included as a pertinent parameter. We tracked
the maximum vertical velocity within a 20 by 20 km
box. It is likely that this box contained several up-
drafts at various stages of evolution which meant it
was not possible to isolate the particular updraft that
was associated with the circulation. Examination of
the data upheld this hypothesis.

Figure 2 shows the location of the maximum ver-
tical wind speed wmax at 4 km from the time that it
reaches 15 m s−1 until the time that the maximum
drops below 10 m s−1. The blue dot shows the end-
ing location. Shown in Figures 3-6 are plots of the
four parameters for the storm generated using a 14
g kg−1 mixing ratio. We refer to this storm as WK14.
The portions of the curves that indicate the pres-
ence of a low-altitude circulation are located within
the band bounded by the solid vertical lines at 5100
and 7300 seconds (37 minutes time interval). The
center vertical line at 6300 seconds indicates the ap-
proximate time when the circulation was strongest.
Perturbation pressure in the developing circulation
started to decrease around 5100 seconds (Figure

3). The significant decrease in pressure (about 10
millibars or 1000 pascals) coincided with a marked
increase in low-altitude circulation (vertical vorticity
maximum in Figure 4). The circulation increase ap-
pears to be due primarily to the increase of air con-
verging into the lower portion of the updraft with a re-
sulting increase in vertical stretching of vertical vor-
ticity (Figure 5). As to be expected, low-altitude wind
speed increased in conjunction with the increased
circulation (Figure 6). Around 6300 seconds the par-
ent mesoscale circulation was most intense and it
would be at that time that a tornado would have oc-
curred if we had a finer grid spacing.

About 45 minutes after this circulation began, a
weaker secondary circulation developed in the storm
(from around 8500 seconds to the end of the data
curves). This secondary circulation had a weaker
pressure drop associated with it, but there was a sig-
nificant increase in vertical vorticity (associated with
increased vertical stretching of vorticity) and horizon-
tal wind speed. When severe thunderstorms develop
a series of mesoscale circulations (each frequently
associated with a separate tornado), the circulations
develop at roughly 40-minute intervals (e.g., Burgess
et al. 1982; Alderman et al. 1999), which is evident
in our findings.

Although we labeled strong low-level rotations by
hand for these results, we are developing a more au-
tomated approach that will require much less human
intervention for the full set of 300-500 storm simula-
tions. We cannot remove the human from the pro-
cess of labeling tornadoes entirely or else tornado
detection would already be a solved problem.

3. Data Mining

Mesoscale weather data pose several challenges
to current data mining techniques. The sheer size
of the data available is more than many current
techniques can handle. For example, each of our
simulations produces about 20GB of data. The
data are dynamic (temporal), continuous, and multi-
dimensional. Even with a propositional representa-
tion, identifying patterns in continuous data is dif-
ficult. The propositional representation of measur-
ing maximum and minimum quantities gives us a re-
duced representation for the data that is more man-
ageable. This section presents our algorithm and our
approach to dealing with the continuous and multi-
dimensional aspects of the data.

The goal of this project is to identify salient pat-
terns in the data occurring prior to the development
of strong low-level rotation that could be used to an-
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ticipate tornado formation. That is, we want to iden-
tify the conditions in a supercell storm that lead to a
tornado in condition A but not in condition A′ where
A and A′ are very similar storm conditions. Intu-
itively, the goal of our data mining algorithm is to
create a set of rules of the form that “if the time se-
ries data for feature A fits the characteristic shape X
and the time series data for feature B fits the char-
acteristic shape Y within five minutes of the match
on feature A, then the probability of a tornado occur-
ring within Z minutes is P.” This section builds on this
intuition with a formal definition of the patterns and
algorithm we use to identify those patterns.

3a. Definitions

Using the propositional approach described above,
we have continuous multi-dimensional real-valued
data. Each dimension of the data is called a fea-
ture. Each one of the maximum and minimum quan-
tities outlined in Table 1 is a feature. For a sin-
gle storm, each feature, f , takes the form of f =
{vt, vt+1, vt+2, . . . vt+T } where v is a real number, t is
the first time step for the data collected for this storm
cell, and T is the number of time steps that this fea-
ture was recorded. We call the full set of readings
for a single feature in a single storm a trajectory, T .
It has also been called a stream (Oates and Cohen
1996).

