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Abstract — The Geosynchronous Imaging Fourier
Transform Spectrometer (GIFTS) instrument can provide
raw data in the order of multiple Terabytes per day. Due
to the high data rate, satellite ground data processing will
require considerable computing power to process and
archive data in near real-time. Cluster technologies
employing a multi-processor system combined with a
parallel file system is the only cost effective solution for
such processing and storage. GIFTS data processing
system is required to generate critical products within 5
minutes of gathering observation. In this paper we present
an approach for GIFTS ground system processing based
on the master-worker paradigm which provides
performance, reliability, and scalability of candidate
hardware and software using the Message Passing
Interface (MPI) standard. The framework used, alleviates
the need for earth scientists to understand parallel
computing and fault-tolerant operations. Benchmarking
results are presented for a selected number of science
algorithms for the GIFTS instrument showing that
considerable performance can be gained without
sacrificing the reliability and high availability constraints
imposed on the operational cluster system. A maximum
speedup of 54.56 (85.9% efficiency) is obtained for a total
number of 64 processors over 64 data cubes of 128 x 128
pixels in the long wave and short-medium wave spectral
range. This prototype system shows that considerable
performance can be gained for candidate science
algorithms without sacrificing reliability and high
availability needed for a real-time system.

Index Terms — Real Time Systems, Parallel and Distributed
Computing, Task Scheduling, Reliability

I. INTRODUCTION

uture satellite instruments can provide raw data of the
order of multiple Terabytes per day. Due to the high data
rate, satellite ground data processing will require
considerable computing power to process and archive this data
in near real-time. The primary mission of the National
Oceanic and Atmospheric Administration (NOAA) is to
understand and predict changes in the Earth’s environment

which requires a continuous capability to acquire, process and
archive data in real-time.

NOAA nparticipation in the GIFTS technology transfer
represents a risk reduction activity in the design of the NOAA
GOES-R series of imager and sounder instruments and their
associated science algorithms. The GIFTS instrument uses a
combination of Large area Focal Plane Arrays (LFPA’s), and
a Fourier Transform Spectrometer (FTS), providing a spectral
resolution of 0.6 cm™ for a 128 x 128 set of 4 km foot-prints
every 11 seconds [1]. It is anticipated that the GIFTS Level-0
data rate is about 55 Mbps or about 1.5 Terabyte per day [1].
The computing power needed for Level-0 to Level-1
processing is not only due to the data volume but also due to
the inverse Fourier transform and non-linearity correction.
The volume of Level-1 data is approximately the same as
Level-0. Since there is little reduction in data volume from
Level-0 to Level-1, producing Level-2 data also requires
significant computing power. GIFTS data processing system is
required to generate critical products within 5 minutes of
gathering observation. Cluster technologies employing a
multi-processor system present the only current economically
viable option to accommodate the processing needed for
GIFTS ground data processing. However such systems are
inherently unstable; failure of one component may result in a
failure of the system if necessary measures are not taken.
Operational real-time systems need to be reliable and fault-
tolerant, operate on continuous data streams and be operator-
friendly. To sustain high levels of system reliability and
operability in a cluster-oriented operational environment, a
fault-tolerant data processing framework is proposed to
provide a platform for encapsulating science algorithms and
hide the complexities involved with an operational cluster
system. Many Earth science algorithms are very complex, but
they have only a small degree of spatial dependency and thus
are ideal for parallel processing.

Designing a highly reliable operational cluster system for
NOAA'’s future ground segments is the focus of this paper. In
the rest of this section, work reported in the literature that is
most relevant to our work is briefly discussed. In section 2, we
describe GIFTS instrument and the associated since
algorithms. Section 3 describes framework architecture used
for GIFTS processing. Section 4 describes the implementation
details of the prototype system. Section 5 shows
benchmarking results and tradeoff study for GIFTS ground
system processing. Section 6 concludes the paper and
comments on future directions of this work.



