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1 INTRODUCTION  

Observations that are assimilated into 
reanalysis systems and the model 
parameterizations that are used for the weather 
forecast each affect the resulting precipitation form 
the system. Additionally, the complex interactions 
between the model and observations also affects 
the reanalysis precipitation. Kalnay et al. (1996) 
classified precipitation as being very close to 
model simulated data, and subject to large 
uncertainty. Ultimately, when trying to understand 
global and regional water cycles the uncertainty in 
reanalysis precipitation can be a limiting factor. 
For example, Dirmeyer and Brubaker (1999) use 
the reanalysis evaporation and moisture transport, 
but observed precipitation to study the basin scale 
water budgets. While this may be acceptable for 
certain studies, other studies may require the 
reanalysis precipitation.  

The precipitation in reanalyses is closely 
related to all the physical aspects of the system, 
but also the assimilation of data. This paper aims 
to better quantify the uncertainties in precipitation 
from reanalysis and data assimilation systems, 
and to provide a benchmark for system 
development.  

1.1 Background 

Janowiak et al. (1998) tested the NCEP-
NCAR reanalysis precipitation with several 
statistical approaches. The first test of a new data 
is the mean difference from an observed data set; 
in this case, the GPCP merged precipitation data 
(Adler et al 2002). The mean differences to 
become apparent, and the larger the difference, 
then it can be assumed that the reanalysis 
requires some development there. However, for 
many of the differences, the merged data set’s 
own uncertainties make the results less clear. 

In addition to mean differences, Janowiak et 
al. (1998) used temporal correlations, EOF 
analysis and anomaly correlations. While these 
analysis techniques provide additional information 
on the reanalysis precipitation, they rely on the 
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existence of a sufficiently long time series. When 
developing a new system, a long time series is 
generally not available. Also, these time series 
evaluations tend to assume one or another 
observed precipitation data set for comparison. 
However, there are differences in observed data 
sets relating to developing retrieval algorithms, 
input data, treatment of gage uncertainties and 
quality flags. Gruber et al. (2000) and Yin et al. 
(2004) compared GPCP and CMAP merged 
precipitation data sets (for 1979-2001) and found 
spatial correlation over land, but significantly low 
correlation over ocean. 

1.2 Bias and Spatial Correlation 

In this paper, we will compare several 
existing reanalyses precipitation with the GPCP 
merged data set. Both mean bias and spatial 
correlation will be tested in the reanalyses. Only 
the monthly mean precipitation fields will be used, 
as opposed to anomalies or analysis that relies on 
long time series. In that way, developmental 
systems and new operational analyses can be 
tested along side the reanalyses. The comparison 
between CMAP and GPCP will provide uncertainty 
estimates on the comparisons, both for bias and 
spatial correlation. 

2 DATA AND METHODOLOGY 

2.1 Observed and reanalysis data 

Since GPCP (Adler et al. 2002) is 
comprised of observations with global coverage, 
correlations will be calculated against it. However, 
it is not clear that GPCP precipitation can be 
considered ground truth, so that we need to 
include a measure of uncertainty. The CMAP 
precipitation (Xie and Arkin, 1996) will also be 
compared to GPCP in an effort to represent 
uncertainty. The CMAP precipitation provides two 
products; one includes NCEP reanalysis 
information to fill missing data in the other. The 
CMAP observed time series will be used for 
comparison. 

We evaluate 5 global atmospheric 
reanalyses for the period of 1979 through 2005 (if 
available). The Japanese 25 year Reanalysis 
(JRA-25) is the most recent, released for use in 
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March 2006 (http://www.jreap.org). The 45 year 
ECMWF reanalysis (ERA40, Uppala et al. 2005), 
which stops in August 2002. The National Centers 
for Atmospheric Research (NCEP) has released 
two reanalyses labeled here as NR1 (NCEP-
NCAR, Kalnay et al 1996) and NR2 (NCEP-DOE, 
Kanamitsu et al. 2002). We also include a 
reprocessing of this period using the NASA 
GEOS4 data assimilation system (Bloom et al. 
2005). GEOS4 was the operational analysis for 
NASA from 2003 through 2006.  

2.2 Spatial Correlation 

We use monthly means from each of the 
reanalyses, specifically to evaluate the 
climatology, impact of changing observing 
systems and time series. Higher frequency data 
would be needed to evaluate statistics on 
precipitation frequency and intensity. In the climate 
system, the global pattern of precipitation is as 
important as the mean bias of precipitation. In 
other words, are the reanalyses producing 
precipitation, or the lack there of, in the right 
places. A small global or regional bias may mask 
the spatial variability of precipitation, for example, 
a shift in the tropical convergence. So it is 
important to weigh both the mean bias with the 
correlation. 

All monthly means are regridded to 
2.5°×2.5° resolution (box averaging for finer grids, 
bilinear interpolation for coarser grids). All spatial 
averaging for biases and correlations use area 
weighting in the calculation. 