Traditionally in machine learning, features are as-
sumed to be statistically independent. Examination
of the table shows that some of the features are
clearly related to one another. However, this as-
sumption is often violated in machine learning yet
performance is not affected (Holte 1993; Domingos
and Pazzani 1997).

Each storm cell, S, has a trajectory per feature
and a single binary label L ∈ {0, 1} associated with
it. We refer to L = 0 as negative labels and L = 1 as
positive labels. Formally, S = {L, T1, T2, T3, . . . Tn}
where n is the number of trajectories associated with
a single storm. The label applies to the trajectories
as a whole and does not point to any specific time
within the trajectory that caused the trajectory to be
labeled as positive or negative. The data mining al-
gorithm aims to identify the subset of features that
are most predictive of the labels.

Given a single feature f , a pattern, p, is infor-
mally defined as a characteristic shape for that fea-
ture. For example, if the feature measures the max-
imum pressure perturbation at the surface, a char-
acteristic shape could be a sudden drop followed
by a rise. These patterns are not predefined but
identified automatically by the data mining program.

More formally, a pattern is a time series of nor-
malized real-values that the feature should follow,
p = {f, vk, vk+1, vk+2, . . . , vk+j} where k ≥ t and
j ≤ T .

A rule, r, is an ordered set of patterns, a time win-
dow, a weight, and a probability prediction. Formally,
r = {p1, p2, . . . pj , window, w, prob}. Each of the pat-
terns pi may come from a different feature. The pat-
terns are assumed to occur in order, meaning that
p2 must occur after p1, but there is no specific time
gap between the patterns so long as all fit within the
specified time window. The probability, prob, spec-
ifies the probability of seeing a positive label given
this rule. The weight, w ∈ R, is used to determine
the relative strengths of the rules in the case that
multiple rules are identified.

Although this formulation looks similar to the for-
mulations for multiple-instance learning (MIL) (Di-
etterich et al. 1997; McGovern and Jensen 2006),
there are several big differences. The first is that the
data in the trajectories are ordered while MIL data
are not. A second difference comes in the formu-
lation of the knowledge representation. Given the
unordered nature of the data, MIL algorithms gen-
erally look for a subset of predictive features and an
associated range on their values but they do not look
for patterns, especially those with gaps. This formu-
lation also shares some similarities with association
rules (for example, see Zaki 2001). Although associ-
ation rule algorithms do handle part of the temporal
nature of the data, they still assume unordered item-
sets.

3b. Data conversions

Data mining with continuous data presents a num-
ber of challenges. In particular, it is highly unlikely
that any two trajectories will ever contain exactly the
same pattern. The usual answer to dealing with con-
tinuous data is to transform the data to a discrete
representation. By mining at the discrete (and often
symbolic) level, we significantly cut down the search
space while enabling approximate matches between
patterns. However, most techniques for creating dis-
crete data from continuous data lose the ability to
compare the distance of potential patterns in the
original form of the data. This ability is critical be-
cause the flip side of creating a discrete representa-
tion is that patterns may look interesting when they
are not comparable in the original data. We chose
to use the SAX (Lin et al. 2003) approach which ex-
plicitly addresses these issues. The symbolic data
generated using SAX can be compared and there is
a lower-bound on the distance of the symbolic data
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with respect to the distance of the original continu-
ous data.

Figure 7 and 8 show how SAX converts the vortic-
ity and pressure perturbation graphs shown in Fig-
ures 3 and 4 respectively. SAX first normalizes the
data in a single trajectory to fit a gaussian with mean
of zero and a standard deviation of 1. Symbols (such
as a, b, c, d, e, and f) are generated according to
the distribution of the normalized data. For example,
Figure 7 contains all six symbols while Figure 8 has
such a significant drop in pressure that the symbol ’f’
is never observed in the normalized data. The lines
on the graph show the breakpoints between symbols
and the actual symbols themselves can be seen.
Each symbol is also colored differently. For these
graphs, we averaged together six data points (three
minute of simulation time) for each symbol. Each tra-
jectory for each storm is converted (and normalized)
separately. The symbolic data are used for data min-
ing but we can refer back to the original data in the
final step of choosing the most interesting patterns.

