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1 INTRODUCTION

Observations that are assimilated into
reanalysis systems and the model
parameterizations that are used for the weather
forecast each affect the resulting precipitation form
the system. Additionally, the complex interactions
between the model and observations also affects
the reanalysis precipitation. Kalnay et al. (1996)
classified precipitation as being very close to
model simulated data, and subject to large
uncertainty. Ultimately, when trying to understand
global and regional water cycles the uncertainty in
reanalysis precipitation can be a limiting factor.
For example, Dirmeyer and Brubaker (1999) use
the reanalysis evaporation and moisture transport,
but observed precipitation to study the basin scale
water budgets. While this may be acceptable for
certain studies, other studies may require the
reanalysis precipitation.

The precipitation in reanalyses is closely
related to all the physical aspects of the system,
but also the assimilation of data. This paper aims
to better quantify the uncertainties in precipitation
from reanalysis and data assimilation systems,
and to provide a benchmark for system
development.

1.1 Background

Janowiak et al. (1998) tested the NCEP-
NCAR reanalysis precipitation with several
statistical approaches. The first test of a new data
is the mean difference from an observed data set;
in this case, the GPCP merged precipitation data
(Adler et al 2002). The mean differences to
become apparent, and the larger the difference,
then it can be assumed that the reanalysis
requires some development there. However, for
many of the differences, the merged data set's
own uncertainties make the results less clear.

In addition to mean differences, Janowiak et
al. (1998) used temporal correlations, EOF
analysis and anomaly correlations. While these
analysis techniques provide additional information
on the reanalysis precipitation, they rely on the
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existence of a sufficiently long time series. When
developing a new system, a long time series is
generally not available. Also, these time series
evaluations tend to assume one or another
observed precipitation data set for comparison.
However, there are differences in observed data
sets relating to developing retrieval algorithms,
input data, treatment of gage uncertainties and
quality flags. Gruber et al. (2000) and Yin et al.
(2004) compared GPCP and CMAP merged
precipitation data sets (for 1979-2001) and found
spatial correlation over land, but significantly low
correlation over ocean.

1.2 Bias and Spatial Correlation

In this paper, we will compare several
existing reanalyses precipitation with the GPCP
merged data set. Both mean bias and spatial
correlation will be tested in the reanalyses. Only
the monthly mean precipitation fields will be used,
as opposed to anomalies or analysis that relies on
long time series. In that way, developmental
systems and new operational analyses can be
tested along side the reanalyses. The comparison
between CMAP and GPCP will provide uncertainty
estimates on the comparisons, both for bias and
spatial correlation.

2 DATA AND METHODOLOGY
2.1 Observed and reanalysis data

Since GPCP (Adler et al. 2002) is
comprised of observations with global coverage,
correlations will be calculated against it. However,
it is not clear that GPCP precipitation can be
considered ground truth, so that we need to
include a measure of uncertainty. The CMAP
precipitation (Xie and Arkin, 1996) will also be
compared to GPCP in an effort to represent
uncertainty. The CMAP precipitation provides two
products; one includes NCEP reanalysis
information to fill missing data in the other. The
CMAP observed time series will be used for
comparison.

We evaluate 5 (global atmospheric
reanalyses for the period of 1979 through 2005 (if
available). The Japanese 25 year Reanalysis
(JRA-25) is the most recent, released for use in
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March 2006 (http://www.jreap.org). The 45 year
ECMWF reanalysis (ERA40, Uppala et al. 2005),
which stops in August 2002. The National Centers
for Atmospheric Research (NCEP) has released
two reanalyses labeled here as NR1 (NCEP-
NCAR, Kalnay et al 1996) and NR2 (NCEP-DOE,
Kanamitsu et al. 2002). We also include a
reprocessing of this period using the NASA
GEOS4 data assimilation system (Bloom et al.
2005). GEOS4 was the operational analysis for
NASA from 2003 through 2006.

2.2 Spatial Correlation

We use monthly means from each of the
reanalyses, specifically to evaluate the
climatology, impact of changing observing
systems and time series. Higher frequency data
would be needed to evaluate statistics on
precipitation frequency and intensity. In the climate
system, the global pattern of precipitation is as
important as the mean bias of precipitation. In
other words, are the reanalyses producing
precipitation, or the lack there of, in the right
places. A small global or regional bias may mask
the spatial variability of precipitation, for example,
a shift in the tropical convergence. So it is
important to weigh both the mean bias with the
correlation.

All monthly means are regridded to
2.5°x2.5° resolution (box averaging for finer grids,
bilinear interpolation for coarser grids). All spatial
averaging for biases and correlations use area
weighting in the calculation.

3 CORRELATION AND BIAS

Here, we present the comparisons of the time
series of annual average spatial correlations and
mean differences (also called bias in the text), the
mean annual cycles of over the period for the
globe and several continental and oceanic regions
(Figure 1).

