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1. INTRODUCTION 
The Algorithm Development and Mining System (ADaM) 

is a data mining toolkit designed for use with scientific and 

image data. It includes classification, clustering, feature 

selection, model validation, data cleaning, image 

processing, optimization, and association rule mining 

capabilities. The system consists of a set of individual 

algorithms or components that can be put together to 

perform complex tasks. Components are packaged as stand 

alone executables and as Python modules for easy 

scripting.  The Interactive Visualizer and Image Classifier 

for Satellites (IVICS) was developed as a visualization tool 

to facilitate selection of training samples from satellite 

images for the purpose of training supervised classifiers. It 

has evolved into a general purpose visualization system 

which supports data from many satellite sensors and other 

scientific data sources.  IVICS has been integrated with the 

ADaM toolkit, providing users with an end-to-end 

capability to interactively visualize and analyze image data 

while exploiting the large suite of mining algorithms 

available in ADaM.  This paper will describe the 

capabilities and limitations of ADaM and IVICS.  The 

motivation for integrating these two tools will be described 

along with the software engineering strategy employed for 

the integration to minimize modifications in either tool.  

Capabilities of this integrated tool will be demonstrated by 

stepping through two example applications.    
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2. ADaM 
The ADaM system (Hinke et al., 1997a, b; Ramachandran et 

al., 2001) was originally developed in response to a NASA 

Research Announcement with the goal of mining large scientific 

data sets for geophysical phenomena detection and feature 

extraction, and has continued to be expanded and improved.  

Thus, unlike most data mining software, ADaM has been 

designed for use with scientific and image data from the outset. 

ADaM includes not only traditional data mining capabilities 

such as pattern recognition, but also image processing and 

optimization capabilities, and many supporting data preparation 

algorithms that are useful in the mining process. ADaM was 

recently redesigned as a toolkit of discrete, independent 

components to better serve the evolving service oriented 

computing landscape.  These components can be used together 

in different combinations to perform many complex tasks.  This 

redesign allows the algorithms in ADaM to be easily packaged 

as grid or web services (Rushing et al., 2005) and is being 

extensively used by different research groups and projects 

(Droegemeier et al., 2005, Graves et. al., 2007). 

 

2.1 ADaM Data Mining and Pattern Recognition 
Capabilities 
ADaM includes classification, clustering, and feature selection / 

reduction techniques as well as a number of utilities that are 

useful in pattern recognition applications.  Supervised classifiers 

generally consist of two components: a training module and an 

application module. The training module uses sample patterns to 

learn the characteristics of the classes of interest. The 

application module reads the description produced by the 

training module and classifies patterns over a large data set.  

Clustering tools or unsupervised classifiers require no training 

step.  Rather, they take a set of patterns as input and group them 

into classes based on similarity. The clustering tools will 



produce a classified pattern set and a description of the 

clusters.  Feature selection and reduction techniques reduce 

the size of the input data set by choosing a subset of the 

available attributes or by creating a mapping of the original 

feature space onto a feature space of smaller dimension. 

Reducing the number of features or attributes used for 

classification can often result in greater classification 

accuracy, faster classification, or both. ADaM also has data 

preparation utilities that aid in the pattern recognition 

process. Normalization is an important step that can 

improve the results produced during clustering and 

classification. The discretization utility converts numeric 

data into ordinal data for use in association mining or other 

operations that require discrete data.  There are also utilities 

for subsetting, subsampling and cleaning the data. 

2.2 ADaM Image Processing Capabilities 
ADaM also provides a set of image processing modules 

that are useful for extracting features from images as a 

precursor to mining or pattern recognition. These 

operations typically take one or more images as input, and 

produce one or more images as output. They make use of 

ADaM’s image data model (described in the next section), 

which supports single plane, three-dimensional images. The 

toolkit comes with a few translation utilities that convert to 

and from popular image formats such as GIF and GeoTIFF.  

ADaM includes basic image operations for changing the 

size, orientation, scale and other properties of images. It 

also includes level mapping utilities such as histogram 

equalization, inversion, thresholding and quantization. 

ADaM’s image segmentation utilities find boundaries, 

contiguous regions, and polygons in images.  Filtering 

plays an important role in many image analysis 

applications. ADaM has spatial domain, median, mode and 

morphological filters. It also has the pulse coupled neural 

network, which can be used for image smoothing and 

segmentation. The Fast Fourier Transform (FFT) is used to 

translate between spatial and frequency domains. Texture 

features are often used to classify and segment images 

based on local image structure; ADaM has a rich set of 

texture capabilities.  

