
9A.2

SOFTWARE ARCHITECTURE PRINCIPLES FOR WEB-APPLICATION INFRASTRUCTURE – HOW
EARTH SCIENCE SOFTWARE SYSTEMS SUCH AS THE LIVE ACCESS SERVER FIT IN

Roland H. Schweitzer*
Weathertop Consulting, LLC, College Station, Texas

Steve Hankin, Ansley Manke

NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington

Jonathan Callahan, Kevin O'Brien
JISAO, University of Washington, Seattle, Washington

Steve Du, Jing Li

Macrostaff, Seattle, Washington

1. INTRODUCTION

The Live Access Server (LAS); Hankin (1998)

is a well-established Web-application software system
for display and analysis of geo-science data sets. The
software, which can be downloaded and installed by
anyone, gives data providers an easy way to establish
services for their on-line data holdings so their users
can make plots, create and download sub-sets in a
variety of formats, and compare and analyze data.

One of the most fundamental decisions that
software architects must make is how much of their
software infrastructure they must write themselves and
how much can they leverage from existing software
frameworks. Often, software engineers working in
areas such as the earth sciences feel as though their
requirements are too specialized to take advantage of
software frameworks designed primarily for business-to-
business and on-line commerce transactions and user
interactions.

In this paper we discuss our experiences using
off-the-self Web-application frameworks to build the
next generation of the Live Access Server. The proper
design software components to isolate the specialized
processing needed for working with geo-science data
from the application frameworks will be a special
emphasis. In conjunction with the discussion of
software infrastructure issues related to Live Access
Server development, we will provide an overview of the
latest advances in the capabilities and configurability of
the Live Access Server itself.

Specifically the new architecture makes it
easier to add new output products to our core system
based on the Ferret analysis and visualization package.

*Corresponding author address: Roland H. Schweitzer,
Weathertop Consulting, LLC, 2802 Cimarron Ct,
College Station, TX 77845. E-mail:
weathertop.consulting@gmail.com

By carefully factoring the tasks needed to create a
product we will be able to create new products simply
by adding a description of the product into the
configuration and by writing the Ferret script needed to
create the product. No code needs to be added to LAS
to bring the new product on-line. Equally important,
these same design principles make it easier to add
other analysis and visualization packages (such as
CDAT and GrADS) to LAS. The new architecture is
faster at extracting and processing configuration
information needed to address each request. Finally,
the new architecture makes easier to pass specialized
configuration information through the system to deal
with unanticipated special data structures or processing
requirements.

2. WEB APPLICATION TECHNOLOGY

A Google search on any aspect of web
application technology will quickly overwhelm you with
buzzwords (like AJAX), commercial software (like
ASP.NET and ColdFusion) not to mention many open
source possibilities ranging from content management
systems like Plone to programming frameworks like
Ruby on Rails, PHP and Java. Within each of these
categories you'll find many competing frameworks and
scaffolds that intend to factor out the common parts of
building Web applications software into reusable and
configurable frameworks.

Once our group decided to convert our Web
application (the Live Access Server) from its current
technology (Perl CGI) to a new technology we found
ourselves adrift in this seemingly endless sea of
possibilities. Our first task was to narrow down the
choices.

Our product is not a Web site, but rather a
collection of software which we distribute so that others
can provide scientists and other users access to the
geo-referenced scientific data the installer wishes to
make available. Therefore, we cannot just buy a

license to a commercial product and use it to develop
our own killer Web site. Any software we choose we
must have the right to redistribute or must be available
for anyone to download and install themselves.

We also have to consider the skills and
prejudices of the people that will be doing the
development work. We all like to learn new skills, but it
makes no sense from the project perspective to expect
the developers to spin up on an entirely new technology
if good solutions exist in the areas where the
developers have experience.

Finally, we want to be able to leverage existing
software that is outside of the actual Web application
technology we choose to help us with the specialized
tasks associated with our core mission – providing
access to scientific data.

All of these considerations lead us to using
Java and Java Servlets as the basis of our
implementation. Unidata has invested heavily in Java
development. The THREDDS data server; Caron
(2006), the Integrated Data Viewer; Murray (2006) and
the netCDF Java libraries; Davis (1998) are all
examples of Java software which we want to leverage in
our development. We have experienced Java
developers on our team. Java itself is available for
download and there are many high quality servlet
containers which are available for download on top of
which our software can then be installed.

However, even after we have settled on Java
as an implementation language and Servlets as the
supporting technology there are still many shades of
grey.

3. WEB APPLICATION FRAMEWORKS IN JAVA

Even after settling on the two basic

implementation choices Java and Java servlets there
are many choices left to make. Even without Google I
can name several frameworks that purport to ease the
burden of Web Application development in Java. Here
goes: Spring, Struts 1.x, Struts 2.x, Barrachuda MVC,
GlassFish and Shale. And the list goes on to include
frameworks that were developed for specialized use in
scientific data sharing. The Anagram framework from
COLA is an example of this type of framework.

In fact, the first version of our new LAS product
server was developed using Anagram. However, after
careful study of the problem space we are working in, it
was clear that we could use any of the popular Java
Web-application frameworks equally well and would
have the advantage of the support, active development
and commercially available literature on the use of such
a framework.

