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1. INTRODUCTION 
 
Significant weather events such as major 
winter storms, severe weather outbreaks, 
cold episodes, and heat waves, can have 
large impacts on the economy and the 
welfare of the nation.  Ross and Lott (2006) 
reported that during the period from 1980-
2005 the U.S. sustained over $500 billion in 
overall inflation adjusted damages/costs due 
to significant weather (Fig 1).  The mission 
of the National Weather Service is to protect 
life and property and a large part of this 
endeavor is to identify when significant 
weather will impact the nation and its 
economy.  Forecasters are trained to 
recognize weather patterns associated with 
significant weather and tasked to issue 
watches, warnings, and advisories for such 
weather.  Artificial Neural Networks (ANN) 
can also be trained to recognize patterns in 
meteorological data and classify weather 
systems.  The purpose of this paper is to 
demonstrate how an ANN was trained using 
climatic anomalies to assist forecasters in 
identifying when and what types of 
significant weather will affect their area of 
responsibility.  
 
2. METHODS 
 
2.1 Identification of events using NCDC 
Climate Data 
 
National Climatic Data Center (NCDC) 
Cooperative Observations (COOP) were 
used to identify significant events in this 
study.  These observations contain 24 hour 
maximum and minimum temperature, 
precipitation, snowfall, and snow depth 
ending at 7:00 AM local time.  To help 
identify significant events it was important to 
first build a climatology for stations using the 

NCDC data.  The standard 30-year normals 
computed by NCDC were not used as a 
basis for this study for several reasons.  
First, not every station has 30-year normals 
computed and it is conceivable that this 
study could be adapted for other locations.  
Secondly, it was determined there was large 
variance in the normals computed by NCDC.  
Therefore a 21-day centered mean and 
standard deviation was computed for each 
day of the year for each station.  Hart and 
Grumm (2001) showed that a smoothed, 21-
day mean, climatology to be more 
advantageous than using a monthly mean. 
The smoothed climatology reduces large 
daily temperature fluctuations due to 
transient synoptic scale systems and 
facilitates identification of truly anomalous 
days.  This was done for a 30 year period 
(1970-2000) for all COOP locations across 
Pennsylvania and the results were stored in 
a MySQL relational database. 
 
Identification of heat and cold events were 
determined by using a threshold of Standard 
Deviations (STD) above or below the mean. 
A heat event was defined as maximum 
temperature exceeding 2 STD above normal 
and a cold event was defined as the min 
temperature below 2 STD below normal.  
The time of year when these criteria are met 
is important.  A +2 STD above normal day in 
mid-July would be categorized as 
oppressive and thus significant. Conversely, 
a +2 STD above normal day in March may 
be regarded as pleasant and therefore not 
significant.  Nonetheless it was important to 
include events that met the criteria for all 
seasons because not doing so would 
severely limit the number of training cases 
available to the neural net.  Additionally, 
Hart and Grumm (2001) showed that 
normalized anomalies are advantageous to 
use because they account for seasonal 
variations and can be compared without 
regard to time of year. 
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 For precipitation the mean and standard 
deviations were computed using only those 
days when precipitation greater than 0.01 
inches was observed. This mitigates the 
effects of averaging in days with no 
precipitation which would significantly lower 
the mean. Since precipitation does not 
follow a normal distribution, percentile ranks 
were used to test for significant precipitation 
amounts.  The 95th percentile was used to 
identify heavy precipitation days when it 
rained. This value usually was at least an 
inch (25.4mm) or more precipitation in 24 
hours for a station.  Therefore dates with an 
inch or more of precipitation were recorded 
as heavy precipitation events.  Dates were 
also limited to the cool months (Sept – April) 
to focus on large scale synoptic systems. 
 
