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1. INTRODUCTION

Reduction of information in data sets for me-
teorological data assimilation systems is motivated
by the volume of data provided in remote sensing
platforms such as satellite and radar systems.
While remote sensing systems provide a signifi-
cant source of real-time data over data-sparse
regions, the data are high-volume and may be re-
dundant which can lead to an unnecessary in-
crease in computational burden. Significant re-
duction in repetitive data can increase analysis
quality due to the improvement in numerical con-
vergence resulting from an increased number of
iterations (Purser et al., 2000). Reduction of ob-
servations can take one of the following three
general strategies: a) data thinning, b) creation of
super-observations, or c) a combination of the two
methods. The impact of data thinning reduction
methods on simple analysis systems are investi-
gated here to assess the benefit of the data thin-
ning on analysis quality and cost.

2. DATA THINNING STRATEGIES

Two non-trivial approaches to data thinning
are evaluated: a) the box variance (BV) method,
and b) the intelligent data thinning (IDT) method.
Additionally, several trivial sub-sampling methods
are evaluated including: evenly spaced subsam-
pling equating to one third, one sixth and one ninth
of the full set of observations. Additional evalua-
tion was conducted with randomly selected (spa-
tially) sets of observations to match similar obser-
vations numbers used in the other techniques. The
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BV and IDT methods were tested additionally on
thinning of innovations (where an innovation is the
difference between the observation and the back-
ground field), since two of the analysis schemes
used in our tests operate in “innovaton space”.

General sub-sampling approaches assign
equal priority to all the observations when there is
no predisposition for choosing one observation
over the other. But, some observation values can
be more important in that they provide more infor-
mation to a data analysis. This motivates the iden-
tification of regions with high information content
and retention of a higher percentage of observa-
tions from these regions.

2.1 Box Variance (BV) Method

The BV method (Zavodsky et al., 2006) di-
vides the analysis domain into boxes with 10x10
grid-space length. Each box is marked as contain-
ing high information content if the variance of the
observations (or innovations) is higher than a pre-
determined, user-defined threshold specific to that
particular data set. If the variance is less than the
threshold, the observation (or innovation) whose
value is closest to the mean value of all the data
within the box is retained. All other data points
within that box are eliminated. However, if the
variance is greater than the threshold, no thinning
occurs within the box (i.e. all observa-
tions/innovations are retained). Herein, the obser-
vation variance threshold is set to 0.50 and inno-
vation threshold is set to 0.40. These threshold
values have been selected to produce a compara-
ble number of observations to those retained by
the IDT. The weaknesses of this methodology are
that the thinning is dependent on the box size and
the user defined threshold.



I0T ( Bata; M1, X2, Y1,

Y2, Img_Bginfa)
Compute region statistics
{l_mean, |_var)

Perform statist
tasts ko comp
statistics
back:

Is the region

splittable 7

(X2 - ¥11m(¥2 -
¥1}'=15

| :

Sub sample
region (X1

retain rate rake

| l

(%2 -%1) =
(V2 - ¥1) 7

Y

Find eptimal splitting Find eptimal splitting xO)
dleng ¥ such that the curr ateng X such that th ulative

variance is minimized variance is minimized

i l

16T ( Data, X1, X2, ¥1, ¥0, 16T ( Data, X1, X0, Y1, ¥2,
Img._ Bglnfo) Img: Bglnfo)

l i

IDT ( Data, %1, X2, Y0, Y2, IET ( Data, X0, X2, ¥1, Y2,
Img Eolnfo) Img Bglnfa)

v

Return to caller

Fig. 1. Decision tree for the Intelligent Data Thinning (IDT) Algorithm.

2.2 Intelligent Data Thinning (IDT)

A snapshot of the observation (or innovation)
values can be treated as an image with pixel in-
tensities equal to the observation values at the
corresponding grid points. The problem of finding
regions of high information content now translates
to identifying abnormal regions in the corre-
sponding image. For a multimodal pixel distribu-
tion, pixels that form the tails of each mode are
most deviant from the mean of all the pixels.
These deviant pixels contribute the most to the
cumulative variance of the region and are identi-
fied for subsampling at a higher retention rate.