3.1 Global and Tropical Regions

Time series of global precipitation
correlations generally show that the JRA25 has
increasing correlations with time, with a notable
increasing shift around the time that SSMI
becomes available (Figure 2). The JRA global bias
tends to be lower than most of the other
reanalyses in the recent years as well. This is in
large part due to improved tropical precipitation
(Figure 3).

ERA40 generally show good correlation
values, compared to the other reanalyses, but the
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tropical precipitation bias, greatly affects the time
series. The increasing trend in precipitation is not
apparent in any of the global observation data.

CMAP and GPCP tend to show better
correlation to each other over land than ocean
(Figure 2). While the JRA and ERA40 correlations
over ocean seem to show improvement for the
reanalysis products there, there has been little
improvement over land (when taken in the global
sense). However, JRA25 does have marginally
higher correlations in the SSMI period than the
other reanalyses.

The mean annual cycle of correlations at
the global scale shows significant seasonal
fluctuations (Figure 4). These can be explained
more with regional analyses (following sections).
However, the NCEP Reanalysis 2 seasonal bias of
land continental is also apparent in the global
average (Figure 5).

3.2 Continental Regions

We have evaluated the reanalyses over
large continental regions (Figure 1). The spatial
correlations over North America and Europe for
JRA25 and ERA40 show superior skill in
precipitation from compared to the others, with
most of this higher skill realized over Europe.
(Figure 6). The mean biases are different,
however. In North America, Most of the reanalyses
overestimate both observed datasets, except
ERA40. Over Europe, the reanalyses are
consistently lower than observations by about 0.4
mm/day (Figure 7). In South America, all of the
reanalyses have low spatial correlations, but they
seem to be increasing slightly with time. For
Africa, there is slight decreasing trend of the
matched correlation of the observational data sets
(Figure 6). JRA has a sharp decrease of the
correlation in 1998. The GEOS4 precipitation
shows a sharp increase in correlation when SSMI
becomes available. ERA40 has generally the most
consistent and highest time series of spatial
correlation. All of the analyses have significant
biases in South America (Figure 7).

In North America, JRA25 has a distinct
annual cycle of spatial correlation, where it is high
in winter and spring, but drops in summer (Figure
8). The annual cycle of other reanalyses are
similar to JRA25, with the exception that they are
in general lower than JRA25. On the other hand,
ERA40 has smaller amplitude of the annual cycle,
and the summer correlations are higher than
JRA25. Mean biases are generally larger in the
summer season in many of the regions. However,
ERA40 has smaller amplitude of the mean bias
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than the other analyses (Figure 9). The South
American biases are generally large magnitude.
There are also regional differences in the
observations biases. The North American
difference of precipitation is continuous, around
0.2 mm/day. In Europe, the differences are large
in winter (0.8 mm/day) and smaller in summer (0.2
mm/day).

3.3 Oceanic Regions

The oceanic precipitation in JRA25 shows
very good correlations in the tropical Pacific
Ocean and Indian Monsoon regions, with the
noticeable increase after SSMI is included (Figure
10). Likewise, ERA40 seems to have good
correlations as well. All the reanalyses have too
much precipitation in these tropical regions (Figure
11). ERA40 has better correlations over the North
Atlantic Ocean, with small or low biases. The
GEOS4 analysis performs fairly well in the tropical
oceans, but over the northern oceans, there
appears to be distinct deficiencies in both
correlation and mean bias.

Low correlations between the observations
in the northern oceans tend to occur in the winter
season, when the mean difference is larger than
any other time in the seasonal cycle (Figure 12
and Figure 13). In the mean annual cycle, the
Indian monsoon correlations are very similar
during the monsoon, and there is some
stratification of the correlations early in the year
(Feb-May).

4  UNMATCHED CORRELATIONS

In the previous evaluation of the spatial
correlation, GPCP and CMAP monthly means
were correlated for the same (matching) months.
These should be high, but not equal to one owing
to the different merging techniques and variations
in sources of data. Monthly precipitation does
have a fairly regular distribution. For example, the
location of the ITCZ or arid regions of North
America and Africa occur regularly in the same
location, and negative correlations for certain
regions would be difficult if not impossible. Given
that the reanalyses can likewise reproduce some
of these large scale patterns, and the uncertainty
in the reanalyses is more subtle, we need to
define a minimum of spatial correlation to
determine the quality of reanalysis values.

We have correlated unmatched monthly
means of the GPCP and CMAP data sets. For
example, January 1979 of GPCP is correlated to
all of 1980-2003 Januaries of CMAP. The

San Antonio, TX

January 2007

accumulation of the unmatched correlations

follows,
dec 2003 2003

>, > >corr(Pg, Pe;, s,

m= jan i=1979 j=1979
where o; =1, if
For averaging, the N number of times is

determined by summing Jj, and the seasonal
cycle of the unmatched correlation can also be
determined. Pg and Pc represent GPCP and
CMAP precipitation, respectively. These values
represent the mean of spatial correlations of
different years. The values are generally positive,
owing to the fact that precipitation patterns have
some regularly occurring features. If the
reanalyses cannot have a spatial correlation
greater than this mean value, it may indicate a
region where further study in the model
performance is needed.