3c. Algorithm

This rule-finding algorithm draws from the MSDD al-
gorithm of Oates and Cohen (1996), the multiple-
instance learning approach described by McGov-
ern and Jensen (2006), and the data structures for
efficient detection of unusual patterns described in
Keogh et al. (2005). The parameters are the min-
imum word size (number of symbols) for each pat-
tern and a p-value used to prune rules that are not
statistically significant. Typically the minimum word
size should be small. We used three for the results
presented in this paper. With each symbol repre-
senting three minutes of data, words represent nine
minutes of data. The rule finding algorithm works as
described below.

1. For each storm cell and each trajectory within a
storm cell, create symbolic data using SAX.

2. Generate tries using the minimum word size.
The tries are a tree-based data structure that
allow constant time access to the counts and
occurrences for each word. These counts main-
tain the number of times that a word is seen
in a positive or a negative trajectory. Multiple
appearances within a single trajectory are only
counted once. The tries also store indices into
the trajectories for each word.

3. Create an empty allowable word set.

4. Examine all the basic words in the trie. Cre-
ate a contingency table using the stored positive

and negative counts for each word. Calculate
χ2 for each word and obtain the corresponding
p-values. Add any words whose p-value is be-
low the user specified threshold to the allowable
word set.

Although this step only identifies small rules of
the form if word A appears, then the storm is
positive with probability p, it is critical for pruning
the search space for growing the larger rules.

5. Given a user specified window, recursively
search for rule conjunctions using the allowable
word list. Stop recursion when no rules with
p values less than the user specified threshold
have been created.

6. Return all rules with p values that are less than
the user specified threshold.

Although generating the tries is computationally
expensive, it can be done with a single pass through
the data. The complexity of the trie building algo-
rithm is O(aw) where a is the size of the alphabet
and w is the trie word size. With the exponential de-
pendence on word size in the time, we keep word
size small (we used three for all results in this paper).
Once it is built, the trie stores the critical information
for each word, allowing the algorithm to access these
counts in constant time. This efficiency allows us to
search through all of the data quite quickly (less than
a second for the results reported in this paper). If
search time becomes an issue as we gather more
storms, we can make use of the properties of χ2 to
prune in a guaranteed manner.

With larger data sets, it is unlikely that any sin-
gle rule can accurately capture the characteristics of
the entire data set. We have implemented an ex-
tension of the approach described above that uses
boosting (Schapire 2003). In this case, the algorithm
described above is used to identify the rules but the
examples are weighted by their relative importance.
On the first step, all examples are weighted equally.
As rules are created that correctly classify some ex-
amples, the weight of those examples is decreased
while the weight of the incorrectly classified exam-
ples is increased. We do not report the results of
using boosting in this paper because our experimen-
tal data set was too small to sustain boosting. How-
ever, in preliminary work with simulated data, boost-
ing showed promise and we expect this will be true
with the meteorological data as well.
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Figure 7: Maximum vertical vorticity at the surface as discretized by the SAX (Lin et al. 2003) algorithm.
These values correspond to those shown in Figure 4.
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4. Preliminary Results

Our preliminary results all draw from six simulation
runs in ARPS, outlined in Section 2. Although our
eventual goal is to use 300-500 simulations, this pa-
per only addresses results from the first six simu-
lations due to initial issues with storm tracking and
domain translation within the ARPS model. These
issues have been resolved and expanded results will
be discussed at the conference and in future publi-
cations.

Given the lack of data (six simulations yielded 16
labeled storm cells), data mining on all 64 features
will likely lead to overfitting. This problem is com-
pounded by the fact that χ2 works best with a mass
of at least 20, while we have only 16. With these
issues in mind, we narrowed the set of potential fea-
tures down to several sets of one, two, and three
features.