Il. GIFTS INSTRUMENT AND SCIENCE ALGORITHMS

A. GIFTS Instrument Background

The GIFTS instrument consists of large area focal plane
detector arrays (128 x 128 pixels) within a Fourier Transform
Spectrometer (FTS), mounted on a geostationary satellite. The
instrument provides observations of Earth infrared radiance
spectra at high spectral resolution (0.6 cm ™) and high spatial
resolution (4 km x 4 km pixels). Depending on spectral
resolution, GIFTS views a large area (512 km x 512 km) of
the Earth within a 1 to 11 second time interval. Extended
Earth coverage is achieved by step-scanning the instrument
field of view in a contiguous fashion across any desired
portion of the visible Earth. A visible camera provides
daytime imaging of clouds at 1 km spatial resolution. Figure 1
shows a selection of GIFTS measurement modes.

Figure 1: A selection of GIFTS measurement modes. Each box represents the
128 x 128 Large area Focal Plane detector Array (LFPA) [1].

GIFTS uses two detector arrays to cover the spectral bands
685 to 1130 cm™ and 1650 to 2250 cm™, as shown in Figure
2, and a Michelson interferometer to obtain the spectrum of
radiance within these bands [1]. The spectral resolution of the
measurements is sufficient to resolve, within 1-2 km vertical
resolution, dynamic features of the atmospheric temperature
and moisture profiles. The geostationary platform enables the
tracing of fine scale features of the atmospheric water (cloud
and vapor) distribution to permit the derivation of altitude
resolved wind profiles. Nevertheless, GIFTS will cover a
major portion of the visible disk with high vertical resolution
soundings in less than 30 minutes [1]. This feature is
important for obtaining wind profiles from geostationary
temperature and moisture sounding data. As part of University
of Wisconsin’s (UW's) algorithm development [2],
simulations of expected top of atmosphere (TOA) radiances
are being used for algorithm development and processing.
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Figure 2: GIFTS spectral coverage with two detector arrays [1]
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B. GIFTS Science Algorithm Pipeline

The GIFTS sensor will sample the interferogram from each
detector as a function of optical path delay and numerically
filter the data in real-time to reduce the data rate before
transmission to the ground-based X-band receiver. The sensor
collects views of the onboard calibration references and deep
space at regular intervals. The ground reception facility will
decode the telemetry stream and pass the GIFTS sensor data in
real-time to a ground data processing facility [2, 3]. The
GIFTS science algorithms are developed by Space Science
and Engineering Center (SSEC) at University of Wisconsin
(UW). These algorithms can be described as a pipeline
consisting of a set of modules including an initial Fast Fourier
Transform (FFT), Non-linearity Correction, Radiometric
Calibration, Spectral Calibration, Instrument Line Shape
Correction and Spectral Resampling as shown in Figure 3.
These modules are described below but complete details can
be obtained from Knuteson [1].
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Figure 3: GIFTS science algorithm pipeline

Initially, FFT operations are applied to GIFTS data to
convert the measured interferograms into complex spectra. A
complex Fourier transform and data folding is performed to
convert the complex interferograms to complex spectra
corresponding to a wave number scale. In second step we
apply non-linearity correction. This work is still under
investigation by SSEC, UW. It is expected that the GIFTS
detector material is highly linear in the range of photon fluxes
used, but the electronics readout of the focal plane array can
introduce small signal non-linearity. The non-linearity
correction algorithm is being designed using ground-based
AERI [4] instrument as well as the Scanning-HIS instrument
[4]. In the third step, we perform radiometric calibration. This
step ensures the GIFTS instrument requirement to measure



brightness temperature to better than 1 K, with a
reproducibility of £0.2 K. GIFTS uses views of two on-board
blackbody sources (300 K and 265 K) along with cold space,
sequenced at regular programmable intervals. The temperature
difference between the two internal blackbody views provides
the sensor slope term in the calibration equation, while the
deep space view corrects for radiant emission from the
telescope by establishing the offset term. This is followed by
spectral calibration, which uses ground-based and aircraft FTS
systems. The spectral characteristics of these instruments are
defined by an Instrument Line Shape (ILS) and a spectral
sampling interval. The spectral sampling scale is maintained
very accurately by the stable laser used to trigger sampling at
equal intervals of Optical Path Difference (OPD). The next
stage is to perform the instrument line shape correction. It has
been evaluated that this effect is very negligible for GIFTS
instrument since it has an extremely small range of angles
contributing to each individual detector pixel (< 1 mrad in the
interferometer). As a result, the variation of it is extremely
small and could even be ignored without introducing
significant errors. Once the spectral calibration is determined
we perform wave number resampling. The GIFTS radiance
spectrum can be resampled from the original sampling interval
to a standard reference wave number scale. The resampling is
performed in software using FFT, “zero padding”, and linear
interpolation of an oversampled spectrum. The results of the
wavenumber resampling operation are equivalent to GIFTS
spectra with a common wave number scale independent of
their location in the focal plane array.

