
2B.9  An Assessment of US Climate Variability using the Climate Extremes Index 
 
 

Bryan A. Burkholder* and David J. Karoly 
School of Meteorology, University of Oklahoma, Norman OK

 
 
1. INTRODUCTION 
 
Recent studies have shown evidence of an increase in 
global temperatures due to anthropogenic greenhouse 
gas forcing over the past century (Houghton et al. 
2001).  Such a change in global average temperatures 
could also lead to a larger proportion of rainfall derived 
from intense precipitation events, even though trends in 
globally averaged precipitation have been uncertain 
(Trenberth et al. 2003).  Changes in the extremes of 
climate variations are likely to have larger societal 
impacts than changes in the mean climate.  These 
impacts will be felt on regional scales, so it is prudent to 
investigate the effects of climate change on sub-global 
scales.  The signal of temperature and precipitation 
trends on continental scales is still difficult to detect and 
hidden by variability from transient climate patterns, 
Some studies using climate indices have shown robust 
climate change signals at sub-global scales (IDAG 
2005). This study focuses on the detection and 
attribution of an anthropogenic signal of the change in 
climate extremes over the contiguous United States 
using one such climate index. 
 
The Climate Extremes Index (CEI) was designed to 
monitor the changes of occurrences of extreme climate 
events across the United States using an aggregate of 
conventional climate extreme indicators (Karl et. al. 
1996).  The original definition of the index was given as 
the arithmetic average of the following indicators: 
1) The sum of the percentage of the United States with 

maximum temperatures much below normal (below 
the 10th percentile) and the percentage of the United 
States with maximum temperatures much above 
normal (above the 10th percentile). 

2) The sum of the percentage of the United States with 
minimum temperatures much below normal and the 
percentage of the United States with minimum 
temperatures much above normal. 

3) The sum of the percentage of the United States in 
severe drought (equivalent to the lowest tenth 
percentile) based on Palmer Drought Severity Index 
(PDSI) and the percentage of the United States with 
severe moisture surplus (equivalent to the highest 
tenth percentile) based on the PDSI. 

4) Twice the value of the percentage of the United 
States with a much greater than normal proportion of 
precipitation derived from extreme (more than 2 
inches or 50.8 millimeters) one-day precipitation 
events. 
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5) The sum of the percentage of the United States 
with a much greater than normal number of days with 
precipitation and the percentage of the United States 
with a much greater than normal number of days 
without precipitation. 
 

Each step of the index has an expected value of twenty 
percent, and so the total index has an expected value of 
about twenty percent.  Each step can be considered its 
own climate index, as well as can the combined index.  
Essentially, the first two steps monitor temperature 
extremes, the fourth step monitors intense precipitation 
trends, and the third and fifth steps monitor average 
precipitation and/or precipitation anomalies. 
 
The advantage of using an index like the CEI is that the 
raw values of the parameters considered are removed, 
since one is only concerned with the change of the 
relative frequency of that parameter.  By using 
percentiles of any given location to calculate the index, 
this removes the spatial dependency of variability within 
the parameter considered.  An observed change locally 
can be attributed to either a change in the mean, a 
change in the variability, or both (Meehl et al. 2000).  
The use of the index also tends to increase the signal-
to-noise ratio, leading to the possibility of more robust 
results. 
 
2. DATA AND METHODOLOGY 
 
A number of problems can arise from the definitions as 
originally proposed.  The definition for the fourth step 
has been changed operationally at the National Climatic 
Data Center to a definition that does not rely upon the 
threshold for two inches of daily rainfall.  An upper tenth 
percentile threshold has been implemented for this step 
to allow for spatial variations in the frequency 
distributions of daily rainfall (Gleason et. al 2006).  For 
the original definition of the CEI, a long-term increase in 
the mean of a variable would result in a decrease in the 
values much below normal and an increase in the 
values much above normal, leading to a U-shaped 
curve for the long-term variations.  Figure 1 shows the 
problem arising by summing the upper and lower tenth 
percentile areas of the United States; it is not clear 
which tail of the distribution is contributing more to the 
index for different periods in the record.  If one is to 
introduce a definition of the CEI by using differences of 
the areas of the United States with values outside the 
tenth and ninetieth percentiles, then a physical trend 
may become more easily understood.  The proposed 
definition of a modified Climate Extremes Index (mCEI) 
used herein is the arithmetic average of the following 
indicators: 



1) The difference of the percentage of the United States 
with maximum temperatures much below normal from 
the percentage of the United States with maximum 
temperatures much above normal. 

