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1. INTRODUCTION∗  

Research is being conducted at the Office of 
Hydrologic Development (OHD) of the National Weather 
Service (NWS), National Oceanic & Atmospheric 
Administration (NOAA) to evaluate advanced energy-
budget snowmelt models for operational hydrologic 
forecasting.  Current NWS river forecasting operations 
include the use of a degree-day snow model.  
Historically, this approach has been used primarily 
because of the lack of reliable observations required by 
Energy Budget Snow Models (EBSMs).  In recent years, 
products from the Snow Data Assimilation System 
(SNODAS) of the NWS National Operational Hydrologic 
Remote Sensing Center (NOHRSC) are being used to 
update the degree-day snow model (Carrol et al., 2001; 
Larson et al., 1995).  SNODAS is a modeling and data 
assimilation system developed to provide the best 
possible estimates of snow cover and other variables to 
support hydrologic modeling and analysis. 

In an early, comprehensive work on snow 
hydrology, the Corps of Engineers (1956) examined the 
data then available for energy budget snow modeling.  
However, sensitivity analyses were not performed.  
Analysis of the Snow Model Intercomparison Project 
(SnowMIP) results (Etchevers et al., 2002) showed that 
energy-budget snowmelt models can generate more 
accurate simulations of snow variables than conceptual 
models in certain cases.  However, energy-budget 
models are very sensitive to errors in the input forcing 
data.  More recently, Franz (2006) compared an energy 
budget model to the NWS operational conceptual model 
(Snow-17 discussed below).  She performed several 
sensitivity tests in order to compare the two models’ 
performance. 

The purpose of our current work is to evaluate the 
performance of an EBSM driven by meteorological input 
data with various uncertainty levels, and thus to 
recommend suitable meteorological forcing data to 
ensure reliable hydrological forecasting.  We perform 
more comprehensive sensitivity tests than Franz (2006) 
in an effort to help determine the optimal transition 
pathway from conceptual to advanced energy-budget 
snowmelt models for operational hydrologic forecasting.  

2. SNOW MODELING BACKGROUND 

The energy balance in a snow pack controls snow 
accumulation and melt processes. The total energy 
sources, Q, can be expressed as: 
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Q = S + L + H + LE +R + G                                (1) 

where S is the short wave radiation; L is the long wave 
radiation; H is the turbulent exchange of sensible heat 
with the atmosphere; LE is the turbulent exchange of 
latent heat with the atmosphere; R is the heat transfer 
by rain; and G is the conductive exchange of sensible 
heat with the ground.  The sensible heat, and the heat 
exchange with the ground are determined by the 
temperature gradients at the snow-air or snow-soil 
interface.  The latent heat is determined by the vapor 
pressure gradient at the snow-air interface, which is 
related to the surface humidity.  

In an energy budget model, surface incoming short 
and long wave radiation can be obtained directly from 
meteorological sources or calculated from bulk 
formulae.  Other components are calculated explicitly 
according to thermal or dynamic equations governing 
the corresponding processes.  In a temperature index 
conceptual model, parameters describing snow 
condition are determined based on empirically derived 
relationships between air temperature and snow 
processes from climate events.  Due to the empirical 
nature of the index model, extensive and unbiased 
calibration is typically necessary in order to get high 
quality snow modeling results.   

EBSMs hold out the promise of more accurate 
simulation of snow processes since they may better 
represent non-standard conditions outside the range for 
which conceptual snow models are calibrated.  
However, EBSM data requirements are much greater 
compared to index-based models.  

