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1. INTRODUCTION 
 
This study demonstrates the value of inferring statistics 
of meteorological and climatological time series by using 
computer intensive subsampling method, which allows 
one to avoid time series analysis anchored in parametric 
linear models with imposed perceived physical 
assumptions.   
 As motivating examples, consider time series of 
Palmer Drought Index (PDI) for Arizona, Division 6 from 
NCDC (Figure 1), and of the vertical velocity of wind (W) 
recorded under Project LESS (Lake-Effect Snow 
Studies) in the winter of 1983-84 (Figure 2).   
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Fig.1.  Palmer Drought Index (PDI) for years 1904-2006.  
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Fig. 2.  Record of vertical velocity (W) measurements 
during Project LESS (see Gluhovsky and Agee 1994).  
N is the number of data points collected at a frequency 
of 20 data points per second. 
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Figure 2 shows a segment of 4096 data points 
(corresponding to about 14.3 km) from the record of W 
taken at 50 m above Lake Michigan with 170 ms−  flight 
speed and 20 Hz sampling rate.  Both time series have 
large sample skewness (0.92 and 0.84, respectively) 
indicating possible nonlinearity.  In statistics, confidence 
intervals (CIs) are used to decide how much importance 
is reasonable to attach to such numbers, our “best 
guesses”, that by themselves are not guaranteed to be 
close to the real time series parameter (e.g., skewness).  
For example, positive skewness of the time series 
(implying that it is not normal) would be reasonably 
confirmed CIs for the skewness containing only positive 
numbers.   
 Since the data generating mechanism is usually 
unknown, the common practice is to assume a linear 
parametric model for it (thus assuming a normal time 
series), then estimate the model from the observed 
record, and compute CIs for parameters of the 
underlying time series based on the estimated model.  
Using Monte Carlo simulations with a model nonlinear 
time series, we demonstrate below that nonlinearities in 
the real data generating mechanism may render useless 
the inference (90% CIs for the variance of the time 
series) based on estimated linear parametric models, 
while modern computer intensive subsampling method 
(Politis et al. 1999) permit obtaining reliable inference 
(CIs for the variance and skewness in this study) without 
making questionable assumptions about the data 
generating mechanism.  
 A 90% CI is the range of numbers containing an 
unknown parameter with coverage probability 0.90.  
This implies that if instead of one time series record 
commonly available in practice, an enormous number of 
such records of equal lengths is obtainable, and from 
each record a CI is computed, then 90% of the resulting 
CIs will contain the parameter.  Such coverage 
probability (often referred to as nominal or target 
coverage probability, e.g., Davison and Hinkley 1997) is 
attained only if all assumptions underlying the method 
for the CI construction are met.  This is typically not the 
case in geosciences, so that the actual coverage 
probability may differ (sometimes considerably) from the 
target level.  Intervals with confidence levels other than 
90% (e.g., 95% or 99%) are often used in various 
applications (the higher confidence level the wider the 
interval).   
 



 
 

2. CONFIDENCE INTERVALS FOR VARIANCE: 
 ESTIMATED LINEAR MODELS VS. SUBSAMPLING 
 
To get an idea of how much in error one can possibly be 
when computing CIs for parameters of observed time 
series from estimated linear models, we subjected this 
commonly accepted procedure to Monte Carlo 
simulations with a model time series.  Monte Carlo 
simulations permit finding the actual coverage 
probability of such CI by using its probabilistic 
interpretation given above.   
 They also point toward a viable alternative, the 
computer-intensive subsampling method (Politis et al. 
1999).  In subsampling, independent realizations from a 
Monte Carlo simulation are replaced by blocks of 
consecutive observations from a single available record.  
All blocks are of the same length (the block size) 
sufficient to retain the dependence structure of the time 
series.  One block of size b  is underscored in the 
record below containing  observations of time series 

 (and, therefore,  blocks): 
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 Commonly a linear model, an autoregressive 
moving average (ARMA) model, is fitted to the available 
record, and CIs are computed from the estimated 
model.  Assume that the data are generated by the 
simplest such model, a first order autoregressive 
process (AR(1)), 
 

 1 ,t tX Xφ ε−= +  (1) 
 
where 0 1φ< <  is a constant and tε  is white noise (a 

sequence of uncorrelated random variables with zero 
mean and variance 2

εσ ).  AR(1) is widely used in the 

studies of climate as a default model for correlated time 
series (e.g., Katz and Skaggs 1981, von Storch and 
Zwiers 1999, Percival et al. 2004). 
 If the data generating mechanism is known to be 
model (1), then a 90% CIs for the variance of tX  is 

given by  
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where sample variance 2ˆ Xσ , an estimate of the “true” 

variance of tX , 2 2 2/(1 )X εσ σ φ= − , is computed from 

data.  When 2
Xσ  in Eq. (2) is unknown (which is usually 

the case), it must be estimated from data (commonly 

unknown parameters, φ  and 2
εσ , are estimated).      