Our benchmarking results as presented in section 5 include
the initial Fast Fourier Transform (FFT), the radiometric
calibration and the spectral resampling stages, since the other
modules are still in the development phase and not yet
available for use in the framework.

I1l. GIFTS FRAMEWORK ARCHITECTURE

In this section we propose an architectural model for a robust
and reliable operational satellite data processing framework
[5] consisting of:

e Active/Standby Master

e Active/Standby Data Input Server

e  Active/Standby Data Output Server

e Reference and Audit Database Servers
e Workers

The master is responsible for cluster management and task
scheduling. The data input server provides the real-time data
which will be retrieved by the workers while the data output
server gathers the results produced by the workers. The
reference database server provides access to a database storage
unit which may contain instrument factory parameters, science
algorithm specific parameters, algorithm descriptions, and
algorithm initialization parameters. The audit database server
provides monitoring capability of algorithms used, produced
products and so forth. The workers do the actual processing of
the science algorithms.. A Front End Processor (FEP) receives

(FEP) receives the data from the satellite, processes the data
into packets and frames according to the CCSDS format
description. The  frames  constitute  interferometer
measurements, performance, engineering and diagnostics data.
The FEP provides the input data to the data input server and is
not part of the framework. Redundancy for the master, data
input and data output servers are provided through an
active/standby mechanism. Parallel file systems with server
fail-over capability may serve as input and output servers. The
databases, consisting of the reference database and the audit
database, are envisioned to consist of their own commercially
available database clusters such as the MySQL Cluster [6] for
fault tolerance purposes.

The master is responsible for cluster management and
task scheduling. A task is referred to as a unit of work which
contains its own set of data, initialization parameters,
reference id, timestamp and so forth. Each task has a unique
identifier which differentiates it from other tasks within the
system. Tasks may also be prioritized in which case tasks with
higher priorities will be executed before low priority tasks.

The data input server retrieves the new incoming data,
packages them appropriately and assigns unique identifiers to
tasks encapsulating the new data sets. The identifiers for the
new tasks produced by the data input server are sent to the
master, which in turn schedules the new tasks to be assigned
to workers.

The master may also define scheduling policies in a way
such that certain tasks are assigned to specific workers. We
refer to this as selective scheduling. Such policies are
beneficial in cases where specific tasks may need initialization
parameters, which may reside on specific workers and may be
computationally time consuming if they had to be recomputed.
By assigning such tasks to the same worker or the same group
of workers and using application-aware caches [7], a large
amount of computation may be saved resulting in higher
performance. All communication between the various servers
may be performed asynchronously to overlap computation
with communication.

A task assigned to a worker by the master may not complete
on time for various reasons such as network or worker node
failure. A task is considered completed by the master when the
task identifier is returned to the master by the worker. To
implement task and data redundancy mechanisms, the task
execution time, also referred to as task latency, has to be
known in advance. Specifying task latency statically is
unfeasible for most practical parallel applications. In the
current design, task execution times are estimated dynamically
based on previous actual task execution times and an over-
estimation factor. The over-estimation factor for each task can
be calculated as the inverse ratio of its estimated and actual
execution time. The estimated execution time may be
computed by taking the average of a certain number of
previous task execution times multiplied by an over-estimation
factor. The over-estimation factor may or may not be a
constant.

A task which has not been completed within its estimated
execution time is considered lost by the master and will be



reassigned to a worker requesting tasks [8]. The master keeps
two queues of tasks, one for new tasks which have not yet
been assigned to workers, and one for assigned tasks. When
the master schedules a task to be assigned to a worker process,
the task in the head of the queue for new tasks is retrieved and
assigned to an appropriate worker. This task is then moved to
the queue of assigned tasks. When the master receives a
notification from the worker that the respective task has been
computed, the task is removed from the queue of assigned
tasks. However if this task is not completed within its
estimated execution time, it is considered lost. Therefore the
task is removed from the queue of assigned tasks and is placed
in the head of the queue of new tasks to be reassigned to a
new worker. The worker which was initially assigned the
respective task is considered faulty and will be removed from
the list of available workers.