2) The difference of the percentage of the United States 
with minimum temperatures much below normal from 
the percentage of the United States with minimum 
temperatures much above normal. 

3) The difference of the percentage of the United States 
with severe drought based on PDSI from the 
percentage of the United States in severe moisture 
surplus based on the PDSI. 

4) Twice the value of the percentage of the United 
States with a much greater than normal proportion of 
precipitation derived from extreme (above the 
ninetieth percentile) one-day precipitation events. 

5) The difference of the percentage of the United States 
with a much greater than normal number of days 
without precipitation from the percentage of the 
United States with a much greater than normal 
number of days with precipitation. 
 

The expected value of the mCEI is four percent, since 
all steps except the fourth step have a new expected 
value of zero.  A long-term increase in the mean would 
result in an increasing trend in the mCEI. As shown in 
Figure 1, the contrast between the long-term variations 
of the CEI and the mCEI shows contributions mainly 
from much below normal extremes early in the century 
and mainly from much above normal extremes later in 
the century.  Such a change in the index considered is 
mostly due to a change in the mean of the distribution 
considered, though a change in the variability is not out 
of the realm of possibilities. 
 
The observational mCEI is calculated using the United 
States Historical Climatology Network (USHCN) (Karl et 
al. 1990) monthly surface data for the temperature 
steps, TD3200 and TD3206 daily precipitation data for 
the precipitation steps, and TD-9640 (Karl 1986) 
divisional PDSI values.  A ninety percent completeness  
 

 
Figure 1. Observed values of Step 2 of the CEI’s  
summation definition (solid) and mCEI’s difference 
definition(dashed) 

of record criterion was instituted with the temperature 
and precipitation data to remove any biases of 
increasing number of observations over the twentieth 
century.  The year 1910 was used as a starting point 
because of the small number of stations that have 
records that go back earlier than 1910; which would 
affect the ninety percent completeness criterion across 
the time period interested.  The data was then area-
averaged onto a 1º x 1º grid.  Other grid resolutions 
were experimented with, but did not significantly affect 
the values of the index. 

To attribute the trends in the index, a suite of coupled 
ocean-atmosphere global climate model data from the 
Program for Climate Model Diagnosis (PCMDI), which 
have been used in the Intergovernmental Panel on 
Climate Change’s Fourth Assessment, are employed.  
The models were required to have relatively long pre-
industrial control runs with no changes in external 
forcing parameters and to have daily precipitation, 
monthly mean surface temperature, and soil moisture 
data to be able to ascertain the variability of the pre-
industrial climate.  The models also had to have at least 
ninety years of a twentieth century run to compare to the 
observational record.  It was also preferable to have as 
many ensemble members of each run as possible.  The 
models that met these criterion were the National 
Center for Atmospheric Research Community Climate 
System Model (CCSM3.0) (Collins et al. 2006) and 
Parallel Climate Model (PCM) (Meehl et. al. 2004), 
Canadian Centre for Climate Modelling and Analysis 
Coupled Global Climate Model (CGCM3.1) T47 and T63 
(similar to AGCM2 (McFarlane et al. 1992)), and 
Geophysical Fluid Dynamics Laboratory Climate Model 
2.0 and 2.1 (Delworth et al. 2006).  The models have 
variable horizontal resolutions from 1.5º to 3.75º.  For 
the twentieth century runs, the models included time-
dependent variations of greenhouse gas, anthropogenic 
aerosol and volcanic radiative forcings.  Since the data 
is already provided from the models in gridded form, the 
mCEI can be calculated directly from the model output.  
However, since the mCEI is dependent upon the length 
of record used in the averages for each location, the 
length of the period taken in the model must be similar 
to the length available in observations. 