For each mode, we compute the statistics of
the pixels that are close to the mean. These sets
of pixels are called the background regions and
are thinned for a low rate of data retention. All
other regions in the image have high information
content and are sub sampled at a higher retention
rate. The IDT algorithm (Ramachandran et al.,
2005) recursively decomposes the image into a
tree structure. The root node of the tree is the

complete image. Each region in level ‘L’ of the tree
is decomposed into two regions of level ‘L+1’ if it
fails the statistical similarity tests that compare the
region with the background, thus, recursively split-
ting the target regions into smaller sub regions
while leaving the background regions intact.

One step of the recursive IDT algorithm is de-
picted in the flowchart shown in Fig. 1. Simple de-
scription statistics (mean and variance) are com-
puted for the region. Statistical similarity tests (F-
Test and T-Test) are performed using the com-
puted statistics to check if the region is similar to
one of the backgrounds. The F-Test provides a
similarity measure between the variances, and the
T-Test provides a similarity measure between the
means. If the region is similar in terms of mean as
well as variance, we sub-sample the region to re-
tain less data. Otherwise, the region is tested for a
sub-region of interest (i.e. high information con-
tent) in order to split the region.

If the region is large enough, an optimal split-
ting point along the length (X) or height (Y) is
found, and the region is decomposed into sub re-



gions at this point leaving two uniform and differing
regions. This optimal splitting point is selected at
a position that reduces the cumulative variance
within each region—if they are represented by
their means—in an approach similar to the least-
square approximation described by Wu (1993). If
the region is too small, it cannot be split, so it is
sub sampled at a higher retention rate.

3. EXPERIMENT DESIGN
3.1 Truth, Background and Observations

The experiments were designed so that
the truth, background, and observational fields are
specified and thus known explicitly. While this is a
viable approach for synthetic data, it is not neces-
sarily replicable in real-world settings where back-
ground error statistics are generally unknown.
The truth field (175 x 175 grid) was intended to
replicate a temperature field associated with a
peninsula whereby two regions of strong gradient
separate regions of relatively little temperature
gradient.
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Fig. 2 Truth field. The temperature distribution is in-
tended to replicate a peninsula with strong coastal gra-
dients. Contours of temperature are every 1°C.

The synthetic background field was cre-
ated to provide spatial correlation statistics that
were known and that did not violate the theoretical
statistical assumptions of optimal interpolation.
The relevance of the results obtained using well
defined synthetic data versus data from an opera-
tional setting will depend on the quality of the
background field which, in practice, is often less
well behaved. Additionally, operational data sets
may include data from platforms with varying ob-
servational error as opposed to the uniform obser-
vation error considered here.

The background field was generated fol-
lowing the work of Evensen (1994). A pseudo-
random two-dimensional field of perturbations
from the truth was prescribed using a variance of 1
and decorrelation length of 25 grid points (Fig. 3).
The perturbation field created with this method has
no knowledge of the high temperature gradient
regions. As a result, this approach produces a
background field that contains the same error
decorrelation in these regions as any other region
throughout the grid. Thus, the perturbation fields
were smoothed in the regions of the temperature
gradient to provide a more realistic background
field. This adjustment did not significantly change
the resulting variance and decorrelation statistics
for the full domain.
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Fig. 3 Background field with observational error vari-
ance of 1 deg2 and a decorrelation length of 25 grid
points.

Observational temperature data were cre-
ated across the analysis domain on a two-
dimensional grid (a 58 x 58 grid with spacing of 3
times the length of the analysis grid). Spatially un-
correlated error (white noise) was introduced into
the observations with a variance of 0.25. The error
in the observations was set significantly less than
the background, a plausible and desirable sce-
nario. The various thinning strategies (a total of 7)
were applied to these sets of observations. Fig. 4
depicts the full set of observations along with two
of the thinned data sets. The BV and IDT box thin-
ning strategies were applied to both the observa-
tional data and the innovation data. The innovation
data set was created by interpolating the back-
ground field to the observation locations. Both the
BV and IDT algorithms key on the variability
amongst the observations in the gradient regions.
The number of data points retained in the gradient
regions is substantially higher.
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Fig. 4 Observation locations for the full set of observa-
tions (grayl dot), the Box Variance method conducted on
observations (blue box) and the IDT algorithm con-
ducted on observations (red X).