Although one inch is on the low end of the 
heavy precipitation spectrum and it normally 
does not cause significant hydrologic 
problems, it was used because raising the 
bottom limit to 1.5 or 2.0 inches would 
dramatically decrease the number of events.  
This would reduce the training data for the 
algorithm leading to poor predictive results 
(Witten and Frank, 2005).  For snowfall 
events a minimum of 6 inches was used to 
record heavy snow dates because that is the 
lower boundary for winter storm watches 
and warnings over much of Central 
Pennsylvania where this study was focused. 
 
It is important for the training data set to 
include an equal number of null cases for 
each significant event type in order for the 
neural net to distinguish between an event 
and a non-event. Therefore an equal 
number of dates (chosen at random) were 
recorded for each event type to include 
neutral or less significant days.  Null cases 
for heat events were defined as maximum 
temperatures between 0 and 1 STD above 
normal and for cold events defined as 
minimum temperatures between 0 and 1 
STD below normal.  For heavy precipitation 
events null cases were defined by dates 
having no precipitation.  For heavy snow 
events amounts < 5 inches were identified 
as null or neutral events.  
 
2.2 Global Reanalysis Data 
           
The National Centers for Environmental 
Protection (NCEP) Global Reanalysis (GR) 

dataset (Kalnay et al. 1996) was used to 
extract upper atmospheric variables and 
calculate mean and standard deviation for 
them.  This data set is a 2.5 x 2.5 km grid at 
17 pressure levels covering North America 
from 1948 to present.  It is available 4 times 
per day at 0000, 0600, 1200, and 1800 
UTC.   Similar to Hart and Grumm (2001) 
this study used the 21-day centered mean 
and standard deviation climatology for each 
grid point in the GR data to calculate 
standardized anomalies for variables such 
as column precipitable water, temperature, 
height, U-wind and V-wind component, 
mean sea-level pressure, and thickness. 
 
Since this study was focused on Central 
Pennsylvania dates when significant 
weather occurred at the Cooperative 
Observer site in State College (STCP1) 
were recorded. Significant events spanning 
the period 1948-2004 were identified based 
on the above criteria because GR data was 
available for that period.  A total of 477 heat 
events, 415 cold events, and 190 heavy 
precipitation events were identified.  
Because heavy snow does not occur that 
often, using a single station to identify heavy 
snow days was too limiting.  Therefore it 
was decided to use a number of COOP 
stations (7) surrounding State College to 
identify heavy snow days.  Using this 
method 701 dates of heavy snow were 
identified.  For these matching dates various 
atmospheric anomalies were calculated from 
the GR data for a grid point over State 
College.  The anomalies were used as 
predictors for the significant weather event 
being predicted.  Predictors for heat events, 
cold events, heavy precipitation, and heavy 
snow were determined using a combination 
of experience and data mining tools.  
 
3. ARTIFICIAL NEURAL NETWORK 
 
3.1 Overview of an Artificial Neural Network 
 
An Artificial Neural Network (ANN) is a 
mathematical construct, modeled after the 
human brain, to perform pattern recognition 
and classification (Reed and Marks, 1998).  
Like the human brain, an ANN learns 
through repetition.  Training data is fed into 
the ANN and its output is compared to 
actual observations or some pre-classified 
known data.  Differences between the 



predicted output and the known data are 
calculated as error and this error is used as 
a corrective influence to adjust weights in 
the network.  The weights are thought of as 
the long term “memory” of the ANN and are 
similar to the coefficients in a linear 
regression equation.  However the ANN 
excels over linear regression because it can 
map any non-linear function.   
 
Similar to linear regression, in which the 
goal is to choose the best coefficients to 
minimize the squared error, the goal of 
learning in the ANN is to keep adjusting the 
weights to minimize the output error.  The 
method of adjusting the weights via this 
feedback mechanism is called back-
propagation (Bryson and Ho, 1969) and is a 
form of gradient descent search in weight 
space.  That is, each weight is defined by a 
point on the error surface and that surface is 
assumed to have a minimum value at some 
location.  The tangent of a point on the error 
surface is the slope or partial derivative of 
the surface with respect to each weight.  
Adjusting the weights by an amount 
proportional to this slope down the error 
surface (gradient descent) to some global 
minimum causes the network to reduce its 
error (Russell and Norvig, 1995).  There is a 
chance however that the network may 
converge on some local minima and not 
reach the global minima.  This possibility 
can be reduced by including some type of 
search algorithm such as simulated 
annealing or genetic search to find the 
global minima (Reed and Marks, 1998). 
 
