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Abstract — The Geosynchronous Imaging Fourier 
Transform Spectrometer (GIFTS) instrument can provide 
raw data in the order of multiple Terabytes per day. Due 
to the high data rate, satellite ground data processing will 
require considerable computing power to process and 
archive data in near real-time. Cluster technologies 
employing a multi-processor system combined with a 
parallel file system is the only cost effective solution for 
such processing and storage. GIFTS data processing 
system is required to generate critical products within 5 
minutes of gathering observation. In this paper we present 
an approach for GIFTS ground system processing based 
on the master-worker paradigm which provides 
performance, reliability, and scalability of candidate 
hardware and software using the Message Passing 
Interface (MPI) standard. The framework used, alleviates 
the need for earth scientists to understand parallel 
computing and fault-tolerant operations. Benchmarking 
results are presented for a selected number of science 
algorithms for the GIFTS instrument showing that 
considerable performance can be gained without 
sacrificing the reliability and high availability constraints 
imposed on the operational cluster system. A maximum 
speedup of 54.56 (85.9% efficiency) is obtained for a total 
number of 64 processors over 64 data cubes of 128 x 128 
pixels in the long wave and short-medium wave spectral 
range. This prototype system shows that considerable 
performance can be gained for candidate science 
algorithms without sacrificing reliability and high 
availability needed for a real-time system. 
 
Index Terms – Real Time Systems, Parallel and Distributed 
Computing, Task Scheduling, Reliability 

I. INTRODUCTION 
uture satellite instruments can provide raw data of the 
order of multiple Terabytes per day. Due to the high data 
rate, satellite ground data processing will require 

considerable computing power to process and archive this data 
in near real-time. The primary mission of the National 
Oceanic and Atmospheric Administration (NOAA) is to 
understand and predict changes in the Earth’s environment 

 
 

 

which requires a continuous capability to acquire, process and 
archive data in real-time.    

NOAA participation in the GIFTS technology transfer 
represents a risk reduction activity in the design of the NOAA 
GOES-R series of imager and sounder instruments and their 
associated science algorithms. The GIFTS instrument uses a 
combination of Large area Focal Plane Arrays (LFPA’s), and 
a Fourier Transform Spectrometer (FTS), providing a spectral 
resolution of 0.6 cm-1 for a 128 x 128 set of 4 km foot-prints 
every 11 seconds [1]. It is anticipated that the GIFTS Level-0 
data rate is about 55 Mbps or about 1.5 Terabyte per day [1]. 
The computing power needed for Level-0 to Level-1 
processing is not only due to the data volume but also due to 
the inverse Fourier transform and non-linearity correction. 
The volume of Level-1 data is approximately the same as 
Level-0. Since there is little reduction in data volume from 
Level-0 to Level-1, producing Level-2 data also requires 
significant computing power. GIFTS data processing system is 
required to generate critical products within 5 minutes of 
gathering observation. Cluster technologies employing a 
multi-processor system present the only current economically 
viable option to accommodate the processing needed for 
GIFTS ground data processing. However such systems are 
inherently unstable; failure of one component may result in a 
failure of the system if necessary measures are not taken. 
Operational real-time systems need to be reliable and fault-
tolerant, operate on continuous data streams and be operator-
friendly. To sustain high levels of system reliability and 
operability in a cluster-oriented operational environment, a 
fault-tolerant data processing framework is proposed to 
provide a platform for encapsulating science algorithms and 
hide the complexities involved with an operational cluster 
system. Many Earth science algorithms are very complex, but 
they have only a small degree of spatial dependency and thus 
are ideal for parallel processing.  