Figure 9 visually demonstrates the occurrences of
the rule identified using the minimum pressure per-
turbation values at the surface. This rule is conjunc-
tive and specifies that if the minimum pressure per-
turbation has been steady at a relatively high value
and it is followed by a large drop (of the form shown
in the graph), there is a 93.75% chance of a tornado
occurring. This number comes from the accuracy on
the training set. This rule correctly identified three
of our four low-level rotations and correctly ruled out
the presence of low-level rotations in all 12 of the
negative cases. Although a large drop in pressure
was identified as one of the primary characteristics
in labeling a storm as positive, we did not tell the
data mining algorithm what part of the pressure per-
turbation readings was salient. It was able to identify
the drop automatically. In addition, it identified that
the drop was not the only critical pattern. Instead,
having a higher value for some time followed by the
lower value was more predictive.

Figure 10 shows an example of a rule that is
clearly overfitting on the data. In this case, the rule
achieves a 75% accuracy on the training set by spec-
ifying that low-level rotations are likely to form when
there is a growth in vorticity at the surface. However,
this occurs in a number of cases where no low-level
rotations actually occur. With more data, we believe
this rule will be refined to use the pressure perturba-
tion and will be able to correctly identify the low-level
rotations.

To verify our hypothesis that we have too little data
and are overfitting, we used leave-one-out cross val-
idation. In these experiments, we trained on all but
one storm and tested on the held-out storm. We re-
peat this cycle for each storm and report the average

accuracy across all tests. If the average training set
accuracy differs significantly from the average test
set accuracy, then overfitting is likely. Using pressure
perturbation, we see an average accuracy of 90 per-
cent on the training set while the test set accuracy is
only at 69 percent. All but one of the incorrect clas-
sifications occurred in case where a positive storm
was pulled out to the test set. Since there are only
four positive storms in the data set, pulling one out
for cross validation leaves too few to train on. Us-
ing vorticity, we see even more dramatic evidence
of overfitting with an average accuracy of 83 percent
on the training set and only 44 percent on the test
set. Since the default accuracy is 75 percent, the
data mining is identifying noise that makes the clas-
sifier perform worse than just guessing no tornado.
Given the more promising results with pressure per-
turbation, we are sure these results will improve with
more storms.

5. Current and Future Work

Given the small number of simulations, the results
reported in this paper are only the beginning of what
will be a very exciting collaboration between mete-
orology and computer science. Our next step is to
run the data mining algorithm on the full set of sim-
ulated storms, which will enable us to examine all
of the maximum and minimum features and not just
the few we hand picked here. In addition, we expect
that the boosting version of the algorithm will perform
better once we have the full set of storms.

The six simulations used for this paper generated
16 separate storm cells. With this ratio, we expect
that the full 300-500 simulations may generate more
than 1000 separate storm cells. Although we hand
labeled the 16 storm cells used in this paper, we are
developing an automated labeling technique as it is
not feasible to hand label 1000 storm cells.

The longer term research on this project will fo-
cus on using a relational approach. This will enable
us to make use of the high-level features, such as
hook echos and gust fronts, that meteorologists can
identify. Challenges that we will need to address in-
clude identifying and tracking these features, devel-
oping a dynamic relational data representation, and
developing new statistical relational models for use
on dynamic data. We discuss these challenges in
depth in McGovern et al. (2006).

This research is a part of the Collaborative Adap-
tive Sensing of the Atmosphere (CASA) Engineer-
ing Research Center. This center is developing new
low-powered X-band radars that will sense the low-
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Figure 9: Occurrences of the rule on the minimum pressure perturbation at the surface. This rule is con-
junctive and both halves of the rule are shown on the graph. The y-axis is the pressure perturbation and
the x-axis is time.
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Figure 10: Occurrences of the rule on the maximum vorticity at the surface. This rule has a number of false
positives and those are shown in the lower portion of the graph.
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est 3 km of the atmosphere better than the current
NEXRAD radars (McLaughlin et al. 2005). These
radars will dynamically adjust their scanning strate-
gies to the current weather situation. The fact that
the radars will be able to scan the lower regions of
the atmosphere and that they can change the scan-
ning region every 30 seconds will create valuable
data capable of observing previously undetected
storm structure. This new data necessitates the de-
velopment of new detection/prediction techniques.