3. EXPERIMENT DESIGN 

We select four SNOwpack TELemetry (SNOTEL) 
sites within the Carson River watershed operated by the 
Natural Resources Conservation Service (NRCS) of the 
US Department of Agriculture for sensitivity tests.  The 
sites are Blue Lakes (38.60 N, 119.92 W, Elev. 
2438.4m), Ebbetts Pass (38.55N, 119.80W, Elev. 
2651.8m), Monitor Pass (38.67N, 119.61W, Elev. 
2545.1m), and Poison Flat (38.51N, 119.63W, Elev. 
2357.9m).  These sites are in a high elevation basin 
whose hydrology is dominated by snow accumulation 
and melt.  In situ hourly surface temperature and 
accumulated precipitation data are available.  Snow 
Water Equivalent (SWE) data is also available at a daily 
frequency.  These observed data are necessary to 
evaluate the meteorological forcing data obtained from 
other sources and also as a reference to evaluate the 
performance of energy-budget and index-based models.  

We select the NOAH EBSM by Koren et al. (1999) 
as an example to test energy budget snow model 
sensitivity to major energy forcing fields.  As a 
reference, a conceptual snowmelt model, SNOW-17 



(Anderson, 1973, 1976), is tested for sensitivity to 
temperature.  The NOAH EBSM and SNOW-17 are both 
operational models.  In our tests, they are driven by 
identical air temperature and precipitation data at the 
same location during the same time period.    Additional 
reasons for selecting these two models are provided in 
Section 3.1 

Considering the physical mechanisms and 
dominant factors during snow accumulation and ablation 
processes might be different, we conduct model 
sensitivity tests for the whole water year period and 
snowmelt season separately to separate the models’ 
sensitivity for these two periods.  The snowmelt season 
is defined as April 1st to August 31st.  

Bias and random errors are applied in the 
experiments for each meteorological element we 
consider.  SWE simulation is analyzed to show models’ 
relative sensitivity to different variables.  Model 
sensitivity factors are analyzed.  The results suggest 
snow model accuracy requirements for meteorological 
input fields to achieve reasonable snow simulations.  

3.1 Selected model features 

3.1.1 NOAH energy-budget snow model 

The NOAH EBSM used here (Koren, 1999) was 
tested in SnowMIP and is a version of the NOAH-Land 
Surface Model (NOAH-LSM) (Mitchell et al., 2002).  The 
NOAH-LSM is a component of the operational Eta 
numerical weather prediction model of the National 
Centers of Environmental Prediction (NCEP).  The 
model neglects heat transferred by the movement of 
meltwater in the snowpack.  However, snowpack 
properties such as density and thermal conductivity are 
adjusted depending on snow compaction.  To 
accommodate snow-soil surface interaction, the snow 
model is linked to a multilayer (four layers in this 
application) soil model.  The NOAH model does not 
include conceptual-type parameters and no (or very 
little) calibration is needed.  Input energy forcing fields 
including surface 2-m temperature, relative humidity, 
surface wind at 10 m, and surface downward short/long 
wave radiation are derived from meteorological sources.  
The output variables from the model include: snow 
depth, snow water equivalent, snow melt rate, liquid 
water content, bottom runoff, etc.  The NOAH EBSM 
has been enhanced since the version of Koren (1999).  
However, we believe that the enhancements would not 
lead to markedly different results than presented here.  

3.1.2. SNOW-17 model 

The SNOW-17 model (referred to as SN17 in this 
paper) is one of the models available in the NWS River 
Forecast System (NWSRFS).  SN17 is the baseline 
operational model to compute snow accumulation and 
melt.  The model is described in detail by Anderson 
(1973, 1976).  Near surface air temperature and 
precipitation are the only input data required by the 
model, while air temperature is the sole index for energy 
exchanges across the snow-air interface.  Simple 
assumptions are applied in the model to mimic the 

current meteorological conditions.  Some parameters 
needed in calculating forcing fields or representing the 
local geography factors are developed via calibration.  
While it is conceptual, the model represents well the 
most significant physical processes affecting snow 
accumulation and melt and is widely used.  The output 
variables of SNOW-17 can be snow depth, snow water 
equivalent, snow melt rate, etc.  