3.2 Analysis Schemes
3.2.1 Bratseth Analysis

The Bratseth analysis is a successive correc-
tions scheme that converges to optimal interpola-
tion (Ol) with sufficient iterations (Bratseth, 1986)
with an advantage in computational speed over
other analysis methods (Lazarus et al, 2002 and
Deng et al, 2006), Specification of the background
field and observational errors are required for this
technique. The implementation used for our ex-
periments followed the method of Kalnay (2003).

To ensure convergence of this iterative
method, the analysis was run (with the full set of
observations) until the resultant root-mean-square
error (RMSE) difference between the n- and (n+17)-
iteration runs was less than 0.0001. While this
does not necessarily guarantee convergence to
Ol, it is reasonable to assume that subsequent
iterations will not significantly improve the analy-
sis. For the background field described herein, 87
iterations are required for convergence.

The background error covariance is assumed
to be Gaussian with a magnitude set to 1.0 in ac-
cordance with the prescribed background error,
and the observations covariance matrix is set to
0.25, which is consistent with the random error
assigned to the observations. The analyses are
performed using a spatial scaling factor of 25
units, which is taken from the specification of the
decorrelation length field used to generate the
background field.

3.2.2 Kriging Analysis

Kriging analysis is an interpolation scheme
that originates from geostatistics and is compara-
ble to optimal interpolation methods (Cressie,
1990). The implementation of Kriging used here is
termed Ordinary Kriging. We chose an exponential
covariance function (variogram) for modeling the
error covariance with values set to be consistent
with the decorrelation length and error prescribed
in the background and observations. The Kriging
analysis was conducted in two modes: 1) without
use of a background field (observations only) and
2) with use of background field. The Kriging using
the mode 1 approach was chosen to provide a
benchmark via which to directly assess the impact
of the background field on the analyses.

4. RESULTS

The RMSE results of the 3 analysis sys-
tems using the full observational data set and the
7 filtered data sets are contained in Table 1. As
expected, Kriging without use of the background
field produced the highest analysis error in all
cases. The Bratseth method produced the lowest
RMSE in all cases. Interestingly, the lowest error
was the Bratseth method using the IDT filtered
data and was even lower than using the full data
set. It is believed that the high RMSE using the
Bratseth scheme with the full observation set is
related to the weighting of observations in high
data density regions as opposed to a problem with
analysis convergence.

RMSE averaged over the full domain is some-
what misleading in terms of the quality of the
analysis. Hence, Table 2 lists the RMSE in the
regions of the strong temperature gradient. The
lowest RMSE in the gradient regions for the full set
of observations was produced by the Kriging
analysis using the full set of observations. The
Bratseth technique performed the poorest in the
gradient regions for the full set of observations, but
overall, the lowest RMSE in the gradient regions
was produced by the Bratseth analysis with use of
the IDT-filtered observations. The difference be-
tween use of the observations for the filtering
techniques versus use of the innovations for the
filtering is more clearly seen within the gradient
regions. In the gradient regions, the RMSE is
higher for all analysis schemes with the use of the
innovation based BV and IDT filtering methods
versus the observation based BV and IDT filtering
methods.



Table 1. RMSE (full domain) for the three analysis
schemes using 8 different thinning strategies.

Method (#obs) | & | Kriging | Bratseth
Full 3364) | 0.0643 | 0.0607 | 0.0583
Sub_3 (400) | 0.1503 | 0.1055 | 0.0907
Sub_6 (100) | 0.7837 | 0.3656 | 0.2196
Sub_9 (49) 1.6730 | 0.6111 | 0.3951
BV_obs (931) | 0.1253 | 0.1235 | 0.0867
BV_ino (1068) | 0.1549 | 0.1248 | 0.0612
IDT obs (721) | 0.1582 | 0.1129 | 0.0567
IDT ino (950) | 0.1352 | 0.0811 | 0.0490

Table 2. RMSE (gradient regions) for the three analysis
schemes using 8 different thinning strategies.