Doppler radars currently produce reflectivity and
Doppler velocity measurements in storms. The com-
bination of successful techniques for identifying tor-
nadoes (Mitchell et al. 1998; Stumpf et al. 1998; Lak-
shmanan et al. 2006) and Doppler radars have in-
creased the true positive rate for detecting tornadoes
(Simmons and Sutter 2005). Even as the true pos-
itive rate increased, the false positive rate remained
about constant at about 75%. Current techniques for
predicting severe weather are tied to specific char-
acteristics of the radar systems. Each new sensing
system requires the development of new algorithms
for detecting hazardous events. By studying an as-
similated data set, where we can measure all the
fundamental meteorological quantities, we expect to
significantly improve our understanding of tornado
formation and to be able to improve tornado detec-
tion and prediction techniques in general, not just for
a single radar.

Acknowledgement This material is based upon
work supported by the National Science Founda-
tion under Grant No. NSF/CISE/REU 0453545
and by the National Science Foundation Engineer-
ing Research Centers Program Under Coopera-
tive Agreement EEC-0313747 to the University of
Massachusetts-Amherst, and by Cooperative Agree-
ment ATM-0331594 to the University of Oklahoma.

References

Adlerman, E. and K. K. Droegemeier, 2005: The de-
pendence of numerically simulated cyclic meso-
cyclogenesis upon environmental vertical wind
shear. Mon. Wea. Rev , 133, 3595–3623.

Alderman, E. J., K. K. Droegemeier, and R. P.
Davies-Jones, 1999: A numerical simulation of
cyclic mesocyclogenesis. Journal of Atmospheric
Science, 56, 2045–2069.

Brown, R. A., L. R. Lemon, and D. W. Burgess,
1978: Tornado detection by pulsed doppler radar.
Monthly Weather Review , 106, 29–38.

Burgess, D. W., V. T. Wood, and R. A. Brown, 1982:
Mesocyclone evolution statistics. Preprints, 10th
Conf. on Severe Local Storms, Amer. Meteor. Soc,
San Antonio, TX, 84–89.

Davies-Jones, R., D. Burgess, and M. Foster, 1990:
Test of helicity as a tornado forecast parame-
ter. Preprints, 16th Conference on Severe Local
Storms, Amer. Meteor. Soc, Kananaskis Park, AB,
Canada, 588–592.

Dietterich, T. G., R. H. Lathrop, and T. Lozano-Perez,
1997: Solving the multiple-instance problem with
axis-parallel rectangles. Artificial Intelligence, 89,
31–71.

Domingos, P. and M. Pazzani, 1997: On the optimal-
ity of the simple bayesian classifier under zero-one
loss. Machine Learning, 29, 103–130.

Donaldson, J. R., Jr., 1970: Vortex signature recog-
nition by a doppler radar. Journal of Applied Mete-
orology , 9, 661–670.

Holte, R., 1993: Very simple classification rules per-
form well on most commonly used datasets. Ma-
chine Learning, 11, 63–90.

Johnson, J. T., P. L. Mackeen, A. Witt, E. D. Mitchell,
G. J. Stumpf, M. D. Eilts, and K. W. Thomas, 1998:
The storm cell identification and tracking algo-
rithm: An enhanced wsr-88d algorithm. Weather
and Forecasting, 13, 263–276.

Keogh, E., J. Lin, and A. Fu, 2005: HOT SAX: Effi-
ciently finding the most unusual time series subse-
quence. Proc. of the 5th IEEE International Con-
ference on Data Mining (ICDM 2005), Houston,
Texas, 226–233.

Lakshmanan, V., T. Smith, G. J. Stumpf, and
K. Hondl, 2006: The Warning Decision Sup-
port System - Integrated Information (WDSS-II).
Weather and Forecasting, in press.

Lin, J., E. Keogh, S. Lonardi, and B. Chiu, 2003: A
symbolic representation of time series, with impli-
cations for streaming algorithms. Proceedings of
the 8th ACM SIGMOD Workshop on Research Is-
sues in Data Mining and Knowledge Discovery .

McGovern, A. and D. Jensen, 2006: Chi-squared:
A simpler evaluation function for multiple-instance
learning. Under Review .