A statistical analysis can be performed on the twentieth 
century model and observational data compared to the 
pre-industrial control runs to interpret the effect of 
increasing concentrations of greenhouse gasses over 
the twentieth century.  The control runs must also be 
broken up into base periods that match the observed 
record due to the dependence on the length of period of 
the index.  Thirty and fifty year trends of each step of the 
mCEI and total mCEI are calculated at the end of the 
90-year period to compare with twentieth century 
values.  To gather as many samples as possible without 
oversampling the control run data, the base period is 
shifted by fifteen years and recalculated to get control 
values of the index trends.  Fifteen years was chosen 
because for a thirty year trend analysis, half of the data 
used would be new, independent values. 
 



3.  RESULTS 
 
The temperature related steps one and two showed the 
most significant thirty and fifty year trends.  Figure 2 
shows steps one and two averaged together along with 
a group of ensemble-mean twentieth century model 
runs.  This average of the step one and two indices is 
closely related to the index based on mean temperature, 
which is what is used in most of the values shown for 
the twentieth century ensemble members.  This does 
not significantly affect the behavior of the index.  The 
heat waves of the 1930’s and the 1950’s can be seen, 
as well as the cool period of the 1960’s through the 
early 1980’s.  Another interesting note is the drop in the 
early 1990’s, which is most likely due to the eruption of 
Mount Pinatubo in 1991.   All of the twentieth century 
runs capture this feature except for the CGCM3.1. 
 
The twentieth century model runs capture the variability 
of the observed values of mCEI steps one and two 
relatively well.  It should be noted that the ensemble 
averages for the multi-member ensembles of model 
runs show less shorter time scale variability than the 
observed index, as expected,  All of the runs also 
capture the trend from negative values in the beginning 
of the period to positive values at the end of the period, 

which can be interpreted as an increase in extremely 
warm mean temperatures and/or a decrease in 
extremely cold mean temperatures.  From the data, both 
are observed.  The control run confidence interval 
indicates that in an unforced climate, the mCEI for these 
steps has no trend expected.  To get a conservative 
estimate of the significance of the trends in steps one 
and two, the pre-industrial control run that had the most 
variability is used.  For the last thirty years, of the 
twenty-four twentieth century model ensemble 
members, 46% had trends that were above the 95% 
significance level, as was the observed trend.  Only 2 
members had decreasing trends over the last thirty 
years, and these trends were close to zero.  The fifty 
year trends were slightly more significant, with 54% 
exceeding a 95% significance level, along with the 
observational record as well.  The most sensitive 
models to the greenhouse gas forcing are the CGCM3.1 
model runs, which every single ensemble member has a 
significant increasing trend.  It is unlikely that these 
trends are caused by natural variability alone and the 
increase in warm extremes and decrease in cold 
extremes over the last thirty to fifty years is likely due to 
the increase of greenhouse gas forcing over the past 
century. 
 

 

 

 
Figure 2. Five-year moving averages of model ensembles (color), observed values (bold), and pre-
industrial control runs (dashed) of mCEI steps one and two.  Each model's pre-industrial control run 
is plotted as a 95% confidence interval to show the approximate spread of control values of the 
mCEI in a 94 year period with no greenhouse gas forcing. 



 
Figure 3. Five-year moving averages of model ensembles (color), observed values (bold), and pre-
industrial control runs (dashed) of the mCEI step 3.  

 
The third step in the mCEI based on the PDSI is an 
indicator of long term hydrological extremes, either 
meteorological drought; or prolonged wet spells across 
the country.  Over the twentieth century, the trend in this 
step has remained close to zero with very large decadal 
variations. The first fifty years of the observational record 
show a tendency toward slightly negative values, with 
the droughts of the 1930’s and 1950’s indicated by the 
large negative values.  However, the last thirty years 
have tended to be slightly wetter than average over the 
observational record.  Overall trends change depending 
on the trend length specified, with an increase over the 
last 50 years, and a decrease over the last 30 years. 
 