Designing a highly reliable operational cluster system for 
NOAA’s future ground segments is the focus of this paper. In 
the rest of this section, work reported in the literature that is 
most relevant to our work is briefly discussed. In section 2, we 
describe GIFTS instrument and the associated since 
algorithms. Section 3 describes framework architecture used 
for GIFTS processing. Section 4 describes the implementation 
details of the prototype system. Section 5 shows 
benchmarking results and tradeoff study for GIFTS ground 
system processing. Section 6 concludes the paper and 
comments on future directions of this work. 
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II.  GIFTS INSTRUMENT AND SCIENCE ALGORITHMS 

A. GIFTS Instrument Background 
The GIFTS instrument consists of large area focal plane 

detector arrays (128 x 128 pixels) within a Fourier Transform 
Spectrometer (FTS), mounted on a geostationary satellite. The 
instrument provides observations of Earth infrared radiance 
spectra at high spectral resolution (0.6 cm -1) and high spatial 
resolution (4 km x 4 km pixels). Depending on spectral 
resolution, GIFTS views a large area (512 km x 512 km) of 
the Earth within a 1 to 11 second time interval. Extended 
Earth coverage is achieved by step-scanning the instrument 
field of view in a contiguous fashion across any desired 
portion of the visible Earth. A visible camera provides 
daytime imaging of clouds at 1 km spatial resolution. Figure 1 
shows a selection of GIFTS measurement modes. 

GIFTS uses two detector arrays to cover the spectral bands 
685 to 1130 cm-1 and 1650 to 2250 cm-1, as shown in Figure 
2, and a Michelson interferometer to obtain the spectrum of 
radiance within these bands [1]. The spectral resolution of the 
measurements is sufficient to resolve, within 1-2 km vertical 
resolution, dynamic features of the atmospheric temperature 
and moisture profiles. The geostationary platform enables the 
tracing of fine scale features of the atmospheric water (cloud 
and vapor) distribution to permit the derivation of altitude 
resolved wind profiles. Nevertheless, GIFTS will cover a 
major portion of the visible disk with high vertical resolution 
soundings in less than 30 minutes [1]. This feature is 
important for obtaining wind profiles from geostationary 
temperature and moisture sounding data. As part of University 
of Wisconsin’s (UW's) algorithm development [2], 
simulations of expected top of atmosphere (TOA) radiances 
are being used for algorithm development and processing. 

B. GIFTS Science Algorithm Pipeline 
The GIFTS sensor will sample the interferogram from each 

detector as a function of optical path delay and numerically 
filter the data in real-time to reduce the data rate before 
transmission to the ground-based X-band receiver. The sensor 
collects views of the onboard calibration references and deep 
space at regular intervals. The ground reception facility will 
decode the telemetry stream and pass the GIFTS sensor data in 
real-time to a ground data processing facility [2, 3]. The 
GIFTS science algorithms are developed by Space Science 
and Engineering Center (SSEC) at University of Wisconsin 
(UW). These algorithms can be described as a pipeline 
consisting of a set of modules including an initial Fast Fourier 
Transform (FFT), Non-linearity Correction, Radiometric 
Calibration, Spectral Calibration, Instrument Line Shape 
Correction and Spectral Resampling as shown in Figure 3. 
These modules are described below but complete details can 
be obtained from Knuteson [1].  

Initially, FFT operations are applied to GIFTS data to 
convert the measured interferograms into complex spectra. A 
complex Fourier transform and data folding is performed to 
convert the complex interferograms to complex spectra 
corresponding to a wave number scale. In second step we 
apply non-linearity correction. This work is still under 
investigation by SSEC, UW. It is expected that the GIFTS 
detector material is highly linear in the range of photon fluxes 
used, but the electronics readout of the focal plane array can 
introduce small signal non-linearity. The non-linearity 
correction algorithm is being designed using ground-based 
AERI [4] instrument as well as the Scanning-HIS instrument 
[4]. In the third step, we perform radiometric calibration. This 
step ensures the GIFTS instrument requirement to measure 

 
Figure 1: A selection of GIFTS measurement modes. Each box represents the 

128 × 128 Large area Focal Plane detector Array (LFPA) [1]. 

