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1. INTRODUCTION 
 
 An important forecasting component of many 
major weather services across the globe is the use of 
ensemble forecasts (Toth and Kanlay 1993, Molteni et 
al. 1996).  The idea of a multimodel superensemble was 
first presented in Krishnamurti et al. (1999).  Since then, 
the superensemble has been shown to provide 
increased skill in the areas of global numerical weather 
prediction, hurricane forecasts, precipitation forecasts, 
and seasonal climate forecasts (Krishnamurti et al. 
2000).  This manuscript expands this capability into the 
realm of high resolution, short-range temperature 
forecasting over the continental United States (CONUS) 
using a suite of mesoscale models.  The time period 
studied was August 18, 2005 through May 31, 2006, 
with forecasts made and verified out to 60 hours for the 
spring months of 2006 (March, April, May) using a six-
hourly temporal resolution.   
 
2.  SUPERENSEMBLE METHODOLOGY 
 
 The superensemble methodology divides 
multimodel datasets into a training phase and a forecast 
phase.  In the training phase, the forecast fields are 
regressed against the observed fields using multiple 
linear regression at all grid locations along the horizontal 
and vertical coordinates.  The obtained regression 
weights are then used in the forecast phase to calculate 
the superensemble forecast.  These regression weights, 
which are calculated for every gridpoint in the domain, 
provide a collective bias correction of the member 
models.  This allows a superensemble forecast with 
somewhat higher skill compared to the ensemble mean 
and the best member model.   
 
3.  ANALYSIS DATASET 
 
 The North American Regional Reanalysis 
(NARR) dataset was employed in the superensemble 
training phase as well as forecast verification.  The 
NARR represents a major improvement to the earlier 
NCEP global reanalysis datasets for both resolution and 
accuracy.  It employs an analysis system similar to the 
ETA model’s 3D-Var Data Assimilation System (EDAS) 
that was operational in April 2003, although it utilizes 
additional datasets for assimilation as described in  
 
 
 

 
 
Mesinger et al. (2005).  Its temporal resolution is 3-
hourly from near-realtime back to 1979.  It has a 32 
km/45 layer resolution.  The 2-meter temperature fields 
from  
this dataset were utilized for this study to represent the 
“observed” field.  Mesinger et al (2005) also shows the 
gridded 2-meter temperature fields to be superior to the 
gridded global reanalysis 2-meter temperature fields in 
terms of RMS error and bias. 
 
4.  GRIDDED FORECAST DATASETS 
 
 Three gridded forecast datasets and their 
ensemble mean were utilized as member models to the 
superensemble.  They include the mesoETA model, the 
NCAR Advanced Research WRF model (WRF-ARW), 
and the National Digital Forecast Database (NDFD) 
prepared by humans at the various National Weather 
Service Forecast Offices across the country.   
 The mesoETA model 2-meter temperature 
fields were obtained from the NOAA National 
Operational Model Archive & Distribution System 
(NOMADS) website at http://nomads.ncdc.noaa.gov.  It 
is a 12 km resolution model initialized using the EDAS 
system.  It is worth noting that this model was 
discontinued in June 2006 to make way for the new 
WRF-NMM model that is now run in its place.  Some 
documentation on this model can be found at 
http://www.comet.ucar.edu/nwplessons/etalesson2/.      
 The WRF-ARW model 2-meter temperature 
fields were obtained from the NCAR Mass Storage 
System (MSS).   Documentation on this model can be 
found at http://www.mmm.ucar.edu/wrf/users/pub-
doc.html.  It is a 22 km resolution model initialized from 
the 40 km Eta mass coordinate. 
 The NDFD 2-meter temperature fields were 
obtained from the NCDC’s HDSS Access System (HAS) 
located at 
http://hurricane.ncdc.noaa.gov/pls/plhas/has.dsselect.  
The NDFD grids are created with human input on a 5 
km resolution as well as a 3-hourly temporal resolution 
through the day 3 forecast.  Documentation on the 
NDFD can be found at 
http://www.weather.gov/ndfd/technical.htm.   
 
5.  SUPERENSEMBLE FORECASTS AND RESULTS 
 



 The three gridded forecast datasets were re-
gridded to a resolution of 32 km to match the analysis 
field resolution.  The NDFD domain was utilized since 
that domain represented the least common denominator 
amongst the datasets.  This area is shown in figure 1.  
Once the three forecast datasets were re-gridded, an 
ensemble mean of those was calculated and also 
included as a member model to the superensemble.   
 For forecasts made during all three months of 
spring 2006, 110 days of previous forecasts were 
utilized for the superensemble training phase.  For 
March 2006, a training period ending on February 28 