IV. GIFTS PROTOTYPE IMPLEMENTATION

The prototype system includes an HP Linux cluster
consisting of 32 dual core AMD Opteron DL145 compute
nodes with 1 GB RAM per CPU and 4 dual core AMD
Opteron DL385 management nodes with 1 GB RAM per
CPU. The system runs Red Hat Linux Enterprise Server for
AMDG64 and has a Gigabit Ethernet as well as Myrinet
interconnect for the entire system. HP Serviceguard is used to
provide failover capability for the master node. HP
Serviceguard monitors the health of each master node and
rapidly responds to failures in a way that minimizes or
eliminates application downtime. This system is also
supplemented by an HP StorageWorks Scalable File Share
(HP SFS) which is used to access data in parallel from all
compute nodes. It has 16 Terabytes of usable storage and
provides a bandwidth of 1064 Mbytes/s for READ and 570
Mbytes/s for WRITE. It uses the Lustre parallel file system
which is one of the most extensively used parallel file systems

[9].
A. Framework Implementation

The framework is implemented using the Message Passing
Interface (MPI) [10, 11] and the C++ programming language.
Since there are many implementations of MPI, we evaluated
various implementations such as OpenMPI [12], MPICH-2
[13] and LAM-MPI [14]. Finally we choose the MPICH-2
implementation considering its support for MPI-2 [11]
standards. Our framework prototype is a complete
implementation of all the various components as described in
section 3 except for the FEP. For the current framework
implementation, the FEP was not used to provide the data;
rather the data was directly fetched from the input server. The
framework separates the science algorithm layer from the
cluster management layer and provides an operational
platform within which algorithm software pipelines can be
deployed for satellite data processing. There are classes and
API’s for each service such as master, input delivery, output
delivery, reference database, audit database, and workers. The
system can be configured at startup using configuration files
where hostnames may be specified for the various worker
nodes, reference and audit database and so forth. Once the

master finishes initialization, it starts the workers and
communicates a unique identifier to each worker. Once
connection is established, if there is an outstanding task to be
processed, it will be assigned to a worker by the master. In
case a worker is removed at run-time, its tasks are reassigned
to other workers as described in section 3. In case of a master
failover, all worker — master connections are lost and the
worker processes are cleaned up. The failover process from
standby to active involves reading the last check-point file
written by the active unit, re-creating the system state
accordingly and failing over from standby to active unit. The
standby master takes over and creates new worker processes
as well as redistributes tasks to the workers.

The framework provides algorithm independence through a
set of base classes and interfaces for the algorithmic tasks [5].
Each independent work unit is encapsulated in the Task class
containing fields for start time, completion time, compute
time, unique task identifier, algorithm identifier, number of
pixels, input and output data sizes, and other initialization
parameters common to most satellite data processing
algorithms we have evaluated so far. A task is started as soon
as the master schedules it for a specific worker and is
considered completed as soon as the master receives a
notification from worker that the respective task has been
completed. Hence the completion time for each task includes
communication, read, write and computation time,
respectively. The compute time stored in the task contains the
actual computational time for the task as observed by the
worker. Each task has a unique task identifier to differentiate
it from other tasks. Each task contains a field for algorithm
identifier specifying the algorithm/algorithms to be applied to
the data. Each task contains reference to its own set of input
and output data files. Workers execute a task simply by calling
the execute() method on an instance of the Task class. This
way the science algorithm layer is clearly separated from the
framework layer.

V. RESULTS

In this section we investigate our framework prototype in
terms of performance and reliability. The framework
prototype is evaluated using GIFTS science algorithms as
described in section 2. Our benchmarking results show end to
end performance using simulated data cubes as well as the
effect of task size on the performance.