In this experiment, an uncalibrated SN17 is run at a 
1-hour time step using identical data as used with the  
NOAH EBSM.  For the purpose of our sensitivity 
analyses, it is not necessary to calibrate the SN17 
parameters to the SNOTEL site conditions.  As 
discussed later, we compare the models’ sensitivity 
using a statistic that is not based on SWE observations.  
The model control parameters are taken from the 
calibrated SN17 parameters at the Sleepers River 
(USA) in SnowMIP (Etchevers et al., 2002).  The 
Sleepers River site is located at 44.5°N, 72.17°W, in 
the state of Vermont, United States.  The elevation of 
the site is 552 m.  The Sleeper River parameters are 
suitable for this study in that they represent the open 
conditions at the SNOTEL sites and are within 
recommended ranges for SN17. 

3.2. Data Selection 

In the sensitivity tests, constructed data errors are 
added to each individual driving field.  We assume that 
the test results should not be constrained by specific 
input data sources since we are focusing on sensitivity 
to errors and not simulation accuracy.  Also, considering 
the ultimate purpose of this research is to assist 
operational river forecasting in NWS, we select 
geophysical and meteorological data from various 
sources considering real time availability, data quality 
and easy application.  The following is a list of all data 
sources used.  

3.2.1. Background geophysical data  

The background geographical data needed for the 
NOAH EBSM are: vegetation type, soil type, 
sand/quartz fraction, minimum stomatal resistance, 
surface roughness height, surface albedo, Leaf Area 
Index (LAI), Greeness FRACtion (GFRAC), etc. 

Most land surface parameters used for the NOAH 
EBSM in this research are from the North American 
Land Data Assimilation System (NLDAS) (Mitchell et al., 
2004).  However, greenness and shade factor 
parameters are significantly reduced considering the 
open SNOTEL measurement sites while NLDAS 
parameters suggested forested area.  Parameters used 
for the same EBSM in the SnowMIP (Etchevers et al., 
2002) are applied in this experiment. 

3.2.2.  Energy forcing data-- ground measurement 

At the four SNOTEL sites, measured hourly surface 
temperature and accumulated precipitation data are 
available since 1997.  Snow water equivalent is also 
available at a daily frequency.  These observed data are 
necessary to evaluate the meteorological forcing data 



obtained from other sources and also as a reference to 
evaluate the performance of the EBSM and SN17. 
These ground measurements are used as base fields 
for model sensitivity testing.  

3.2.3. Energy forcing data-- North American 
Regional Reanalysis (NARR)  

Another source of meteorological forcing data is the 
North American Regional Reanalysis (NARR) (Mesinger 
et al., 2004).  The data are available at high spatial and 
temporal resolution (32-km, 45-layer, 3-hourly) since 
1979.  The NARR data set is suitable for applications in 
this project since it is a long-term, consistent, 
assimilation-based, climate data suite for the North 
American domain.  It is evenly gridded and has high 
potential for operational availability.  NARR data takes 
advantage of the use of the regional Eta model including 
the many advances that have been made in the Eta 
regional modeling and data assimilation systems.  
Moreover, it is planned for the NARR to run in real time.  
As such, the NARR data is representative of data that is 
used operationally 

Surface downward long wave flux, surface air 
temperature, relative humidity at 2-meter height, and 
wind at 10-meter height are extracted from the NARR 
data sets and interpolated to SNOTEL stations.  Bilinear 
interpolation and elevation adjustment are performed for 
NARR temperature data.  Simple nearest neighbor 
method is used for surface downward long wave flux, 2-
meter relative humidity and 10-meter wind fields.  All 
data are linearly interpolated to 1-hour from the original 
3-hour time interval in the NARR data.   

3.2.4. Energy forcing data-- surface incoming short 
wave flux data  

The downward short wave flux in the experiment is 
taken from GEWEX [Global Energy and Water Cycle 
Experiment] Continental Scale International Project 
(GCIP) and GEWEX America Prediction Project (GAPP) 
Surface Radiation Budget (SRB) data.  The data have 
been reprocessed recently to improve performance over 
snow-covered areas and are available at 1/8 degree 
resolution (Pinker et al., 2003).  The operational version 
of the data are stored at and distributed by the 
University of Maryland, College Park. 