3.2 Construct of an Artificial Neural Network 
  
The construction of the ANN for this study 
followed the standard construct presented in 
many artificial intelligence books.  The Java 
programming language was used to build a 
feed-forward back propagation ANN with a 
set of input nodes, one hidden layer 
consisting of varying nodes, and an output 
layer.  Reed and Marks (1998) indicate that 
only one hidden layer is needed to represent 
a continuous function mapping from N inputs 
to M outputs, therefore higher order 
constructs consisting or 2 or more hidden 
layers were not implemented. The activation 
function of each of the nodes was the 
sigmoid function: 
 

f(u) = 1/(1+e-u). 
 
which was used because the classes being 
predicted were either 1, the event occurred, 
or 0, the event did not occur.  The sigmoid 
function in effect “squashes” large values of 
input to between 0 and 1.  It is also 
differentiable which is needed by the back 
propagation algorithm.  The number of 
nodes to use in the hidden layer was 
determined via methods described by 
Heaton (2005).  This method resulted in a 
network that was robust and able to 
generalize well without the problem of 
overfitting.  Generally 3 to 6 hidden layer 
nodes were used depending on the 
significant weather type for which the ANN 
was being trained.  Likewise learning rate 
and momentum terms were adjusted to 
produce a minimum of error on the training 
data set.  Most commercial AI applications 
have automated methods to fine tune the 
network such as weight decay for efficient 
pruning and optimization.  Future 
enhancements to the ANN will include these 
more advanced features.       
 
3.3 Training the Artificial Neural Net 
 
Training data was built using anomaly 
values calculated from the GR data for the 
dates on which a significant event occurred 
or was neutral.  This data set was made for 
a single point, State College, but the same 
process could be adapted for any location 
across Pennsylvania.  Each significant event 
type had its own training data set which also 
included a binary value that indicated 
whether the event was significant (1) or was 
a neutral case (0).  The number of inputs 
used to classify each event type was 
dependant on the significant weather type.  
Anomaly fields used as inputs to the ANN 
were chosen based on meteorological 
experience.  For example, it is well known 
that high precipitable water values are an 
important ingredient to heavy precipitation 
(Junker and Schnieder 1997 and Hart and 
Grumm 2000) and that low-level 
temperature and precipitable water 
anomalies are important during heat waves 
(Lipton et al. 2005).   
 
A data mining tool was also used to help 
identify key predictors.  The Waikato 
Environment for Knowledge Analysis 



(WEKA) workbench (Witten and Frank, 
2005) was used to build decision trees that 
helped identify key predictors for each 
significant weather type.  For example, one 
decision tree indicated that low level U and 
V wind anomalies are the most influencing 
factor in distinguishing between Synoptic 
and Frontal Maddox type heavy precipitation 
signatures (Maddox, 1979).  This example 
shows the power of leveraging new data 
mining applications with meteorological data 
sets to extract emerging patterns and salient 
features hidden in the data.   
 
Output of the ANN was used to classify a 
significant event type and consisted of 2 or 3 
nodes depending on the event type to be 
classified.  For example, Maddox (1979) 
identified several scenarios for heavy 
precipitation and categorized them as 
Synoptic, Frontal, or MesoHigh type events.  
The heavy precipitation events identified in 
this study were limited to the cool months so 
the ANN was trained to distinguish between 
Synoptic or Frontal Maddox type heavy rain 
events and days with light rain (neutral 
events).  This required 3 output nodes.  
Likewise, 3 output nodes were used to 
classify hot, cold, or normal days.    
 