Figure 14 shows the grand mean of all the
unmatched spatial correlations for the regions
discussed earlier and also some latitudinal bands.
For the global spatial correlation, 0.69 is the mean,
so that most years, the reanalyses annual means
are above this value (Figure 2). While this is also
true for the ocean, the land unmatched correlation
of 0.80 is in the middle of the annual means. So,
while it was concluded earlier that the reanalyses
precipitation over land were not improving, they
also seem to be, generally, not able to produce
very good spatial distributions for the land. None
of the reanalyses precipitation exceeds the
unmatched correlation in South America and
Africa (though there are a few years where ERA40
is close in Africa).

Europe has a very low unmatched
correlation (0.42) compared to other regions. In
the mean annual cycle, the lowest values are
February — May (not shown). All of the reanalyses
have annual values that exceed this correlation,
likely related to the large scale storm track in the
region. In North America, the lowest unmatched
correlations (as well as matched correlations)
occur during July-September, during the end of
the warm season, when land-atmosphere
interactions and the soil water reservoir contribute
to the precipitation.

For the Indian Monsoon region, the JRA25 is
less than the unmatched correlation mean before
SSMI becomes available. However, it is well
above that when SSMI are being assimilated.
Most of the reanalysis precipitation is above the
unmatched correlations in the Indian monsoon
region.

I # ].
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Lastly, the matched and unmatched
correlations for high latitudes are lower than other
latitude bands, which may be related to both a
high degree of variability as well as uncertainty in
the data. The uncertainty in the data is an issue,
because the matched correlations are lower than
other bands and the global mean. This identifies
the high latitudes as a region of development for
the next generations of merged precipitation data
sets.

5 SUMMARY

In this paper, we are developing a metric to
evaluate global and regional precipitation in
reanalysis data products. Spatial correlations
provide an estimate of the agreement in spatial
patterns. By correlating two observed data sets at
matched times, we can identify the uncertainty in
those data. By correlating the observed data at
unmatched times, we can estimate a minimum
value of correlation that the reanalyses need to
attain when matched with an observation data set.
The unmatched correlation mean represents the
background correlation that exists in the real
climate system. We have used this to identify
where and when existing reanalyses excel or fail.

While other methods, such as anomaly
correlation and EOF analysis, can do the same
thing, they require existing long periods of data.
The current analysis requires only monthly means,
and so, could be used in developing a new
system. Gruber et al. (2000) used a filter to
remove fine spatial structures from CMAP and
GPCP, and found that the ocean anomaly
correlations were substantially increased. As
reanalyses and observed precipitation data sets
move to finer spatial scales, this approach must be
considered carefully. Some of the fine structure
may be important in the evaluation of the fine
scale reanalyses. Here, we have simply reduced
the resolution of the reanalyses to match the
GPCP monthly climatology.
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Figure 1 Regional areas for reanalysis and observation comparisons: EUR — Europe; EAS — Eurasia;
NPO — North Pacific Ocean; NAM — North America; NAO — North Atlantic Ocean; AFR — Africa; INM —
Indian Monsoon; TPO — Tropical Pacific Ocean; SAM — South America
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Figure 2 Annual average of monthly spatial correlations to GPCP for global areas.
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Mean Annual Cycle Spatial Correlation (GPCP)
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Figure 4 Mean annual cycle of spatial correlations for global regions.
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Figure 6 As in Figure 2, except for continental regions.
Annual Average of Precipitation Bias (GPCP)

——CMAP North America Land Europe Land
—— JRARS ‘ ‘ ‘ : : ‘ ‘ ‘ ‘ :

DA
021
0_
-0.21{=
-0.41--
-0.61--
-0.8{--

0470 TN

-021.:
-0.4 5
_0'6 4. ..
YR R

1980 1985 1990 1995 2000 2005 1980 1985 1890 1995 2000 2005
South America Land Africa Land

1880 1885 1890 1885 2000 2005 1880 1835 1990 1995 2000 2005
Figure 7 As in Figure 3, except for continental regions.



21% Conference on Hydrology San Antonio, TX January 2007

1.6
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Figure 8 As in Figure 4, except for continental regions.
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Figure 9 As in Figure 5, except for continental regions.
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Annual Average of Monthly Spatial Correlation (GPCP)
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Figure 12 As in Figure 4, except for oceanic regions.
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Regional Unmatched Correlation (GPCP, CMAP)
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Figure 14 Average of all unmatched correlations between GPCP and CMAP for various regional domains
over the period 1979-2003) in the bars. The crosses show the average of all matched correlations (used
in the previous figures as time series of annual means or mean annual cycles). See the text for
definitions.