3. IVICS 
Development of IVICS was initially driven by the requirements 

of the Earth Observing System (EOS) Clouds and the Earth’s 

Radiant Energy System (CERES) (Baum, et al., 1997) and the 

Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (Welch, et al., 1999) programs.  A polar cloud mask 

was needed for both projects and it was determined that a neural 

network based classifier was the most practical supervised 

classification method (Tovinkere et al., 1993; Berendes, et al., 

1999).  Like all supervised classification techniques, neural 

networks require labeled training samples.  In the case of 

satellite and other image data, detailed examination of the data is 

required for expert identification of visual features in the 

imagery.  After identification of image features, a method for 

sample selection is needed and IVICS was originally developed 

for that specific purpose.    

3.1 IVICS Visualization and Sample Selection 
Features 
IVICS provides visualization options and tools designed to 

allow data exploration and facilitate identification of image 

features.  Imagery can be displayed using a variety of display 

options including three-channel red-green-blue (RGB) color 

composite, indexed lookup table (LUT), and colorbar displays.  

The RGB display option allows the user to display any 

combination of channels as a three-channel composite quickly 

and easily.  Channels may be enhanced individually or as a 

group using linear contrast stretch, histogram equalization, and 

grey scale inversion.  The RGB display options are very useful 

for identifying image features and labeling samples. 

 

Three different image views are available in IVICS.  The main 

image display shows a section of the full resolution image 

displayed along with scrollbars if it is larger than the display 

window.  Subsampled image display windows show an 

overview of the entire image and allow the user to change the 

image area displayed in the full resolution displays quickly and 

easily without using scrollbars.  If the image is geospatial (i.e. 

satellite or gridded model) and provides latitude and longitude 

information the map display may be used.  The map display 

overlays coastlines and country/state boundaries on a projected 

view of the image. 



 

The LUT display option provides a convenient way to 

visualize and verify classifier results.  Classifier results can 

be displayed as a color coded LUT image.  RGB image 

data and LUT results then can be displayed simultaneously 

in multiple display windows while the mouse pointer is 

simultaneously tracked at the same coordinates in all 

windows.  Examples of this comparison method will be 

shown in sections 3 and 4. 

 

Sample selection is performed by dragging a rectangular 

area in an IVICS display window.  The selected sample is 

displayed in the IVICS sample editor for further analysis 

and labeling. Histogram and scatter plot tools are available 

and the sample can be magnified using a zoom feature.  

After the user has labeled the sample it is added to the 

current sample list which may be saved as a file for use as 

classifier training input.   

4. INTEGRATING ADaM AND IVICS 

4.1 Motivation 
Even though ADaM provides a large suite of algorithms, it 

lacks data visualization capability. Typically, ADaM users 

utilize their own visualization software such as IDL or 

Matlab to visualize the data before composing a mining 

workflow using ADaM modules. In some case, this 

flexibility is important and in other cases this dependency 

on additional software becomes a shortcoming.  

Furthermore, supervised classification requires domain 

experts being able to visualize the data and create samples 

for specific classes. Again, ADaM does not provide any 

general purpose tool with such capability. 

 

On the other hand, IVICS provides functionality to 

visualize different imagery data and the capability to create 

samples for training classifiers. However, IVICS only has a 

limited set of operations for classification and image 

processing. Integrating ADaM-IVICS combines the 

advantages from the two systems and addresses their 

individual drawbacks. The integrated ADaM-IVICS system 

is thus a complete tool that provides end-to-end for image 

analysis and classification capabilities. 

4.2 Integration Approach 
The integration approach used was based on the motivation to 

minimize changes to both of the existing tools as too many 

changes would not justify the integration. In addition to the 

effort involved, it would in essence mean creating a new tool.   

Both the tools work on their specific data models  Rather than 

trying to design a single model that is a union of the two existing 

models, a set of translation utilities were designed.  The two data 

models and the translation utilities are described next. 

 

4.2.1. ADaM Data Models 
ADaM provides two distinct capabilities- image processing 

capabilities and pattern analysis capabilities; and these two types 

of capabilities are distinct in the types of data on which they 

operate. Therefore, ADaM uses two different data models: one 

for images and another for pattern data.  

The image data model is extremely simple. An image is 

represented as a three dimensional array of pixel values, which 

are referenced by x, y and z coordinates. Two-dimensional 

images have z size of one. Multispectral image data can be 

represented using arrays of single plane images. The image data 

model provides methods to get and set pixel values, find the size 

of the image, and read and write binary image files.  