All training and testing was performed via a 
process called stratified 10-fold cross 
validation.  Witten and Frank (2005) outline 
this procedure in which data for each class 
is collected in equal amounts and 
randomized so that each class is properly 
represented in both training and test sets. 
The data set is split into 10 equal parts 
(stratification).  Some of the data (10%) is 
held out as test data while the neural net is 
trained on the remaining 90% of data.  Then, 
the process is repeated 10 times using 
successive partitions of the data set (cross-
validation).  With this method all data is 
eventually used for both training and testing 
but in any one fold of a k-fold training 
session the training and testing data are 
held separate.  This is important because a 
classifier must not use test data that was 
used during the training process as a 
measure of future performance.    
 
After the number of input nodes was 
determined training began by initializing the 
weights of the nodes to random values 
between -0.5 and +0.5.  Then sample to 

sample, or on-line, training was performed 
with each training instance fed forward 
through the network.  The output prediction 
was compared to the actual class type (1 for 
a significant event or 0 for a neutral event) 
which resulted in some amount of error.  
This error was then back-propagated 
through the network to adjust the weights.  
This process continued for each training 
instance and was repeated for 10,000 
epochs (cycles) for each partition of the 10-
fold cross validation process.    
 
   
4. RESULTS 
 
Separate ANN’s were built and trained 
according to the steps outlined above to 
classify different significant event types for a 
single point over State College.  Once an 
acceptable level of error was reached the 
weights were saved to a file.  The ANN was 
taken out of training mode and then 
employed in an operational setting by using 
the weights calculated during training.  The 
North American Model (NAM) was used as 
input to the ANN.  Various upper air fields 
from the NAM Grib files were extracted for a 
grid point over State College and converted 
to standardized anomalies using the NCEP 
GR climatology previously built by Hart and 
Grumm (2001).  The same anomaly fields 
that the ANN was trained on to classify an 
event were used as input from the 
operational NAM model.  Classification 
output from the ANN was then converted to 
a graphic using GrADS (Doty et al. 1995) for 
easy on-line interpretation every model run 
(6 hours). 
 
4.1.a Case example - Cold Event Sept 21, 
2006 
 
The first cold event to hit Central 
Pennsylvania occurred during the early 
morning hours of Sept 21, 2006.  This was 
not an extremely cold event (minimum 
temperatures were in the mid 30s to low 40s 
over Central Pa) and most likely fell on the 
low end of the spectrum that the ANN was 
trained to recognize.  However it showed 
some signal going into the event.  The 
predicted temperature class from the ANN 
using the 12 UTC 20 Sept NAM anomaly 
forecasts for a grid point over State College 
is depicted in Fig 2.  It shows the ANN 



predicted a cold event from 0000 UTC to 
0900 UTC 21 Sept.  Global reanalysis data 
for 1200 UTC 21 Sept showed a strong 
surface high pressure over the region with -1 
to -2 standard deviations (STD) below 
normal 500 mb height and 925 mb 
temperature anomalies (Fig 3).   Additionally 
the 925 mb V-wind anomaly showed 
northerly winds over the area.  
 
4.1.b Case example - Cold Event Oct 12th to 
15th, 2006 
 
Another weak cold event settled over 
Pennsylvania from 12 Oct to 15 Oct as a 
deep upper level trough strengthened over 
the Great Lakes on 00 UTC 13 Oct (Fig 4).  
By 0000 UTC 14 Oct the trough had 
expanded over the eastern seaboard and 
mean sea level pressure anomalies, 500 mb 
height anomalies, and 925 mb temperature 
anomalies were -1 to -2 STD below normal 
(Fig 5).  Output from the ANN using NAM 
anomaly forecasts from the 1800 UTC 10 
Oct run indicated initially a warm event 
(which was currently underway on 10 Oct) 
would switch to neutral and then enter a cold 
period beginning 1800 UTC 12 Oct (Fig 6).  
The ANN output from the 0000 UTC 12 Oct 
NAM run indicated this event would end 
around 0000 UTC 15 Oct (Fig 7) and the GR 
data did show a weakening of the upper 
level cold anomalies by this time (Fig 8).  
The COOP temperature graph for State 
College (STCP1) during this period (Fig 9) 
showed afternoon highs and morning lows 
around -1 STD below normal during this 
period.  Again, this is on the low end of the 
spectrum that the ANN was trained to 
recognize however this also indicates it is 
robust enough to distinguish a marginal cold 
event and a neutral event.   
 