Eq. (2) follows from the fact that 2ˆ Xσ  is asymptotically 

normal with mean 2
Xσ  and standard error 
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 (e.g., Priestly 1981, Brockwell and 

Davis 1991).  For brevity the CI defined by Eq. (2) will 
be denoted as CI (2).  
 

 Our Monte Carlo simulations were conducted by 
generating 1000 records of a model nonlinear time 
series, fitting to each record a linear model, and 
computing from this model the 90% CI for the variance 
of the data generating time series.  Finally, from the 
resulting set of 1000 CIs, the actual coverage probability 
was determined as the fraction of those among them 
that contain the “true” variance (known from the data 
generating model employed in the experiment). 
 

 First, realizations of length  were 
generated from model (1) with 

1024n =
.67φ =  and Gaussian 

white noise with zero mean and variance 
 (which makes ).  At the 

chosen value of 

2 21 0.55εσ φ= − ≈ 2 1Xσ =

φ , about 1000 data points from model 

(1) (and of model (3) below) allow the same accuracy in 
the estimation of variance as 400 independent normal 
observations (see, e.g., Priestly 1981).  In practice, 
when only one record is available, determination of the 
optimal block size in subsampling (see below) requires 
the record length to be a power of 2 ( ). 101024 2=
 Pretending that, as in reality, the data generating 
mechanism is unknown, an AR(1) model was fitted to 
each such realization and the goodness of fit of the 
model was confirmed by commonly employed 
diagnostic checking procedures (residual analysis, 
portmanteau test; see, e.g., Brockwell and Davis 1991).  
Not surprisingly, the coverage probability of CI (2) in this 
case was about its nominal value, 0.90, since the data 
generating time series was AR(1).   
 

 Next, model (1) was altered with a nonlinear 
component, so that the data were generated from the 
model considered earlier by Lenschow et al. (1994), 
 
 2(t t tY X a X 1)= + − , (3) 
 
where tX  is the same as in Eq. (1) and  is a constant 
(

a
0a =  corresponds to model (1)).  Linear models may 

match the first two moments (mean and variance) of 
observed time series, but they have zero skewness, 
while a nonlinear model may be capable of matching all 
three moments.  Note that at , the mean, 0.14a =



variance, and skewness of  are, respectively, , 

, and , i.e., 

close to corresponding sample characteristics (0.04, 
1.11, and 0.84 of time series W discussed in the 
introduction.  Thus  might provide a better description 

for W than linear models.  

tY 0
21 2 1.04a+ ≈ 3 2 3/ 2(6 8 ) /(1 2 ) 0.83a a a+ + ≈

tY

 Monte Carlo simulations were now repeated with 
time series generated from nonlinear model (3) for 
various values of a  (0.05, 0.1, 0.15, 0.20, 0.25, 0.30). In 
each case, 1000 realizations of time series (3) were 
generated, and again, an AR(1) model was fitted to 
each realization and passed, as before, the common 
residual-based postfitting diagnostic checking.  
 For nonlinear data, however, the actual coverage of 
CI (2), shown in Figure 3 by the solid curve, turns out to 
be considerably less than nominal (0.90).  This means 
that CI (2) now becomes too narrow to provide the 
desired 0.90 coverage (and for  misleading).  
We found that the widths of CIs (2) remain the same 
(around .22) for all values of , while CIs that do 
provide the desired 0.90 coverage should be 1.5 
( ) and 2.1 ( ) times wider. 
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Fig. 3.  Coverage probabilities (CP) of 90% CIs for the 
variance of time series (3) at various values of 
nonlinearity constant .  Solid curve corresponds to 
those based on estimated linear model, dashed curve – 
to subsampling CIs.  Horizontal solid line shows 0.90 
coverage.  All CIs were computed from realizations of 
length . 

a

1024n =
 
 In contrast, when CIs (2) were replaced (in Monte 
Carlo simulations with the nonlinear model) by 
subsampling (symmetric percentile) CIs, these were 
expanding with increasing a , so that their coverage 
(dashed curve in Figure 3) remained close to the target.  
 