Pattern vectors are represented by the ADaM pattern set class. A 

pattern set may have any number of attributes associated with it, 

and may contain an arbitrarily large number of patterns. The 

pattern set allows for both numeric and categorical attributes, 

and pattern sets may consist of mixed types of attributes. The 

pattern set is represented as an array of pattern vectors, with 

associated descriptors for each attribute. The attribute 

descriptors have the names of the attributes, their types, and 

their range of legal values. One attribute may be designated as a 

class attribute. The pattern set data model provides methods to 

add or remove attributes, add or remove pattern vectors, get and 

set vector values, find attribute names and properties, and read 

and write pattern data files.  This data model is stored as 

Attribute-Relation File Format (ARFF) . 

 



ADaM toolkit provides utilities to convert from image data 

model to pattern vector data model and vice-versa. 

 

4.2.2. IVICS Data Model 
IVICS uses the Generalized Satellite Format (GSF) which 

was designed specifically for IVICS.  GSF was originally 

designed to provide a single platform and sensor 

independent data format for remote sensing satellite data.  

GSF represents satellite and other image data in a 

generalized data model providing a single interface for data 

access.  GSF conversion programs have been developed for 

AVHRR, MODIS, ASTER, GOES, Landsat, and several 

other satellite data formats.   

GSF files consist of an image header, channel headers, and 

image data.  The image header stores information about 

satellite sensors, image dimensions, and user specified 

metadata.  The channel headers store spectral scaling 

information and statistics which allow IVICS to perform 

on-the-fly image enhancements.  Image data is stored in a 

band interleaved by line (BIL) format which provides a 

convenient and memory efficient method of access to very 

large images.  If available, geospatial information such as 

latitude, longitude and solar angles may also be stored in a 

GSF image. 

4.2.3. Coupling via Data Model Translations 
The design philosophy used in ADaM is to keep the data 

models simple and provide a set of utilities that allow user 

to convert from one data model to another.  The use of a 

simpler data model allows easier addition of new 

algorithms to the toolkit.  The same principle of loose 

coupling was followed while integrating ADaM and IVICS.  

A set of utilities were written that convert GSF to either 

image or pattern vector data model and vice-versa.  This 

approach required minimum changes to both ADaM and 

IVICS. The translation routines also allow the results from 

an ADaM mining workflow to be imported back as GSF 

files into IVICS for visualization.  Some additional changes 

were made to IVICS.  These changes allow the tool to save 

samples directly as pattern vectors for use in training 

supervised classifiers. These changes also allow some of 

the ADaM modules to be directly executed from the IVICS 

interface.   

4. EXAMPLE APPLICATIONS 
The ADaM-IVICS capabilities will be demonstrated by using 

the tool in two different applications. The first application 

focuses exploratory data analysis using unsupervised techniques 

such as clustering.  The second application focuses on 

supervised classification. This application uses IVICS to 

visualize the data and create samples.  ADaM is used to create a 

mining workflow.  The results are then visually evaluated using 

IVICS.  

 

4.1 Cluster Analysis  
Cluster analysis is the name given for a group of techniques 

whose primary purpose is to group objects in the data based on 

characteristics they possess. Cluster analysis classifies objects so 

that each object is very similar to the other based some 

similarity or resemblance metric. For this example, we will try 

to create a cloud mask for GOES data using a clustering 

algorithm.  The GOES data used contains five channels, one in 

the visible spectrum and the other four in the infrared spectrum. 

Screen shots depicting the process can be seen in Fig 1 and 2. 

IVICS can be used to display the different channels in separate 

windows (Fig. 1).  We can now select any of the number of 

clustering algorithms from the IVICS main menu (Fig 2). For 

this example, we select K-Means algorithm.  IVICS opens a 

dialog box that displays the different parameters required to run 

the K-Means clustering algorithm (Fig. 2).  We specify a 

channel name “K-Means” and the result from the clustering will 

be stored in this channel. Next, we select the different spectral 

channels we want to use for clustering and specify the number 

of clusters. For this example, we select all the five channels and 

set the number of clusters to two classes: cloud pixel or a non-

cloud pixel.  The dialog box also provides the option to select a 

normalization preprocessing operation before the clustering.  In 

some cases, this preprocessing step of normalizing the data is 

needed to adjust for the differences within the data in order to 

create a common basis for clustering.  Once the selections are 

made, we can click the “Run Program” button to begin the 

clustering.  IVICS executes the ADaM K-Means module with 



the parameters specified.  The module creates a new GSF 

file with an additional new channel “K-Means”.  We can 

now load this new file using IVICS and visualize the cloud 

mask created by the K-Means clustering.  The result from 

the clustering can be seen in Fig 3. 