4.2 Case example - Heat Event Oct 4th, 
2006 
 
A short-lived warm event was forecast over 
Pennsylvania for 4 Oct, 2006 as warm air 
flowed northeast ahead of a strong short 
wave dropping southeast across the Great 
Lakes.  The ANN output using the 1800 
UTC 30 Sept NAM run indicated a warm 
event during the day beginning around 0900 
UTC 4 Oct to 06 UTC 5 Oct (Fig 10).  The 
morning low at State College on 4 Oct was 
53F which was +1 STD above normal and 

the high temperature reached 76F during 
the afternoon which was around +1.5 STD 
above normal (see Fig 9).   
 
4.3 Case example -  Heavy Precipitation Oct 
17th and Oct 19th, 2006 
 
Two episodes of heavy rain occurred over 
Central Pennsylvania in mid Oct, 2006.  
Heavy rain fell from 17 Oct to 18 Oct 
affecting much of the state with the heaviest 
rain across the western third of PA including 
the State College area (Fig 11).  After a brief 
respite the heavy rain picked up again on 19 
Oct with the heaviest rain falling across 
northern and central PA.  The 24 hour total 
at State College from 1200 UTC 19 Oct to 
1200 UTC 20 Oct was 2.31 inches (Fig 12).  
Figure 13 shows the ANN output from the 
0600 UTC 16 Oct Nam run.  It shows the 2 
precipitation events separated by a brief 
period of no precipitation.  The GR analysis 
(Fig 14) shows a +3 STD above normal 850 
mb V-wind anomaly poking into central PA 
with an axis of +2 STD above normal 
Precipitable water anomaly along the spine 
of the Appalachians.   
 
The 36 hour NAM forecast valid 1200 UTC 
19 Oct showed a flattening ridge across the 
Ohio valley with a weak area of low pressure 
extending north from the Tennessee valley 
and along the Appalachian mountains (Fig 
15).  At this time a narrow tongue of above 
normal precipitable water extended into the 
Ohio valley.  By 0000 UTC 20 Oct 
precipitable water values had increased 
dramatically as a strong southwest flow at 
low levels increased.  Meanwhile surface 
pressure continued to deepen in response to 
the upper level trough which sharpened as it 
moved across the Ohio valley (Fig 16).  
Heavy rain spread north along the inverted 
trough and surface frontal boundary as it 
moved into western PA overnight.  
Precipitable water anomalies reached +2 to 
+3 STD above normal over central and 
eastern PA while a nose of high 850 mb V-
wind anomaly of +3 STD above normal 
moved into southern PA (Fig 17).  This is a 
classic Synoptic type heavy precipitation 
pattern as determined by Maddox (1979).  
An attempt was made to train the ANN to 
distinguish between Synoptic and Frontal 
Maddox type heavy precipitation patterns.  
Figure 18 shows the output of this ANN from 



the 0600 UTC 17 Oct, 2006 NAM run which 
indicated both heavy precipitation events 
would be comprised of the Synoptic type 
pattern. 
 