Method (#obs) K?Ig];“g Kriging | Bratseth
Full 3364) | 0,0971 | 0.0820 | 0.2909
Sub_3 (400) | 05353 | 0.2483 | 0.3238
Sub_6 (100) | 71,4342 | 0.6179 | 0.5376
Sub_9 (49) | 2,0103 | 0.7620 | 0.8083
BV_obs (931) | 0.2218 | 0.2045 | 0.0917
BV_ino (1068) | 03702 | 0.2810 | 0.1452
IDT_obs (721) | 0,2987 | 0.1505 | 0.0960
IDT _ino (950) | 90,4136 | 0.2020 | 0.1315

Table 2. RMSE (gradient regions) for the three analysis
schemes used as a function of 8 different thinning
strategies.

Although the error statistics in the two tables
are somewhat informative, direct comparison is
difficult as the error is not normalized for the varied
number of observations. The RMSE plotted in Fig-
ures 5 and 6 on a log/log plot following Anderson
et al. (2005). The display of information in this way
helps assess the quality as a function of computa-
tional expense which is a nonlinear function of the

number of observations. The best error results
tend towards the lower left corner of the plot (low
RMSE and low number of observations) while the
poorest results tend towards the upper right
(higher RMSE and higher number of observa-
tions).
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Figure 5. RMSE for the full domain for Kriging without a
background field (gray diamonds), Kriging with a back-
ground field (black triangles) and Bratseth (gray
squares). Observation-based filtering is delineated by
the black ellipse; innovation-based filtering is sur-
rounded by the maroon ellipse.

The results as shown in Figure 5 indicate that
for the full domain, the IDT thinning algorithms
(circled in red) produced the best results using the
Bratseth analysis scheme. The use of innovations
in the BV and IDT filtering algorithms produced
slightly better results for the full domain; the BV
and IDT filtering schemes based on the observa-
tions produced better results in the gradient re-
gions (Fig. 6). It is interesting that fewer observa-
tions are retained using observation-based filtering
(shorter computation time), and the errors are
smaller for each analysis type.
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Figure 6. As in Figure 5, but for RMSE in the gradient
regions.



The initial findings indicate that the analysis
error is both a function of the observational filtering
and the analysis system. The differences between
the Bratseth and Kriging analyses are indicative of
variability within optimal interpolation schemes, as
they are not anticipated to converge to the same
solution. As anticipated, the Kriging without a
background field had the highest RMSE.

The innovation based data thinning degraded
the analysis results even though two of the analy-
sis systems work in innovation space. Thinning
algorithms that operated on the observational data
performed the best. Albeit limited, this result is
positive in the sense that data reduction does not
depend on the particular analysis system and thus
could be applied at the “front end” to avoid band-
width limitations etc. Overall, the IDT data thinning
algorithm outperformed the other methods for this
set of tests.

5. FUTURE WORK

Evaluation of the data filtering algorithms in
the synthetic data environment will continue in or-
der to address the issue of the optimal thinning of
data. It is not clear, for example, to what degree
the thinning algorithms performance is tied to the
quality of the background field and observations.
Also, systematic modification of the thresholds in
the BV and IDT algorithms will be conducted to
assess the sensitivity of the filtering algorithms to
these parameters and to determine the optimal
settings for the given analysis systems.

The next phase of the work will be to evaluate
the thinning algorithms on real data streams from
1) sea surface temperature from the Moderate-
resolution Imager Spectroradiometer (MODIS)
direct broadcast and 2) temperature and water
vapor profiles derived from the Atmospheric Infra-
red Sounder (AIRS) instrument aboard the Aqua
EOS platform. The application of algorithms will be
extended to discontinuous data streams (e.g. sat-
ellite sea surface temperature swaths with gaps
due to cloud cover).
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