4.2 Supervised Classification 
The real power of coupling ADaM-IVICS together can be 

seen while performing supervised classification. The 

supervised classification process is a more complicated 

than unsupervised and is presented in Fig 4. The process 

has two distinct phases, training and application, which are 

colored in blue and red respectively in the figure. The 

training phase requires the expert to visually inspect the 

data and select samples that represent the object of interest. 

Once enough representative samples have been collected, 

they must be then divided into two sets for training and 

testing. The training data is used to train the classifier.  The 

performance of the classifier is then verified on both the 

training and the test data. If the classifier accuracy is within 

the acceptable limits for the application then the process 

moves to the application phase.  In the application phase, 

the classifier is applied directly to the data. The classifier 

uses the information learned during the training phase to 

create the result – the classified data. 

 

We will demonstrate this capability of ADaM-IVICS using 

a simple example. The problem is still the same as the one 

in the previous section, i.e., to create a cloud mask for the 

GOES data – but in this case we will use a Bayes classifier. 

Once the channels are displayed, we can start creating 

samples. We select representative regions in the image for 

clouds and label them as 1. Similarly, we select non-cloudy 

regions and label them 0 (See Fig. 5). Once we have 

enough samples, we save the samples in an ARFF file so 

that they can be used by ADaM modules.  We now 

compose a mining workflow to train a classifier using the 

ADaM modules.  The workflow can be seen in Fig 6.  The 

first module used in the workflow splits the sample into 

training and test data.  The training data is used to train the 

Bayes Classifier. Both the training and the test data are then 

used to evaluate the classifier. The evaluation is done using a 

ADaM utility called ITSC_Accuracy. 

 

The classifier application workflow can be seen in Fig 7. The 

different data translation utilities are used in this workflow. The 

GSF-to-ARFF conversion routine is used for initial translation. 

The classifier is then applied to the translated data. The 

classification results are converted from a pattern vector to an 

image and then combined back to GSF using two utilities. The 

result from the classification can then be displayed using IVICS 

and is seen as the cloud mask in Fig. 8. 

5.  SUMMARY 
The ADaM toolkit has been integrated with IVICS, providing 

end users with the capability to interactively visualize and 

analyze image data while exploiting the large suite of mining 

algorithms available in ADaM.  The motivation for integrating 

the two tools and the integration principle used for coupling is 

presented. The paper also describes the functionality of this 

integrated tool with two example applications focusing on 

unsupervised and supervised classification techniques.   
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Fig 1: Visualizing GOES data using IVICS 
 



 
 

Fig 2: Selecting the clustering algorithm and setting its parameters in IVICS 
 

 
 

Fig. 3: Visualizing the clustering results 
 



 
Fig. 4: Supervised classification process 

 

 
 

Fig. 5: Sample selection using IVICS 



 
# Split the sample data into training and testing files 
ITSC_sample -c class -i goesSamples.arff -o goesTrain.arff -t goesTest.arff -p 0.50 –B 
 
# Train and Test the classifier 
ITSC_BayesclassifierTrain -b bayes.txt -c class -i goesTrain.arff 
 
# Run the classifier on the training data 
ITSC_BayesclassifierApply -b bayes.txt -c class -i goesTrain.arff -o goesTrainResult.arff –B 
 
# Run the classifier on the test data 
ITSC_BayesclassifierApply -b bayes.txt -c class -i goesTest.arff -o goesTestResult.arff –B 
 
# Evaluate the results for: 
# 1. Training Data 
ITSC_Accuracy -c class -t goesTrainResult.arff -v goesTrain.arff 
# 2. Test data 
ITSC_Accuracy -c class -t goesTestResult.arff -v goesTest.arff 

 
Fig. 6: Mining workflow to train a Bayes classifier 

 
# Apply the classifer to the image and visualize in IVICS 
# 1. convert the original image to arff 
gsf_to_arff -i goes_small.gsf -o goes_small.arff 
 
# 2. run the classifier on the arff file 
ITSC_BayesClassifierApply -b bayes.txt -c class -i goes_small.arff -o goes_smallResult.arff -B 
 
# 3. Convert the results from arff into an image 
ITSC_CvtArffToImage -a class -i goes_smallResult.arff -o goes_smallCloudMask.img 
 
# 4. Combine it back to the original data 
gsf_combine -i goes_small.gsf -o goes_smallMask.gsf -adam goes_smallCloudMask.img -adam_label 
'CloudMask' 

 
Fig. 7: Mining workflow to apply the trained classifier on GOES data 

 



 
 

Fig. 8: Cloud mask created by the Bayes classifier 
 