3.3. Sensitivity tests 

Temperature and precipitation measured at 
SNOTEL stations are used as base fields in model 
sensitivity tests.  For this study, we introduce a new 
statistic to judge the impact of input forcing errors.  We 
define the SWE simulation Sensitivity Factor (SF) as the 
ratio of a root mean square difference, RMSE, between 
SWE simulated using input data with and without 
introduced errors, over the standard deviation, STD, of 
measured SWE, to the root mean square error 
introduced to the input variable over the standard 
deviation of the input variable time series:  

( )
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INPUT
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3.3.1. Selection of meteorology fields for sensitivity 
test 

Temperature, surface incoming solar radiation and 
surface wind are the forcing fields of primary interest in 
this project.  SnowMIP results showed that EBSMs are 
sensitive to errors in these forcings as well as to 
precipitation  

Comparison of SWE simulations using extracted 
NARR precipitation and SNOTEL measurements (Lei et 
al., 2006) shows that, without appropriate topographic 
and elevation adjustment, precipitation data from NARR 
is too coarse to drive either conceptual or EBSMs. 
According to a comparison of NARR precipitation with 
SNOTEL in situ measurements in the same reference, 
the directly extracted NARR precipitation was 
significantly underestimated, so was the SWE 
simulation using NARR precipitation compared with 
SWE simulation using SNOTEL precipitation.  Special 
treatment for NARR precipitation data is necessary or 
other more reliable data sources need to be explored.  
For this reason, we decided to forego sensitivity tests on 
precipitation at this time although we recognize that 
precipitation is the dominant element controlling snow 
pack dynamics. 

 3.3.2. Data perturbations applied in sensitivity tests 

To separate the model response to bias and 
random errors in forcing fields, bias and random errors 
are applied separately to both EBSM and SN17 forcing 
data for the entire water year and snow melt periods at 
each SNOTEL site.  Values of bias and random errors 
as well as the number of error profiles were selected 
based on many years of experience with snow modeling 
in Russia and the United States.   

3.3.2.1 Bias  

Biased profiles used for model sensitivity tests are 
built by introducing bias with equal intervals to the 
reference profile, F0 using accepted procedures.  The 
calculation of the i-th biased profile could be described 
as: 

Fi
* = Fo + Emax – (i-1)*d,    i=1,2…,N                          (3) 

where Emax is a bias maximum value, d is a bias interval, 
and N is a number of profiles that equals 31 for short 
wave radiation and wind speed tests, and 7 for 
temperature tests.  Emax equals 150 W/m2, 3 m/s, and 
1.5o, and d equals 10 W/m2, 0.2 m/s, and 0.5o for short 
wave radiation, wind (both U and V), and temperature 
respectively.  

In the sensitivity tests for temperature, random 
errors with 1o STD were included in the bias profiles. 
This resulted in bias profiles having a Gaussian 
distribution with the selected bias and 1 degree of 
random error.  



3.3.2.2.   Random error  

Random errors are constructed according to a 
Gaussian distribution, G(0,sigm2), for the i-th profile of 
the selected energy forcing field as:  

Fi
* =  F0 + G{0,sigmi

2 =0.02i*STD2(F0)},             

 i=1,…,50                                                           (4) 

In total, 7 bias profiles and 50 random perturbation 
profiles are applied for temperature sensitivity tests.  31 
bias profiles and 50 random perturbation profiles are 
applied for sensitivity tests on surface incoming short 
wave radiation and surface wind.   