 It turns out that the actual coverage probability of 
subsampling CIs depends considerably on the block 
size b.  In fact, the optimal choice of the block size is the 
most difficult practical problem in subsampling shared 
by all blocking methods.  In this study, subsampling CIs 

were computed based on the optimal block size ( 80b =  
when 1024n = ) determined through Monte Carlo 
simulations with model 3.  In practice, when typically 
only one record of a time series is available, the optimal 
block size can be determined using a technique 
suggested by Gluhovsky et al. (2005), which is based 
on a version of the circular bootstrap (Politis and 
Romano 1992). 
 
 
3. SUBSAMPLING CONFIDENCE INTERVALS FOR 

SKEWNESS 
 
Figure 4 shows coverage probabilities of 90% 
subsampling CIs for the skewness of time series (3) 
obtained through Monte Carlo simulations analogous to 
those for the variance.   
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Fig. 4.  Coverage probabilities (CP) of 90% subsampling 
CIs for the skewness of time series (3) at various values 
of nonlinearity constant .  Long-dashed curve 
corresponds to CIs computed from realizations of length 

a

1024n = , short-dashed curve – same at 4096n = . 
Solid curve corresponds to to calibrated CIs at 

1024n = .  Horizontal solid line shows 0.90 coverage. 
 
 CIs based computed from realizations of length 

1024n =  have noticeably lower coverage than their 
counterparts in Figure 3 (both marked by long-dashed 
curves).  One way to improve the coverage is to 
increase the record length.  Short-dashed curve in 
Figure 4 shows a better coverage due to longer records 
of 4096n = .  When this is not feasible, one may use 
calibration, i.e., instead of the nominal 90% CIs 
providing the actual coverage of 0.83 at  and 0.74 
at 

0a =
0.3a = , employ, say, the nominal 95% CIs providing 

the actual coverage noticeably closer to the target (0.88 
at 0a = , 0.79 at 0.3a = ), as shown by the solid curve 
in Figure 4.  In practice, calibration can be carried out 
using a model time series that shares certain statistical 
properties with the one under study (e.g., model (3) with 

0.14a =  for the vertical velocity time series W ). 



4. SUMMARY AND CONCLUSION 
 
 This study has addressed the problem of obtaining 
reliable statistical inference from atmospheric and 
climatic time series.  Two motivating examples that 
signify the need to depart from ubiquitous linear models 
were chosen, one climatological (Palmer Drought Index, 
PDI) and one meteorological (vertical velocity, W), 
whose nonzero sample skewnesses (0.92 and 0.84, 
respectively) indicate possible nonlinearity.  In practice, 
a linear parametric model is commonly assumed for the 
time series under study (often a questionable 
assumption), then the model is estimated from the time 
series record, and CIs for parameters of the time series 
are computed based on the estimated linear model. 
 To investigate how nonlinearities may affect 
statistical inference based on linear models, an AR(1) 
(first order autoregressive) process, typically used as a 
default model for a correlated time series in climate 
studies, was altered with a nonlinear component.  It was 
demonstrated that when a time series is nonlinear 
(which is often the case since they originate from an 
inherently nonlinear system), the CIs for its variance 
obtained from the estimated linear model are inferior 
and can become misleading, while those obtained 
through the subsampling method are valid for both the 
linear and nonlinear time series.   
 Linear models are characterized by zero skewness.  
We have demonstrated that subsampling can be used 
to estimate the skewness of nonlinear time series, 
although CIs for the skewness may require considerably 
longer records than for the variance.  Meteorological 
observations are more likely to have adequate record 
lengths for nonparametric inference, while many 
climatological time series (such as the global annual 
mean surface temperature with only about 140 data 
points) are often too short (even for choosing the best 
linear model for the observed time series as shown by 
Percival et al. (2004)).  On the other hand, General 
Circulation Models (GCMs), for example, can provide 
data volumes that are sufficiently large for reliable 
inference, which can be obtained using resampling 
methods.   
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