3 CORRELATION AND BIAS 

Here, we present the comparisons of the time 
series of annual average spatial correlations and 
mean differences (also called bias in the text), the 
mean annual cycles of over the period for the 
globe and several continental and oceanic regions 
(Figure 1). 

3.1 Global and Tropical Regions 

Time series of global precipitation 
correlations generally show that the JRA25 has 
increasing correlations with time, with a notable 
increasing shift around the time that SSMI 
becomes available (Figure 2). The JRA global bias 
tends to be lower than most of the other 
reanalyses in the recent years as well. This is in 
large part due to improved tropical precipitation 
(Figure 3). 

ERA40 generally show good correlation 
values, compared to the other reanalyses, but the 

tropical precipitation bias, greatly affects the time 
series. The increasing trend in precipitation is not 
apparent in any of the global observation data. 

CMAP and GPCP tend to show better 
correlation to each other over land than ocean 
(Figure 2). While the JRA and ERA40 correlations 
over ocean seem to show improvement for the 
reanalysis products there, there has been little 
improvement over land (when taken in the global 
sense). However, JRA25 does have marginally 
higher correlations in the SSMI period than the 
other reanalyses. 

The mean annual cycle of correlations at 
the global scale shows significant seasonal 
fluctuations (Figure 4). These can be explained 
more with regional analyses (following sections). 
However, the NCEP Reanalysis 2 seasonal bias of 
land continental is also apparent in the global 
average (Figure 5). 

3.2 Continental Regions 

We have evaluated the reanalyses over 
large continental regions (Figure 1). The spatial 
correlations over North America and Europe for 
JRA25 and ERA40 show superior skill in 
precipitation from compared to the others, with 
most of this higher skill realized over Europe. 
(Figure 6). The mean biases are different, 
however. In North America, Most of the reanalyses 
overestimate both observed datasets, except 
ERA40. Over Europe, the reanalyses are 
consistently lower than observations by about 0.4 
mm/day (Figure 7). In South America, all of the 
reanalyses have low spatial correlations, but they 
seem to be increasing slightly with time. For 
Africa, there is slight decreasing trend of the 
matched correlation of the observational data sets 
(Figure 6). JRA has a sharp decrease of the 
correlation in 1998. The GEOS4 precipitation 
shows a sharp increase in correlation when SSMI 
becomes available. ERA40 has generally the most 
consistent and highest time series of spatial 
correlation. All of the analyses have significant 
biases in South America (Figure 7). 

In North America, JRA25 has a distinct 
annual cycle of spatial correlation, where it is high 
in winter and spring, but drops in summer (Figure 
8). The annual cycle of other reanalyses are 
similar to JRA25, with the exception that they are 
in general lower than JRA25. On the other hand, 
ERA40 has smaller amplitude of the annual cycle, 
and the summer correlations are higher than 
JRA25.  Mean biases are generally larger in the 
summer season in many of the regions. However, 
ERA40 has smaller amplitude of the mean bias 
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than the other analyses (Figure 9). The South 
American biases are generally large magnitude. 
There are also regional differences in the 
observations biases. The North American 
difference of precipitation is continuous, around 
0.2 mm/day. In Europe, the differences are large 
in winter (0.8 mm/day) and smaller in summer (0.2 
mm/day). 

3.3 Oceanic Regions 

The oceanic precipitation in JRA25 shows 
very good correlations in the tropical Pacific 
Ocean and Indian Monsoon regions, with the 
noticeable increase after SSMI is included (Figure 
10). Likewise, ERA40 seems to have good 
correlations as well. All the reanalyses have too 
much precipitation in these tropical regions (Figure 
11). ERA40 has better correlations over the North 
Atlantic Ocean, with small or low biases. The 
GEOS4 analysis performs fairly well in the tropical 
oceans, but over the northern oceans, there 
appears to be distinct deficiencies in both 
correlation and mean bias. 

Low correlations between the observations 
in the northern oceans tend to occur in the winter 
season, when the mean difference is larger than 
any other time in the seasonal cycle (Figure 12 
and Figure 13). In the mean annual cycle, the 
Indian monsoon correlations are very similar 
during the monsoon, and there is some 
stratification of the correlations early in the year 
(Feb-May). 

4 UNMATCHED CORRELATIONS 

In the previous evaluation of the spatial 
correlation, GPCP and CMAP monthly means 
were correlated for the same (matching) months. 
These should be high, but not equal to one owing 
to the different merging techniques and variations 
in sources of data. Monthly precipitation does 
have a fairly regular distribution. For example, the 
location of the ITCZ or arid regions of North 
America and Africa occur regularly in the same 
location, and negative correlations for certain 
regions would be difficult if not impossible. Given 
that the reanalyses can likewise reproduce some 
of these large scale patterns, and the uncertainty 
in the reanalyses is more subtle, we need to 
define a minimum of spatial correlation to 
determine the quality of reanalysis values. 