3.4. Experiment design, step by step 

The experiment is conducted in the following order: 

1) Run the NOAH EBSM and SN17 at 4 SNOTEL 
stations using in situ measurements of temperature 
and precipitation.  The SWE simulation was 
evaluated against SWE ground measurements. 
NOAH EBSM background geographical parameters 
are tested and adjusted based on extracted values 
from NLDAS to match local site land cover. 

2) In the second stage, model sensitivity tests of both 
the NOAH EBSM and SN17 on temperature are 
conducted. 7 temperature profiles with bias and 50 
profiles with Gaussian distributed random errors are 
applied to both models for the entire water year and 
the snowmelt periods at each site.  The model 
sensitivity factors are analyzed for each scenario.  

3) Sensitivity tests of the NOAH EBSM to surface 
short wave radiation and surface wind are 
conducted in the third stage of the experiment. 31 
bias profiles and 50 random perturbation profiles 
are applied for tests on each field. 

4) Sensitivity of the NOAH EBSM on surface 
maximum albedo is also checked.  The reference 
value of the snow surface maximum albedo is set to 
0.8.  7 other maximum albedo values from 0.6 to 
0.9 are defined in the sensitivity tests. 

4. RESULTS AND DISCUSSION 

4.1 NOAH EBSM background geophysical 
parameters setting 

Prior to model sensitivity tests, background 
geophysical parameters for the NOAH EBSM are 
evaluated and determined through model SWE 
simulation tests at SNOTEL stations.  

Figure 1 shows simulated and measured snow 
water equivalent (SWE) at the Blue Lakes site for the 
1998-1999 water year.  Directly extracted NLDAS 
geophysical parameters and manual adjusted values 
are applied.  It can be seen that NLDAS-based model 
parameters lead to significant underestimation of SWE. 
The discrepancy could be expected since the NLDAS 
grid resolution (1/8 degree) is too coarse to represent 
local physical properties, specifically land cover in 
mountain areas.  In the experiment, the NLDAS-based 

Fraction of Photosynthetically Active Radiation (FPAR) 
and Leaf Area Index (LAI) parameters are too high to 
represent this open site.  Reasonable simulations of 
SWE are obtained after significant reduction of these 
parameters during the snow accumulation/ablation 
period.  The adjusted parameters are applied to all 
further tests.   

4.2 Model sensitivity to temperature 

Here we use SNOTEL in situ temperature 
measurements as the reference data in the model 
sensitivity tests. 

Simulation results at selected levels of random 
perturbations for the entire water year and snow melt 
season are shown in Figure 2.  Upper panels, a(1) and 
b(1) of Figure 2 are plots of SWE ensembles from the 
NOAH EBSM and SN17 respectively for the 1999 water 
year.  The two plots in the lower panels of Figure 2, a(2) 
and b(2) show NOAH EBSM and SN17 SWE simulation 
for the melt season only.  In the melt season simulation, 
temperature perturbations are introduced from the 
beginning of the melt season, which is April 1, to the 
end of the melt season, which is August 31.  Before 
April 1, reference temperature is applied for all profiles 
in the simulations.  It can also be seen that at the same 
levels of random perturbation, SWE simulations by the 
NOAH EBSM exhibit greater spread than SN17, which 
indicates that the NOAH EBSM is more sensitive to 
temperature errors especially in case of the whole year 
tests.  

Sensitivity factor analyses are shown in Figure 3. 
The x-axis of the plots represents the relative mean 
square error introduced to temperature profile 
normalized by standard derivation of temperature 
measurements at all 4 SNOTEL stations.  The y-axis 
represents the relative root mean square difference 
between SWE simulated using input data with and 
without introduced errors normalized by the standard 
deviation of SWE measurements at all 4 stations.  The 
two plots at the upper panel, a(1) and b(1), are 
sensitivity factors for the whole year simulations; lower 
panels, a(2) and b(2) are similar plots for melt season 
simulations.  

Figure 4 and Figure 5 are sensitivity test results for 
bias errors in temperature.  Again, upper panel plots, 
a(1) and b(1) show results of the whole year simulations 
and lower panel plots, a(2) and b(2), show results for 
the melt season simulations only.  