By design the LAS Product Server has a
limited View component in the classic Model, View,
Controller architecture. The Product Server can render
results of a product request into an HTML page, but all
of the complex user interactions are handled by other
components in the LAS architecture. This fact made
choosing a Web-application framework much easier.
We knew at the outset that our problem could fit easily
into any of the popular frameworks, so we were free to

choose among them on that score.
The group also made a firm commitment to

carefully design and implement our Web-application
such that all of our "Model" code (the guts of the logic
that is particular to our problem space) would be strictly
separated from the Web-application framework. The
extent that we are committed to succeed with that
separation gives us the flexibility to choose any
framework, because we would then be able to switch
easily later since our code is not tangled up with the
framework code.

4. OUR APPROACH IN LAS

Figure 1. The Live Access Server Architecture

Given that our problem space would fit into any

framework and given our commitment to separate our
Model logic from the framework to allow us to switch
later if we want, we chose to do our initial
implementation using Struts 1.3. This is a popular and
mature system with many resources on the Web and in
bookstores to help new users. Even our Integrated
Development Environment (Eclipse with the commercial
MyEclipseIDE Enterprise Workbench installed) contains
automation tools for use with Struts.

Separation and testing are the two mantras we
tried to follow during implementation. To begin with,
each major piece of business logic (the process of
translating a request for a product into the sub-requests
needed to run the services that will fulfill the request,
the job of contacting the services and the collection of
the responses and the job of delivering the results to the
user) were each implemented as a Plain Ordinary Java
Object (POJO) outside of the Web application
framework. Along with these POJO objects to
encapsulate the business logic we wrote Units tests to
exercise each component. Once the business logic
was finished, then and only then did we go to the
framework and begin the tasking for marshalling those
objects together into workflow that could be deployed on
the Web using Struts.

So far so good, but we also had some goals
for this development that directly involve the Controller
portion of the architecture. These goals were to be able
share product requests between users and to be able to

LAS Architecture

Product
Server

Remote
Data

Backend
Service

Backend
Service

Backend
Service

Metadata
(XML)

Local
Data

LAS

user

product

metadata
product
request XML

User
Interface
Server

backend request
(SOAP)

report progress back the user if the process takes along
time to complete. The logic to accomplish these two
goals was done directly in the Controller component of
the Struts framework that is exposed to the developer
by default (the Struts Action class). When a request
comes in for a product, before contacting the services
that will make that product the Product Server checks to
see if it already has a thread running that is working on
that exact product request. If it does the new request
simply joins the thread in progress and the user begins
to see updates of the progress already completed on
that request and new progress going forward from the
moment they joined the thread.

A new user request being able to join an
existing request is predicated on the fact that after a
certain configurable amount of time has passed the
Product Server stores the thread that is working on the
request into the Servlet context and returns a progress
report to the user. The browser is set to automatically
refresh the request for the product and the original user
rejoins the original thread working on their request to
see further progress just as a new user with the same
request would join. Because the capabilities to share
requests and report progress are implemented directly
in the Controller part of the Struts framework it will be
more difficult to change these to a different framework,
but not impossible.

5. FUTURE PLANS

In addition to continued improvements in the
LAS Product Server we have another significant
development task ahead of us to re-write the LAS User
Interface Server. Though implemented using what was
a state-of-the-art technology framework for its time, this
software component which manages all of the user
interactions with the LAS (except for the view of the final
product) needs to be modernized. When evaluating
solutions for re-writing the User Interface Server we will
again be evaluating an open slate of techniques (AJAX
implementations for some components) and scaffolding
technology (the Shale or Spring frameworks come to
mind), but we will likely begin our implementation in
exactly the same way we did with the Product Server –
separate the Model logic from the framework and test
components outside the Web application framework
before integrating into the Struts Action framework.

6. CONCLUSIONS

Least we sound too self-congratulatory for
simply following good software engineering practices we
should note that it is easy to be seduced by the notion
that our application area (science data display and
analysis) is only amenable to custom solutions. By
exploring and eventually using a commonly use Web-
application framework we have saved significant
development time and effort and have a more robust
product.

7. REFERENCES

Caron, J, E. Davis, Y. Ho, R. Kambic, 2006: Unidata's
THREDDS Data Server, Preprints, 22nd International
Conference for Interactive Information and Processing
Systems for Meteorology, Oceanography and
Hydrology, Atlanta, GA, AMS CD-ROM

Davis, G, D Fulker, 1998: Extending the netCDF Model
to Java, Preprints, 15th In International Conference for
Interactive Information and Processing Systems for
Meteorology, Oceanography and Hydrology, Dallas, TX,
AMS

Hankin, Steve, J. Davison, J. Callahan, D. E. Harrison
and K. O'Brien, 1998: A Configurable Web Server for
Gridded Data: A Framework for Collaboration,
Preprints, Fourteenth International Conference for
Interactive Information and Processing Systems for
Meteorology, Oceanography, and Hydrology, Phoenix,
AZ., AMS, 417-418.

Murray, D, 2006: The Integrated Data Viewer (IDV) – A
Discipline Agnostic Tool for Geoscience Exploration,
Preprints, 15th Symposium on Education, Atlanta, GA,
AMS CD-ROM.