was used, excluding the month of December.  For April 
2006, a training period ending March 31 was used, 
excluding the months of December and January.  For 
May 2006, a training period ending April 30 was used, 
excluding the months of December, January, and 
February.  This strategy was utilized in order to attempt 
to counter the possibility of different seasonal biases 
affecting the superensemble regression coefficients.  
The possibility exists that the model biases are different 
in the cool season versus the warm season.  Filtering 
out one cool season month as spring goes forward 
towards the warm season roughly compensates for this 
possible change in model bias.  It is also important to 
note that the training period was only updated once per 
month at the end of each month and not on a daily 
basis.  Also, any day in the training phase or forecast 
phase that did not have all member models pres ent was 
excluded. 
 The mean absolute error (MAE) was the 
primary statistic used to assess the relative skill of all 
the forecasts.  Results were broken down by individual 
month as well as represented by a total MAE of all three 
months combined.  From the MAE statistics, a percent 
improvement plot of the superensemble compared to 
each member model was generated.  Finally, a 
secondary consistency statistic was used that simply 
compared each individual forecast at each time and 
determined which model had the lowest MAE for that 
individual case. 
 Results from these verification statistics are 
shown in figures 2 through 14.  It is interesting to note 
that these results come from using training that is offset 
by one day.  During the training phase, the observed 
fields were accidentally lagged from the forecast fields 
of the member models by exactly one day.  For 
example, a forecast valid on 12 UTC Tuesday was 
being compared with the observed field from 12 UTC 

Monday.  This error was not discovered until very late in 
the analysis since the results were turning out well, and 
nothing appeared to be amiss.  Unfortunately, due to the 
lateness of this discovery and an unfortunate computer 
crash and subsequent data loss, it was not possible to 
run the three months of forecasts with no offset to the 
training phase before this manuscript’s deadline.  
However, partial results were completed before the data 
loss, and the partial results showed the offset training 
performing somewhat better than the non-offset training.  
Further investigation into this apparent anomaly will be 
required. 

The superensemble consistently has the least 
MAE and the best results a large majority of the time.  
The improvements over the ensemble mean generally 
range between 5 and 7 percent, with improvements over 
the worst model as high as 45 percent.  Taking the 
number of cases the superensemble performed the best 
and dividing by the total number of cases present, we 
find that the superensemble outperforms the member 
models, including the ensemble mean, 71.6% of the 
time.   
 
6.  CONCLUSIONS AND POSSIBLE FUTURE WORK 
 
 As stated above, additional testing that utilizes 
offset training is required to help determine an 
explanation for why comparing a forecast field valid at a 
different time than the observed field in the training 
phase produces such good results in the forecast 
phase.  Offsetting the training by several hours, as well 
as reversing the offset, whereby the observed field time 
leads the forecast field time, may provide insight into 
explaining this phenomenon.  Because our very 
preliminary findings show a one-day lag performing 
somewhat better than a zero-day lag, we feel that the 
precise length of the lag needs to be determined.  This 
may have something to do with the spin-up of the 
models.  A lag less than 24 hours may be the optimum 
lag.  Also, fully running the three months with non-offset 
training is required to provide a baseline for comparison.  
Testing of the three spring months utilizing the spring 
months of the previous year as part of the training 
phase is also a possibility for future work.  This may 
eliminate having to remove months out of the training 
dataset to compensate for the change of seasons.  
Finally, the temporal resolution can be increased to 
three-hourly in the future, as all of the datasets used 
have at least three-hourly temporal resolution.

 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

7. FIGURES 
 

 
 

Figure 1:  The domain utilized for comparison with the superensemble forecasts. 
 
 
 

 
 



Figure 2:  The March 2006 MAE statistics utilizing 110 days of training for the superensemble.  Results are 
shown for forecasts in 6-hour time steps out to 60 hours. 

 

 
 

Figure 3:  The March 2006 percent improvement statistics of the superensemble over the member models.  
Results are shown for forecasts in 6-hour time steps out to 60 hours. 

 
 
 

 
 



Figure 4:  The March 2006 number of cases where each model had the lowest MAE at a given forecast hour.  
Results are shown for forecasts in 6-hour time steps out to 60 hours. 

 
 

Figure 5:  The April 2006 MAE statistics utilizing 110 days of training for the superensemble.  Results are shown 
for forecasts in 6-hour time steps out to 60 hours. 

 
 

 
 

Figure 6:  The April 2006 percent improvement statistics of the superensemble over the member models.  
Results are shown for forecasts in 6-hour time steps out to 60 hours. 



 
 

Figure 7:  The April 2006 number of cases where each model had the lowest MAE at a given forecast hour.  
Results are shown for forecasts in 6-hour time steps out to 60 hours. 

 
 

 
 

Figure 8:  The May 2006 MAE statistics util izing 110 days of training for the superensemble.  Results are shown 
for forecasts in 6-hour time steps out to 60 hours. 

 
 



 
 

Figure 9:  The May 2006 percent improvement statistics of the superensemble over the member models.  
Results are shown for forecas ts in 6-hour time steps out to 60 hours. 

 
 

 
 

Figure 10:  The May 2006 number of cases where each model had the lowest MAE at a given forecast hour.  
Results are shown for forecasts in 6-hour time steps out to 60 hours. 



 
 

Figure 11:  The Spring 2006 MAE statistics utilizing 110 days of training for the superensemble.  Results are 
shown for forecasts in 6-hour time steps out to 60 hours. 

 

 
 

Figure 12:  The Spring 2006 percent improvement statistics of the superensemble over the member models.  
Results are shown for forecasts in 6-hour time steps out to 60 hours. 



 
 

Figure 13:  The Spring 2006 number of cases where each model had the lowest MAE at a given forecast hour.  
Results are shown for forecasts in 6-hour time steps out to 60 hours. 

 

 
 

Figure 14:  The Spring 2006 total number of cases where each model had the lowest MAE, not distinguishing 
between forecast hours. 
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