Figure 2: GIFTS spectral coverage with two detector arrays [1]  

 
Figure 3: GIFTS science algorithm pipeline 
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brightness temperature to better than 1 K, with a 
reproducibility of ±0.2 K. GIFTS uses views of two on-board 
blackbody sources (300 K and 265 K) along with cold space, 
sequenced at regular programmable intervals. The temperature 
difference between the two internal blackbody views provides 
the sensor slope term in the calibration equation, while the 
deep space view corrects for radiant emission from the 
telescope by establishing the offset term. This is followed by 
spectral calibration, which uses ground-based and aircraft FTS 
systems. The spectral characteristics of these instruments are 
defined by an Instrument Line Shape (ILS) and a spectral 
sampling interval. The spectral sampling scale is maintained 
very accurately by the stable laser used to trigger sampling at 
equal intervals of Optical Path Difference (OPD). The next 
stage is to perform the instrument line shape correction. It has 
been evaluated that this effect is very negligible for GIFTS 
instrument since it has an extremely small range of angles 
contributing to each individual detector pixel (< 1 mrad in the 
interferometer). As a result, the variation of it is extremely 
small and could even be ignored without introducing 
significant errors. Once the spectral calibration is determined 
we perform wave number resampling. The GIFTS radiance 
spectrum can be resampled from the original sampling interval 
to a standard reference wave number scale. The resampling is 
performed in software using FFT, “zero padding”, and linear 
interpolation of an oversampled spectrum. The results of the 
wavenumber resampling operation are equivalent to GIFTS 
spectra with a common wave number scale independent of 
their location in the focal plane array. 

Our benchmarking results as presented in section 5 include 
the initial Fast Fourier Transform (FFT), the radiometric 
calibration and the spectral resampling stages, since the other 
modules are still in the development phase and not yet 
available for use in the framework.  

III. GIFTS FRAMEWORK ARCHITECTURE 
In this section we propose an architectural model for a robust 
and reliable operational satellite data processing framework 
[5] consisting of: 
  

• Active/Standby Master 
• Active/Standby Data Input Server  
• Active/Standby Data Output Server 
• Reference and Audit Database Servers 
• Workers 
 

The master is responsible for cluster management and task 
scheduling. The data input server provides the real-time data 
which will be retrieved by the workers while the data output 
server gathers the results produced by the workers. The 
reference database server provides access to a database storage 
unit which may contain instrument factory parameters, science 
algorithm specific parameters, algorithm descriptions, and 
algorithm initialization parameters. The audit database server 
provides monitoring capability of algorithms used, produced 
products and so forth. The workers do the actual processing of 
the science algorithms.. A Front End Processor (FEP) receives 

(FEP) receives the data from the satellite, processes the data 
into packets and frames according to the CCSDS format 
description. The frames constitute interferometer 
measurements, performance, engineering and diagnostics data.  
The FEP provides the input data to the data input server and is 
not part of the framework. Redundancy for the master, data 
input and data output servers are provided through an 
active/standby mechanism. Parallel file systems with server 
fail-over capability may serve as input and output servers. The 
databases, consisting of the reference database and the audit 
database, are envisioned to consist of their own commercially 
available database clusters such as the MySQL Cluster [6] for 
fault tolerance purposes. 
 The master is responsible for cluster management and 
task scheduling. A task is referred to as a unit of work which 
contains its own set of data, initialization parameters, 
reference id, timestamp and so forth. Each task has a unique 
identifier which differentiates it from other tasks within the 
system. Tasks may also be prioritized in which case tasks with 
higher priorities will be executed before low priority tasks. 
 The data input server retrieves the new incoming data, 
packages them appropriately and assigns unique identifiers to 
tasks encapsulating the new data sets. The identifiers for the 
new tasks produced by the data input server are sent to the 
master, which in turn schedules the new tasks to be assigned 
to workers. 