McGovern, A., A. Kruger, D. Rosendahl, and
K. Droegemeier, 2006: Open problem: Dynamic
relational models for improved hazardous weather

18



prediction, Presented at the ICML Workshop on
Open Problems in Statistical Relational Learning.

McLaughlin, D. J., V. Chandrasekar, K. Droege-
meier, S. Frasier, J. Kurose, F. Junyent, B. Philips,
S. Cruz-Pol, and J. Colom, 2005: Distributed col-
laborative adaptive sensing (DCAS) for improved
detection, understanding, and prediction of atmo-
spheric hazards. 9th Symp. Integrated Obs. As-
sim. Systems - Atmos. Oceans, Land Surface
(IOAS-AOLS), Amer. Meteor. Soc, San Diego, CA.

Mitchell, E. D., S. V. Vasiloff, G. J. Stumpf, A. Witt,
M. D. Eilts, J. Johnson, and K. W. Thomas, 1998:
The National Severe Storms Laboratory tornado
detection algorithm. Weather and Forecasting, 13,
352–366.

Oates, T. and P. R. Cohen, 1996: Searching for
structure in multiple streams of data. Proceedings
of the Thirteenth International Conference on Ma-
chine Learning, Morgan Kauffman, 346–354.

Pielke, R. and R. Carbone, 2002: Weather impacts,
forecasts, and policy. Bulletin of the American Me-
teorological Society , 83, 393–403.

Ray, P., B. Johnson, K. Johnson, J. Bradberry,
J. Stephens, K. Wagner, R. Wilhelmson, and
J. Klemp, 1981: The morphology of several tor-
nadic storms on 20 May 1977. J. Atmos. Sci , 38,
1643–1663.

Schapire, R. E., 2003: The boosting approach to ma-
chine learning: An overview. Nonlinear Estimation
and Classification, D. D. Denison, M. H. Hansen,
C. Holmes, B. Mallick, and B. Yu, eds., Springer.

Simmons, K. M. and D. Sutter, 2005: WSR-88D
radar, tornado warnings, and tornado casualties.
Weather and Forecasting, 20, 301–310.

Stumpf, G. J., A. Witt, E. D. Mitchell, P. L. Spencer,
J. Johnson, M. D. Eilts, K. W. Thomas, and D. W.
Burgess, 1998: The National Severe Storms Lab-
oratory mesocyclone detection algorithm for the
WSR-88D. Weather and Forecasting, 13, 304–
326.

Tong, M. and M. Xue, 2005: Ensemble kalman
filter assimilation of Doppler radar data with a
compressible nonhydrostatic model: OSS exper-
iments. Mon. Wea. Rev., 133, 1789–1807.

Weisman, M. and J. Klemp, 1982: The dependence
of numerically simulated convective storms on ver-
tical wind shear and buoyancy. Monthly Weather
Review , 110, 504–520.

Wood, V. T. and R. A. Brown, 1997: Effects of radar
sampling on single-Doppler velocity signatures of
mesocyclones and tornadoes. Weather and Fore-
casting, 12, 928–938.

Xue, M., K. K. Droegemeier, and V. Wong, 2000: The
Advanced Regional Prediction System (ARPS) -
a multiscale nonhydrostatic atmospheric simula-
tion and prediction model. Part I: Model dynam-
ics and verification. Meteorology and Atmospheric
Physics, 75, 161–193.

Xue, M., K. K. Droegemeier, V. Wong, A. Shapiro,
K. Brewster, F. Carr, D. Weber, Y. Liu, and
D. Wang, 2001: The Advanced Regional Predic-
tion System (ARPS) - a multiscale nonhydrostatic
atmospheric simulation and prediction tool. Part II:
Model physics and applications. Meteorology and
Atmospheric Physics, 76, 134–165.

Xue, M., D. Wang, J. Gao, K. Brewster, and K. K.
Droegemeier, 2003: The Advanced Regional Pre-
diction System (ARPS), storm-scale numerical
weather prediction and data assimilation. Meteo-
rology and Atmospheric Physics, 82, 139–170.

Zaki, M. J., 2001: Spade: An efficient algorithm
for mining frequent sequences. Machine Learning,
42, 31–60, special issue on unsupervised learn-
ing.

19