We have correlated unmatched monthly 
means of the GPCP and CMAP data sets. For 
example, January 1979 of GPCP is correlated to 
all of 1980-2003 Januaries of CMAP. The 

accumulation of the unmatched correlations 
follows, 
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For averaging, the N number of times is 
determined by summing δij, and the seasonal 
cycle of the unmatched correlation can also be 
determined. Pg and Pc represent GPCP and 
CMAP precipitation, respectively. These values 
represent the mean of spatial correlations of 
different years. The values are generally positive, 
owing to the fact that precipitation patterns have 
some regularly occurring features. If the 
reanalyses cannot have a spatial correlation 
greater than this mean value, it may indicate a 
region where further study in the model 
performance is needed. 

Figure 14 shows the grand mean of all the 
unmatched spatial correlations for the regions 
discussed earlier and also some latitudinal bands. 
For the global spatial correlation, 0.69 is the mean, 
so that most years, the reanalyses annual means 
are above this value (Figure 2). While this is also 
true for the ocean, the land unmatched correlation 
of 0.80 is in the middle of the annual means. So, 
while it was concluded earlier that the reanalyses 
precipitation over land were not improving, they 
also seem to be, generally, not able to produce 
very good spatial distributions for the land. None 
of the reanalyses precipitation exceeds the 
unmatched correlation in South America and 
Africa (though there are a few years where ERA40 
is close in Africa). 
 Europe has a very low unmatched 
correlation (0.42) compared to other regions. In 
the mean annual cycle, the lowest values are 
February – May (not shown). All of the reanalyses 
have annual values that exceed this correlation, 
likely related to the large scale storm track in the 
region. In North America, the lowest unmatched 
correlations (as well as matched correlations) 
occur during July-September, during the end of 
the warm season, when land-atmosphere 
interactions and the soil water reservoir contribute 
to the precipitation. 

For the Indian Monsoon region, the JRA25 is 
less than the unmatched correlation mean before 
SSMI becomes available. However, it is well 
above that when SSMI are being assimilated. 
Most of the reanalysis precipitation is above the 
unmatched correlations in the Indian monsoon 
region. 
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Lastly, the matched and unmatched 
correlations for high latitudes are lower than other 
latitude bands, which may be related to both a 
high degree of variability as well as uncertainty in 
the data. The uncertainty in the data is an issue, 
because the matched correlations are lower than 
other bands and the global mean. This identifies 
the high latitudes as a region of development for 
the next generations of merged precipitation data 
sets. 

5 SUMMARY 

In this paper, we are developing a metric to 
evaluate global and regional precipitation in 
reanalysis data products. Spatial correlations 
provide an estimate of the agreement in spatial 
patterns. By correlating two observed data sets at 
matched times, we can identify the uncertainty in 
those data. By correlating the observed data at 
unmatched times, we can estimate a minimum 
value of correlation that the reanalyses need to 
attain when matched with an observation data set. 
The unmatched correlation mean represents the 
background correlation that exists in the real 
climate system. We have used this to identify 
where and when existing reanalyses excel or fail.  

While other methods, such as anomaly 
correlation and EOF analysis, can do the same 
thing, they require existing long periods of data. 
The current analysis requires only monthly means, 
and so, could be used in developing a new 
system. Gruber et al. (2000) used a filter to 
remove fine spatial structures from CMAP and 
GPCP, and found that the ocean anomaly 
correlations were substantially increased. As 
reanalyses and observed precipitation data sets 
move to finer spatial scales, this approach must be 
considered carefully. Some of the fine structure 
may be important in the evaluation of the fine 
scale reanalyses. Here, we have simply reduced 
the resolution of the reanalyses to match the 
GPCP monthly climatology. 
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Figure 1 Regional areas for reanalysis and observation comparisons: EUR – Europe; EAS – Eurasia; 
NPO – North Pacific Ocean; NAM – North America; NAO – North Atlantic Ocean; AFR – Africa; INM – 
Indian Monsoon; TPO – Tropical Pacific Ocean; SAM – South America 
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Figure 2 Annual average of monthly spatial correlations to GPCP for global areas. 
 

 
Figure 3 Annual average of monthly mean differences from GPCP for global regions. The dashed line 
indicates the difference GPCP minus CMAP, the opposite of the solid line, for a point of reference. 
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Figure 4 Mean annual cycle of spatial correlations for global regions. 
 

 
Figure 5 Mean annual cycle of mean differences from GPCP for global regions. 
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Figure 6 As in Figure 2, except for continental regions. 

 
Figure 7 As in Figure 3, except for continental regions. 
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Figure 8 As in Figure 4, except for continental regions. 
 

 
Figure 9 As in Figure 5, except for continental regions. 
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Figure 10 As in Figure 2, except for oceanic regions. 
 

 
Figure 11 As in Figure 3, except for oceanic regions. 
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Figure 12 As in Figure 4, except for oceanic regions. 

 
Figure 13 As in Figure 5, except for oceanic regions. 
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Regional Unmatched Correlation (GPCP, CMAP)
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Figure 14 Average of all unmatched correlations between GPCP and CMAP for various regional domains 
over the period 1979-2003) in the bars. The crosses show the average of all matched correlations (used 
in the previous figures as time series of annual means or mean annual cycles). See the text for 
definitions. 