5. CONCLUSIONS 
 
An Artificial Neural Network was trained to 
recognize significant weather events using 
GR data and COOP observations.  The ANN 
was put into service during the fall season, 
2006 and initial results are encouraging.  
The ANN has shown the ability to identify 
weak heat and cold events so it is 
reasonable to expect it will also be able to 
recognize stronger significant events.  It also 
appears to recognize days when it will rain 
vs. dry days and shows promise at 
distinguishing between Synoptic and Frontal 
heavy rain signatures.  As of fall 2006, it has 
only been trained for temperature, 
precipitation, and snow events.  It has yet to 
be tested on a real-time heavy snow event.  
Further work will focus on recognizing 
severe weather potential.  We hope this kind 
of tool can be helpful to operational 
forecasters in the early detection of 
significant weather events.   
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Figure 1.  Number of significant weather events and damage in billions of dollars from 1980 to 
2005.  Used by permission, courtesy Neal Lott and Tom Ross. 
 

Fig 2. Output of Neural Network showing cold event from 00 UTC to 09 UTC 
Sept 21, 2006 using NAM anomaly forecasts based on 12 UTC Sept 20, 
2006 run. 
 



 
 

 
Fig 4. As in Fig 3 except for 00 UTC Oct 13, 2006 
 

Fig 3. Global reanalysis of a) Mean Sea Level Pressure (MSLP), 1000 mb Winds, and MSLP 
Anomaly,  b) 500 mb Heights, Winds, and Height Anomaly, c) 925 mb Heights, Winds, and 
Temperature Anomaly, and d) 925 mb Heights, Winds, and V-wind Anomaly for 06 UTC Sept 21, 
2006. 



 
 
 
 
 
 
 
 

 
Fig 5  As in Fig 3 except for 00 UTC Oct 14, 2006 
 



 
Fig 6. As in Fig 2 except for 18 UTC Oct 10, 2006 NAM run. 
 

 
Fig 7. As in Fig 2 except for 00 UTC 12 Oct, 2006 NAM run. 



 
Fig 8. As in Fig 3 except for 00 UTC 15 Oct, 2006. 
 



 
Fig 9.  Observed max and min temperature at State College, Pa (STCP1) showing a cold period 
Oct 13th to 17th with below normal high temperatures and morning low temperatures around -1 
standard deviation below normal.  Note: temperature based on 24 hour measurement from 700 
am local time. 
 
 



 
Fig 10. As in Fig 2 except 18 UTC 30 Sept, 2006 NAM run. 
 



 
Fig 11.  Cooperative Observer 24 hour total rainfall (inches) from 12 UTC 17 Oct to 12 UTC 18 
Oct, 2006. 
 



 
Fig 12.  As in Fig 11 except for from 12 UTC 19 Oct to 12 UTC 20 Oct, 2006. 
 
 



 
Fig 13.  Output of Neural Network from 06 UTC 16 Oct, 2006 NAM run indicating 2 precipitation 
events separated by a period of no precipitation. 
 
 



 
Fig 14. Global reanalysis of a) Mean Sea Level Pressure (MSLP), 1000 mb Winds, and MSLP 
Anomaly,  b) Precipitable Water and Anomaly, c)  925 mb Heights, Winds, and U-wind Anomaly, 
and d) 925 mb Heights, Winds, and V-wind Anomaly for 18 UTC Oct 17, 2006. 
 
 



 
Fig 15.  NAM 36 hour forecast for a) 500 mb Height and Anomaly, b) Mean Sea Level Pressure 
and Anomaly, c) 850 mb Wind and V-wind Anomaly, and d) Precipitable Water and Anomaly valid 
12 UTC 19 Oct, 2006. 
 



 
Fig 16. As in Fig 15 except 48 hour forecast valid 00 UTC 20 Oct , 2006 
 



 
Fig 17.  As in Fig 15 except 60 hour forecast valid 12 UTC 20 Oct, 2006 
 

 



Fig 18.  Output from Neural Network from 06 UTC 17 Oct, 2006 NAM run showing 2 heavy 
precipitation events for Oct 17-18 and Oct19-20 with a dry period in between.  Heavy precipitation 
signature categorized as Synoptic or Frontal Maddox type.   
 