Analysis of the simulation results suggests that: 1) 
both the NOAH EBSM and SN17 are more sensitive to 
temperature errors during the accumulation season than 
melt season; 2) both models are more sensitive to bias 
than random errors; 3) except for the SWE simulation in 
melt season for temperature bias, the NOAH EBSM is 
more sensitive to temperature errors than SN17 in all 
three other scenarios; 4) simulating SWE starting from 
maximum accumulation (melt period) would greatly 
reduce simulation errors; 5) for the whole season 
simulations at four SNOTEL stations, the maximum 
sensitivity factor can be as large as 6.5 for temperature 



bias and 2.7 for random errors, while for the melt period, 
the corresponding numbers are 2.05 and 0.8.  

4.3 Model sensitivity to surface short wave flux 

Here we use incoming short wave flux data from 
the GEWEX GCIP and GAPP Surface Radiation Budget 
(SRB) projects as the base reference data.  

Figures 6 and 7 are sensitivity test results for bias 
and random perturbations in short wave flux.  Similar to 
the sensitivity tests analysis on temperature 
perturbation, we can observe that: (1) the NOAH EBSM 
sensitivity to incoming short wave flux bias varies 
greatly by station; 2) for the bias error case, there are 
nearly linear relationships between the relative SWE 
RMSE and the relative incoming short wave flux RMSE; 
3) the NOAH EBSM is much less sensitive to random 
errors than bias: the maximum sensitivity factor is about 
2 for bias, and less than 0.32 for random errors. 

4.4. Model sensitivity to surface wind 

Surface wind extracted from NARR is the reference 
data for the NOAH EBSM sensitivity tests on wind.  

As shown in Figures 8 and 9, test results indicate 
that: 1) unlike other input variables, NOAH EBSM 
sensitivity to the surface wind error is less dependent on  
the selected period (the whole season vs. melt period) 
or error type (bias vs. random); 2) the sensitivity factor 
for random error in wind varies from site to site; 3) unlike 
with temperature and short wave flux test results, a 
‘non-sensitive’ zone exists for tests on wind before 
simulation RMSE starts to increase with input error. The 
sensitivity factor increases dramatically after wind error 
reaches the threshold.  

 

4.5. Model sensitivity to snow surface maximum 
albedo 

The snow surface maximum albedo values in the 
range of 0.6-0.9, with increment of 0.05, are applied to 
test model sensitivity.   

Test results shown in Figure 10 suggest that: 1) 
surface maximum snow albedo has a great influence on 
the simulation of SWE by the EBSM; 2) maximum 
albedo has much greater effect in the snow melt season 
compared to the accumulation season. 
 

5. SUMMARY 

The statistics of the NOAH EBSM and SN17 
sensitivity tests summarized in Table 1 suggest several 
conclusions.  First, the energy-budget snow model is 
highly sensitive to meteorological forcing data. 
Compared to SN17, the NOAH EBSM is more sensitive 
to temperature perturbations.  Among tested input data, 
the NOAH EBSM sensitivities are ranked as follows: 
bias in temperature (maximum sensitivity factor = 6.5), 
solar radiation (sensitivity factor = 2), and wind 
(sensitivity factor = 0.69).  For random errors, the 
corresponding numbers are 2.7 for temperature, 0.32 for 
short wave,   and 0.5 for wind.  

It is critical to have unbiased input data, e.g., a 
temperature bias of 1 degree can lead to 276 mm error 
in SWE, while random errors with 1 degree STD will 
result in two times less SWE error. 

Starting simulations from known ‘true’ maximum 
accumulation values improves model performance in 
the melt period.  