The master may also define scheduling policies in a way 
such that certain tasks are assigned to specific workers. We 
refer to this as selective scheduling. Such policies are 
beneficial in cases where specific tasks may need initialization 
parameters, which may reside on specific workers and may be 
computationally time consuming if they had to be recomputed.  
By assigning such tasks to the same worker or the same group 
of workers and using application-aware caches [7], a large 
amount of computation may be saved resulting in higher 
performance. All communication between the various servers 
may be performed asynchronously to overlap computation 
with communication. 

A task assigned to a worker by the master may not complete 
on time for various reasons such as network or worker node 
failure. A task is considered completed by the master when the 
task identifier is returned to the master by the worker. To 
implement task and data redundancy mechanisms, the task 
execution time, also referred to as task latency, has to be 
known in advance. Specifying task latency statically is 
unfeasible for most practical parallel applications. In the 
current design, task execution times are estimated dynamically 
based on previous actual task execution times and an over-
estimation factor. The over-estimation factor for each task can 
be calculated as the inverse ratio of its estimated and actual 
execution time. The estimated execution time may be 
computed by taking the average of a certain number of 
previous task execution times multiplied by an over-estimation 
factor. The over-estimation factor may or may not be a 
constant. 

A task which has not been completed within its estimated 
execution time is considered lost by the master and will be 
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reassigned to a worker requesting tasks [8]. The master keeps 
two queues of tasks, one for new tasks which have not yet 
been assigned to workers, and one for assigned tasks. When 
the master schedules a task to be assigned to a worker process, 
the task in the head of the queue for new tasks is retrieved and 
assigned to an appropriate worker. This task is then moved to 
the queue of assigned tasks. When the master receives a 
notification from the worker that the respective task has been 
computed, the task is removed from the queue of assigned 
tasks. However if this task is not completed within its 
estimated execution time, it is considered lost. Therefore the 
task is removed from the queue of assigned tasks and is placed 
in the head of the queue of new tasks to be reassigned to a 
new worker. The worker which was initially assigned the 
respective task is considered faulty and will be removed from 
the list of available workers. 

IV. GIFTS PROTOTYPE IMPLEMENTATION 
The prototype system includes an HP Linux cluster 

consisting of 32 dual core AMD Opteron DL145 compute 
nodes with 1 GB RAM per CPU and 4 dual core AMD 
Opteron DL385 management nodes with 1 GB RAM per 
CPU. The system runs Red Hat Linux Enterprise Server for 
AMD64 and has a Gigabit Ethernet as well as Myrinet 
interconnect for the entire system. HP Serviceguard is used to 
provide failover capability for the master node. HP 
Serviceguard monitors the health of each master node and 
rapidly responds to failures in a way that minimizes or 
eliminates application downtime. This system is also 
supplemented by an HP StorageWorks Scalable File Share 
(HP SFS) which is used to access data in parallel from all 
compute nodes. It has 16 Terabytes of usable storage and 
provides a bandwidth of 1064 Mbytes/s for READ and 570 
Mbytes/s for WRITE. It uses the Lustre parallel file system 
which is one of the most extensively used parallel file systems 
[9].   

A.  Framework Implementation 
The framework is implemented using the Message Passing 
Interface (MPI) [10, 11] and the C++ programming language. 
Since there are many implementations of MPI, we evaluated 
various implementations such as OpenMPI [12], MPICH-2 
[13] and LAM-MPI [14]. Finally we choose the MPICH-2 
implementation considering its support for MPI-2 [11] 
standards. Our framework prototype is a complete 
implementation of all the various components as described in 
section 3 except for the FEP. For the current framework 
implementation, the FEP was not used to provide the data; 
rather the data was directly fetched from the input server. The 
framework separates the science algorithm layer from the 
cluster management layer and provides an operational 
platform within which algorithm software pipelines can be 
deployed for satellite data processing. There are classes and 
API’s for each service such as master, input delivery, output 
delivery, reference database, audit database, and workers. The 
system can be configured at startup using configuration files 
where hostnames may be specified for the various worker 
nodes, reference and audit database and so forth. Once the 