While data to calculate PDSI observationally are 
reasonably straightforward to do, such calculations are 
not available in most of the global climate model runs.  
However, a variable similar to PDSI, such as soil 
moisture is readily available and is used as a proxy.  
Since the calculations for PDSI are similar to the soil 
moisture budget, it is reasonable to expect that soil 
moisture can be used within the index for PDSI values.  
PDSI and soil moisture are well correlated, but the 
correlation decreases in magnitude the deeper the layer 
of soil considered and during cold seasons such as 
winter (Dai et al. 2004).  Since this study is interested 
not in the mean values of PDSI or soil moisture, but 
rather the number of occurrences above or below the 
tenth and ninetieth percentiles on monthly time scales at 
each particular location, the approximation of PDSI by 
soil moisture anomalies is a reasonable one.  Intense 

droughts (or moisture surpluses) would be detectable 
using either variable, especially if it was below (above) 
the tenth (ninetieth) percentile.  A comparison of the 
index calculated from soil moisture and area-averaged 
monthly precipitation data in the models yields similar 
correlations and trends obtained by comparisons 
between the index calculated from observational PDSI 
and area-averaged monthly precipitation data.  The 
relationship between the third and fifth step also 
remains unchanged whether the index based on soil 
moisture data or monthly precipitation data.  The third 
step of the mCEI was calculated for three drought 
indicators of different time scales (PDSI, Palmer 
Hydrological Drought Index, and Z-Index), only to show 
that the annual values of step three are insensitive to 
significantly different definitions of the drought index. 
 
A relevant question is how well the models simulate the 
variability of PDSI using soil moisture.  The ensemble-
averaged models used do relatively poorly, as shown in 
figure 3, failing to represent the spread of the observed 
twentieth century extreme values.  The inter-annual 
variability for the model calculated Step 3 is about the 
same amount as is seen in the observed variability in 
the index, however, the five-year variability in the model 
index values is less than that of observed values.  Thus 
this brings into question how well the models are able to 
resolve long-lasting droughts or wet periods, such as 
those observed in the 1930’s, mid 1950’s, and the early 
1990’s.  As pointed out by the model ninety-five percent 
confidence interval, as well as the twentieth century 



ensembles, the models underestimate the magnitude of 
extreme conditions in long-term moisture deficiencies or 
surpluses.  Another effect that leads to a decrease in the 
variability of the twentieth century model runs would be 
the effect of ensemble averaging.  It is likely that each 
ensemble member may have an extreme drought or 
moisture surplus when the other ensemble members are 
relatively normal or are experiencing the opposite 
conditions.  Thus droughts or moisture surpluses with a 
similar magnitude of the observed extreme periods are 
not as likely from an ensemble-averaged model.  This 
point may be observed with the CGCM3.1 t63 resolution 
run, which only has one member and mimics the 
variability quite well.  The effect of ensemble averaging 
is not seen in the temperature steps because extreme 
warm or cold periods are more common than extreme 
droughts or wet spells, thus are not averaged out in the 
total ensemble.  The individual ensemble members of 
the CGCM3.1 T47 do simulate the variability of the third 
step in the observations well, but the ensemble average 
of these model runs do not.  
 
Overall, the twentieth century models stay within the 
95% confidence interval provided by the control runs.  It 
does not appear that there are any large trends in the 
third step over the twentieth century for either the 
observed record or the models.  Of the twenty-two 
available ensemble members for this step, only two 
show thirty year trends or fifty year trends that exceed 
the 95% significance level, while the observed do not 
even exceed the 90% significance level. The two 
members that do exceed the 95% threshold both have 
negative trends in soil moisture.  However, the larger in 
magnitude the model ensemble is with increase trends in 
temperature steps, the more likely that the third step’s 
trend will tend to be negative.  This is intuitive, as 
increased temperatures would lead to more evaporation 
from the soil, and a tendency towards negative PDSI 
values.  The CCSM3.0, CGCMt47, and CGCMt63 exhibit 
such trends. 
 