Based on our sensitivity analyses at these sites, we 
believe that better estimates of wind, temperature, and 
solar radiation are needed to run an energy budget 
snow model for operational river forecasting.   We 
believe that our analysis framework can be used as an 
initial attempt to define data requirements for EBSM 
forcing data.  For example, suppose we want to achieve 
a value of the Nash-Sutcliffe Efficiency statistic (Nash 
and Sutcliffe, 1970) greater than 0.5 for simulated SWE.  
For this accuracy we would need input data whose 
errors do not exceed 10% of the variability for 
temperature, 20-30% for short wave radiation, and 
100% for wind speed.  Of course, similar studies must 
be performed in other geographical regions to achieve a 
comprehensive view of data quality requirements.  

The actual sensitivity factors might slightly vary 
from one EBSM model to another.  But considering the 
test results for both models, it appears that there is fairly 
good agreement on the snow models' sensitivity to 
temperature.  The maximum sensitivity factors for the 
EBSM and SN17 are (6.5, 5), (2.7, 2.5), (1.95, 2.05) and 
(0.8, 0.6), respectively for all experiment 
scenarios.  Based on our experience, we believe It is 
reasonable to expect that other EBSMs would have 
similar sensitivity trends.  

                                                                                                    
 

 

 

 

 

 

 

 



Model Perturbed 
input field Test setting 

Maximum 
SWE 
sensitivity 
factor 

Maximum error 
in input data 

Perturbed 
field reference 
STD 

Bias 5 ±1.5K 8.64K Whole 
year Random 2.5 4.32K 8.64K 

Bias 2.05 ±1.5K 8.31K 

 

SN17 

 

 

 

 

Temperature 

 
Melt 
season Random 0.6 8.64K 8.31K 

Bias 6.5 ±1.5K 8.64K Whole 
year Random 2.7 4.32K 8.64K 

Bias 1.95 ±1.5K 8.31K 

Temperature 

 Melt 
season Random 0.8 8.64K 8.31K 

Bias 1.9 ±150W/m2 291W/m2 Whole 
year Random 0.32 291W/m2 291W/m2 

Bias 2 ±150W/m2 299W/m2 
Short wave 

Melt 
season Random 0.25 291W/m2 299W/m2 

Bias 0.69 ±4.24m/s 2.33m/s Whole 
year Random 0.50 4.66m/s 2.33m/s 

Bias 0.50 ±4.24m/s 1.95m/s 

EBSM 

Wind 
Melt 
season  Random 0.50 4.66m/s 1.95m/s 

• For whole year simulation, SWE STD is 0.387m; for melt period, the No. is 0.407m. 

Table 1.  Statistics of the NOAH EBSM and SNOW-17 sensitivity tests 

6.   FURTHER STUDY  

Energy-budget snow modeling is a very important 
direction in the hydrologic research community.  
Fundamental and comprehensive studies on model 
sensitivity tests are the basis of answers to many 
scientific questions; some of them are directly related to 
how the research efforts should be used to improve 
operational forecasts given current meteorological data 
acquisition techniques.  The following research steps 
should be addressed in future studies. 

1) Perform sensitivity tests of the main process 
components of the EBSM to input data errors. 
Sensitivity tests show that the EBSM is very sensitive to 
meteorological forcing fields.  But each meteorological 
field may affect several energy components in a snow 
model.  Evaluation of the overall sensitivity of an EBSM 
to a single forcing field is not enough to understand the 
response of each energy element in detail.  For 
example, temperature is related to many energy 
components in a snow pack.  The evaporation rate, 
heat transfer between soil and snow, air and snow, and 
even the net long wave radiation depend on 
temperature.  The relative sensitivities of these energy 
components are also very important for understanding 
of the overall sensitivity to temperature. 

Sensitivity tests of the main energy components of 
EBSM to input data errors will help determine the 
relative sensitivity of each energy component to input 
data uncertainty.  At the same time, this kind of test will 
help check the parameterizations of major physical 
processes in snow packs and identify the areas of most 
possible improvement of snow modeling based on 
availability of meteorology fields; 

2) Evaluate the model sensitivity to precipitation 
during the snow melt period.  Since simulation beginning 
at a known ‘true’ maximum accumulation improves 
model performance in the melt period, it might be a more 
applicable start point for operational application of 
EBSMs given current model and data availability.  