A. Performance

Our benchmarking results include the initial FFT, the
radiometric calibration and the spectral resampling stages,
since the other modules are still in the development phase and
have not yet been released. For the benchmarking, a total of
64 data cubes are used. This results in sufficient amount of
work to be provided to each worker to hide any anomalies.
Each data cube has a total of 128 x 128 pixels. In the first
experiment we have used a constant task size of 64 data cubes
and shown the execution time, speed up and efficiency for the
GIFTS pipeline. Two spectral ranges for the datasets are used:
the long wave infrared band (685-1129 cm™) and the short-
medium wave band (1650-2250 cm™). Figure 4 shows the



total execution time versus number of processors using the
end-to-end GIFTS pipeline processing. Figure 5 shows the
speedup versus number of processors for the same experiment.
It is shown that we can achieve a linear speedup of 54.56
compared to an ideal speedup of 64. Figure 6 shows the
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Figure 6: Efficiency versus number of processors for 64 data cubes

the efficiency versus number of processors. It can be seen that
we are able to maintain an efficiency of 85 percent throughout
the experiment.

In the second experiment, we evaluated the effect of network
bandwidth by increasing the task size in terms of number of
pixels per task. This resulted in reduced number of messages
between the workers and the master which in turn reduces the
worker — master communication. This experiment was
conducted using a total of 64 data cubes running on 64

processors. The experiment was conducted using tasks
containing 128, 256, 1024, and 2048 pixels. Figure 7 shows
the total execution time versus task size. Increasing the task
size from 128 pixels per task to 2048 pixels per task, resulted
in an increase of the total execution time of about 0.7 percent.
Hence the effect of task size on the total execution time is
negligible. It was observed that the total amount of
computation time remained constant as the total work
remained constant. Figure 8 shows the effect of task size on
READ and WRITE times. For a task size of 128 pixels per
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task, blocks of 128 pixels were used to perform READ and
WRITE, whereas for task sizes greater than or equal to 256
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pixels per task, blocks of 256 pixels were used.

In the third experiment, we investigated the effect of the
bandwidth of the parallel file system to determine the
optimum number of pixels which should be used for
performing 1/0 to obtain the maximum speedup. In this
experiment we kept the task size to a constant value of 1024
pixels per task while increasing the block size to perform bulk
1/0. Block sizes of 32, 64, 128, 256, 512, 1024 pixels were
used. Figure 9 shows the total execution time versus block
size in pixels. It can be seen that an optimal value of a block
size of 256 pixels results in the least execution time. Figure 10
shows the effect of bulk I/O time versus block size in pixels.
An optimal value of a block size of 256 pixels is obtained for
READ while the value of block size has negligible effect on
WRITE.

B. Reliability

In this section, we evaluated the reliability of the framework
in case of worker failures and their impact on the
performance. A task assigned to a worker by the master may
not complete on time due to a worker node or worker process
failure, respectively. In our framework an estimated execution
time is computed by taking the average of a certain number of
previous task execution times multiplied by an over-estimation
factor as described in section 2. A task which has not been
completed within its estimated execution time is considered
lost by the master and will be reassigned to another worker
requesting tasks. The worker which was initially assigned the
lost task is considered faulty and is removed from the list of
available workers. It is assumed that an operational system
will have a safety margin to ensure the availability of the
minimum required number of worker processes at all times.
To investigate the capability of the framework in case of
worker failures, artificially induced faults are introduced in the
system. Worker processes are shut down according to an
exponential distribution after they are assigned tasks. An
example of the worker failure distribution during the course of
one of the experiments is shown in figure 11. In our
experiments, we are assuming that the required number of
worker processes is 32 with a safety margin of 100 percent.
Hence 64 worker processes are shut down until only half of
the initial processes are available. We verified that the master

can successfully identify failed workers and reassign tasks to
available worker processes. Figure 12 shows the speedup for a
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series of experiments where the speedup varied from about 38
to 53. A mean value of 44.88 is obtained for the speedup as
shown in figure 12. This value may be compared to the
speedup of 54.56 shown in figure 5 without worker failures.

V1. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a highly robust and reliable
framework for the distributed real-time processing of satellite
data for a GIFTS ground system. Furthermore we presented
an architectural model for providing performance, reliability,
and scalability of candidate hardware and software for such a
framework. It has been shown that considerable performance
can be gained for GIFTS science algorithms without
sacrificing the reliability and high availability requirements for
the operational system. Future work involves the processing of
GIFTS science algorithm pipeline using real thermal vacuum
data. Depending on the flight of the GIFTS instrument, the
framework prototype as shown in this paper needs to be
transitioned into an operational environment requiring data to
be processed in near real-time. This requires further scalability
studies in terms of number of processors needed to keep up
with the GIFTS data rate.
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