master finishes initialization, it starts the workers and 
communicates a unique identifier to each worker. Once 
connection is established, if there is an outstanding task to be 
processed, it will be assigned to a worker by the master. In 
case a worker is removed at run-time, its tasks are reassigned 
to other workers as described in section 3. In case of a master 
failover, all worker – master connections are lost and the 
worker processes are cleaned up. The failover process from 
standby to active involves reading the last check-point file 
written by the active unit, re-creating the system state 
accordingly and failing over from standby to active unit. The 
standby master takes over and creates new worker processes 
as well as redistributes tasks to the workers.  

The framework provides algorithm independence through a 
set of base classes and interfaces for the algorithmic tasks [5]. 
Each independent work unit is encapsulated in the Task class 
containing fields for start time, completion time, compute 
time, unique task identifier, algorithm identifier, number of 
pixels, input and output data sizes, and other initialization 
parameters common to most satellite data processing 
algorithms we have evaluated so far. A task is started as soon 
as the master schedules it for a specific worker and is 
considered completed as soon as the master receives a 
notification from worker that the respective task has been 
completed. Hence the completion time for each task includes 
communication, read, write and computation time, 
respectively. The compute time stored in the task contains the 
actual computational time for the task as observed by the 
worker. Each task has a unique task identifier to differentiate 
it from other tasks. Each task contains a field for algorithm 
identifier specifying the algorithm/algorithms to be applied to 
the data. Each task contains reference to its own set of input 
and output data files. Workers execute a task simply by calling 
the execute() method on an instance of the Task class. This 
way the science algorithm layer is clearly separated from the 
framework layer. 

V. RESULTS 
In this section we investigate our framework prototype in 

terms of performance and reliability. The framework 
prototype is evaluated using GIFTS science algorithms as 
described in section 2.  Our benchmarking results show end to 
end performance using simulated data cubes as well as the 
effect of task size on the performance.  

A. Performance 
Our benchmarking results include the initial FFT, the 
radiometric calibration and the spectral resampling stages, 
since the other modules are still in the development phase and 
have not yet been released. For the benchmarking, a total of 
64 data cubes are used. This results in sufficient amount of 
work to be provided to each worker to hide any anomalies. 
Each data cube has a total of 128 x 128 pixels. In the first 
experiment we have used a constant task size of 64 data cubes 
and shown the execution time, speed up and efficiency for the 
GIFTS pipeline. Two spectral ranges for the datasets are used: 
the long wave infrared band (685-1129 cm-1) and the short-
medium wave band (1650-2250 cm-1). Figure 4 shows the 
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total execution time versus number of processors using the 
end-to-end GIFTS pipeline processing. Figure 5 shows the 
speedup versus number of processors for the same experiment. 
It is shown that we can achieve a linear speedup of 54.56 
compared to an ideal speedup of 64. Figure 6 shows the 

the efficiency versus number of processors. It can be seen that 
we are able to maintain an efficiency of 85 percent throughout 
the experiment. 

In the second experiment, we evaluated the effect of network 
bandwidth by increasing the task size in terms of number of 
pixels per task. This resulted in reduced number of messages 
between the workers and the master which in turn reduces the 
worker – master communication. This experiment was 
conducted using a total of 64 data cubes running on 64 

processors. The experiment was conducted using tasks 
containing 128, 256, 1024, and 2048 pixels. Figure 7 shows 
the total execution time versus task size. Increasing the task 
size from 128 pixels per task to 2048 pixels per task, resulted 
in an increase of the total execution time of about 0.7 percent. 
Hence the effect of task size on the total execution time is 
negligible. It was observed that the total amount of 
computation time remained constant as the total work 
remained constant. Figure 8 shows the effect of task size on 
READ and WRITE times. For a task size of 128 pixels per 

task, blocks of 128 pixels were used to perform READ and 
WRITE, whereas for task sizes greater than or equal to 256 
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Figure 4: Execution time versus number of processors for 64 data cubes 
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Figure 5: Speedup versus number of processors for 64 data cubes 
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Figure 6: Efficiency versus number of processors for 64 data cubes 