3)  Extend sensitivity analysis to a number of typical 
regions over the USA to understand the effect of climate 
on model performance. 

4)  Expand experiments to distributed snow models 
at basin scales;  

5) A unique state in the snow accumulation/ablation 
processes is the snow melt starting point. In other words, 
there is an energy threshold for a snow pack when snow 
begins to melt. Each and every individual energy 
element interacts with others to achieve this critical melt 
threshold.  Once the total energy in the snow pack 
approaches this point, the sensitivity of a model to each 



input field will increase rapidly.  Detailed investigation is 
needed on this issue.  
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Figure 1.  SWE simulated by EBSM using in situ measurements. SNOTEL temperature and precipitation data are 
used.  FPAR/LAI parameters are from NLDAS and/or manual adjustments. 
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Figure 2.  NOAH EBSM and SN17 model simulations with various temperature random errors.  The left column 
shows simulations by NOAH EBSM, the right column shows results from SN17; the upper two rows are simulations 
for the entire water year (1999) and the lower two rows show results for melt season only (April 1 to August 31, 
1999).  
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Figure 3.  NOAH EBSM and SN17 model sensitivity factor on temperature random error.  The left column is for 
simulations by NOAH EBSM, the right column shows results from SN17; the upper two plots are for simulations for 
the entire water year (1999) and the lower two plots show results for melt season only (April 1 to August 31, 1999).  
Sites are in different colors.  
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Figure 4.  NOAH EBSM and SN17 model simulations with temperature bias (with 1K random error).  The left column 
shows simulations by NOAH EBSM, the right column shows results from SN17; the upper two plots are simulations 
for the entire water year (1999) and the lower two plots show results for melt season only (April 1 to August 31, 
1999).  
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Figure 5.  NOAH EBSM and SN17 model sensitivity factors on temperature bias (with 1K random error). Pink line is 
for negative bias, blue line is for positive bias. The left column is for simulations by NOAH EBSM, the right column 
shows results from SN17; the upper two plots are simulations for the entire water year (1999) and the lower two plots 
show results for melt season only (April 1 to August 31, 1999).  
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Figure 6.  NOAH EBSM model simulations with short wave bias and random error. The left column shows simulations 
with short wave bias, the right column shows results with random errors; the upper two plots are simulations for the 
entire water year (1999) and the lower two plots show results for melt season only (April 1 to August 31, 1999).  
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Figure 7. NOAH EBSM model sensitivity factors on short wave bias and random error.  Sites are in different colors. 
The left column is for simulations with short wave bias, the right column shows results with random errors; the upper 
two plots are simulations for the entire water year (1999) and the lower two plots show results for melt season only 
(April 1 to August 31, 1999).  
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Figure 8.  NOAH EBSM model simulations with surface wind bias and random error.  The left column shows 
simulations with wind bias, the right column shows results with random errors; the upper two plots are simulations for 
the entire water year (1999) and the lower two plots show results for melt season only (April 1 to August 31,  
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Fig. 9 NOAH EBSM model sensitivity factors on surface wind bias and random error. The left column is for 
simulations with wind bias (pink line is for negative bias, blue line is for positive bias); the right column shows results 
with random errors (sites are in different colors); the upper two plots are simulations for the entire water year (1999) 
and the lower two plots show results for melt season only (April 1 to August 31,1999).  
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Fig. 9, NOAH Energy-budget snow model sensitivity test on Maximum snow albedo 
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Figure 10.  NOAH EBSM model simulations with various maximum snow albedo values.  The upper two plots are 
simulations for the entire water year (1999) and the lower two plots show results for melt season only (April 1 to 
August 31, 1999).  
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