The fourth step of the mCEI, shown in Figure 4 (below), 
has been steadily increasing over the last twenty-five 
years.  This is consistent with the expectation that an 
increase in intense rainfall in the United States is likely 
with increasing global greenhouse gas concentrations 
(Groisman et al. 2004).  The twentieth century model 
ensembles capture the trend of the fourth step over the 
last twenty years quite well, except for the CCSM3.0.  
The observed trend over the last thirty to fifty years is 
significant at the 90% confidence level when using the 
total ensemble control run variability, but fails to exceed 
this threshold if the most variable control run is used.  Of 
the sixteen individual ensemble members used to 
calculate the fourth step, only one had a thirty and fifty 
year trend above the 95% significance level. The 
average values of the fourth step are slightly higher than 
the expected value of twenty percent for the pre-
industrial control runs.   The average values were about 
21 – 23%, with the standard deviation of about 2 – 3%, 
probably due to fact that the distribution for the 
proportion of rainfall derived from extreme one-day 

precipitation events is not necessarily normally 
distributed.  However, trends across time in the values 
of the index should be normally distributed around the 
mean. 
 
Results from the fifth step (Figure 5) are similar to those 
of the third step.  The decadal variations of the third and 
fifth step of the mCEI are positively correlated, though 
not as strong as that of the temperature steps.  Periods 
with extreme drought based on PDSI also tend to have 
a much larger number of days without precipitation.  
The same features in the observational record can be 
seen as in the third step, only slightly less in magnitude.  
However, the models capture the five-year variability 
much better than in the third step, with the 
observational record exceeding the control 95% 
confidence interval less frequently.  Observational 
trends are close to zero and not significant, while most 
of the CCSM3.0 ensemble members show significant 
drying trends over the last thirty years. 
 
Combining all of the steps and averaging to form the 
mCEI, one can get an overall sense of the climate in the 
United States over the past century.  From the definition 
of the mCEI, positive values tend toward warmer and 
wetter conditions, whereas negative values tend 
towards cooler and drier conditions.  Figure 6 shows the 
relationship between the individual steps of the 
combined mCEI values over 1910 to 2005.  The only 
time frame that the third and fifth steps do not match is 
early in the observational period, due to the fact that the 
PDSI values start at zero by definition.  The recent 
increasing trends are mostly due to the trends in the 
temperature and intense rainfall steps. 
 
Comparing the model runs to the observed mCEI 
shows that even all the twentieth century ensemble 
models show relatively large trends in the last fifty 
years.  As far as the individual models, seven of the 
indivdual ensemble members show positive fifty year 
trends that exceed the 90% significance threshold.  
Only one ensemble member had a decreasing trend, 
which was close to zero.  The trends in the CCSM3.0 
are much less significant than the other models 
because of the strong drought at the end of the period, 
which tends to average out the strong warming signal in 
the temperature steps.  The observed trends are 
statistically significant at the 95% confidence interval, 
even if the control model with the largest variability is 
used to compare as natural variability.  The largest 
contributors to this significant increase are the 
temperature steps, and to a lesser degree, the intense 
precipitation step of the index.  There are trends toward 
a slightly more frequent wet extreme periods, though 
these trends could be due to natural variability. 
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Figure 4. Five-year moving averages of model ensembles (color), observed values (bold), and pre-
industrial control runs (dashed) of the mCEI step 4. 

 
Figure 5. Five-year moving averages of model ensembles (color), observed values (bold), and pre-
industrial control runs (dashed) of the mCEI step 5. 



 
Figure 6. Observed values of each step of the mCEI (thin) and the total mCEI. 

 
Figure 7. Five-year moving averages of model ensembles (color), observed values (bold), and pre-
industrial control runs (dashed) of the total mCEI. 