0.769

0.774

0.766

0.767

0.768

0.769

0.77

0.771

0.772

0.773

0.774

0.775

128 256 512 1024 2048
Task Size (pixels)

E
xe

cu
tio

n 
Ti

m
e 

in
 H

rs
.

Figure 7: Execution time versus task size for 64 data cubes running on 64 
processes 
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Figure 8: Read/Write time versus task size for 64 data cubes running on 64 
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pixels per task, blocks of 256 pixels were used.  
In the third experiment, we investigated the effect of the 

bandwidth of the parallel file system to determine the 
optimum number of pixels which should be used for 
performing I/O to obtain the maximum speedup. In this 
experiment we kept the task size to a constant value of 1024 
pixels per task while increasing the block size to perform bulk 
I/O. Block sizes of 32, 64, 128, 256, 512, 1024 pixels were 
used. Figure 9 shows the total execution time versus block 
size in pixels. It can be seen that an optimal value of a block 
size of 256 pixels results in the least execution time. Figure 10 
shows the effect of bulk I/O time versus block size in pixels. 
An optimal value of a block size of 256 pixels is obtained for 
READ while the value of block size has negligible effect on 
WRITE.   

B. Reliability 
In this section, we evaluated the reliability of the framework 

in case of worker failures and their impact on the 
performance. A task assigned to a worker by the master may 
not complete on time due to a worker node or worker process 
failure, respectively. In our framework an estimated execution 
time is computed by taking the average of a certain number of 
previous task execution times multiplied by an over-estimation 
factor as described in section 2. A task which has not been 
completed within its estimated execution time is considered 
lost by the master and will be reassigned to another worker 
requesting tasks. The worker which was initially assigned the 
lost task is considered faulty and is removed from the list of 
available workers. It is assumed that an operational system 
will have a safety margin to ensure the availability of the 
minimum required number of worker processes at all times. 
To investigate the capability of the framework in case of 
worker failures, artificially induced faults are introduced in the 
system.  Worker processes are shut down according to an 
exponential distribution after they are assigned tasks. An 
example of the worker failure distribution during the course of 
one of the experiments is shown in figure 11. In our 
experiments, we are assuming that the required number of 
worker processes is 32 with a safety margin of 100 percent. 
Hence 64 worker processes are shut down until only half of 
the initial processes are available. We verified that the master 

can successfully identify failed workers and reassign tasks to 
available worker processes. Figure 12 shows the speedup for a 

series of experiments where the speedup varied from about 38 
to 53. A mean value of 44.88 is obtained for the speedup as 
shown in figure 12. This value may be compared to the 
speedup of 54.56 shown in figure 5 without worker failures. 

VI. CONCLUSIONS AND FUTURE WORK 
In this paper we have proposed a highly robust and reliable 

framework for the distributed real-time processing of satellite 
data for a GIFTS ground system.  Furthermore we presented 
an architectural model for providing performance, reliability, 
and scalability of candidate hardware and software for such a 
framework. It has been shown that considerable performance 
can be gained for GIFTS science algorithms without 
sacrificing the reliability and high availability requirements for 
the operational system. Future work involves the processing of 
GIFTS science algorithm pipeline using real thermal vacuum 
data. Depending on the flight of the GIFTS instrument, the 
framework prototype as shown in this paper needs to be 
transitioned into an operational environment requiring data to 
be processed in near real-time. This requires further scalability 
studies in terms of number of processors needed to keep up 
with the GIFTS data rate.  
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