3.12 A WILDLAND FIRE DYNAMIC DATA-DRIVEN APPLICATION SYSTEM

Janice L. Coen'*, Jonathan D. Beezley1’2, Lynn S. Bennethum?, Craig C. Douglass, Minjeong
Kimz, Robert Kremens4, Jan Mandel1’2, Guan Qin5, and Anthony Vodacek”

" National Center for Atmospheric Research, Boulder, CO
2 University of Colorado at Denver and Health Sciences Center, Denver, CO
3 University of Kentucky, Lexington, KY
4 Rochester Institute of Technology, Rochester, NY
5Texas A&M University, College Station, TX

1. INTRODUCTION

We describe an ongoing effort to build a Dynamic
Data Driven Application System (DDDAS) for short-
range forecast of wildfire behavior using a coupled
atmosphere-fire model injected with real-time weather
data, images, and sensor streams. The system should
change the forecast when new data is received. The
basic approach is to encapsulate the model code and
use an ensemble Kalman filter in time-space with a
highly parallel implementation. Developments in the
ensemble Kalman filter are presented, for out-of-
sequence data assimilation, hidden model states, and
highly nonlinear problems. Parallel implementation and
web-based visualization are also discussed. A
schematic diagram of this system is shown in Figure 1.

The motivation for this work is the obvious societal
value of an accurate forecast compounded with the
inherent challenge in modeling this nonlinear, rapidly-
changing phenomena, the difficulty in obtaining remote
or in situ data about the fire itself, and the challenges of
communicating the on-site, out-of-order data of
unknown quality to supercomputers and using it to steer
the model simulations. The work necessarily extends
beyond data assimilation work in progress in
atmospheric science due to the specific application
challenges: the model is strongly nonlinear and
irreversible, and the data arrives out-of-order from
disparate data sources.

The DDDAS is built upon a previously existing
coupled atmosphere-wildfire model. Components have
been developed and added which (1) save, modify, and
restore the state of the atmosphere-wildfire model, (2)
apply ensemble data assimilation algorithms to modify
ensemble member states by comparing the data with
synthetic data of the same kind created from the
simulation state, (3) retrieve, process, and ingest data
from both novel ground-based sensors and airborne
platforms in the near vicinity of a fire, and (4) provide
computational results visualized in several ways
adaptable to user needs.

2. MODEL DESCRIPTION

The original modeling system is composed of two

parts: a numerical weather prediction model and a fire
behavior model that models the growth of a wildfire in
response to weather, fuel conditions, and terrain (Clark
et al. 2004; Coen 2005). These are two-way coupled so
that heat and water vapor fluxes from the fire feed back
to the atmosphere to produce fire winds, while the
atmospheric winds and changes in humidity in turn drive
the fire propagation. This wildfire simulation model can
thus represent the complex interactions between a fire
and the atmosphere.

2.1 Atmospheric Model

The meteorological model is a three-dimensional
non-hydrostatic numerical model based on the Navier-
Stokes equations of motion, a thermodynamic equation,
and conservation of mass equations using the anelastic
approximation. Vertically stretched terrain-following
coordinates allow the user to simulate in detail the
airflow over complex terrain. Forecasted changes in the
larger-scale atmospheric environment are used to
initialize the outer of several nested domains and
update lateral boundary conditions. Two-way interactive
nested grids capture the outer forcing domain scale of
the synoptic-scale environment while allowing the user
to telescope down to tens of meters near the fireline
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Figure 1. Schematic diagram of a wildland fire dynamic
data-driven application system. This is the actual
software structure. Blue blocks are functional units.
Purple are data inputs and outputs. The observation
function interprets the model variables in terms of
observable quantities and produces synthetic data
from the model state. The data assimilation compares
the synthetic data and the real data, and adjusts the
model state accordingly.




through horizontal and vertical grid refinement. Weather
processes such as the production of cloud droplets,
rain, and ice are parameterized using standard
treatments.

2.2 Fire Model

Although initial investigations began using the semi-
empirical fire model described in 2.2.1, a physically
based model based on partial differential equations
(PDEs) that more amenable to data assimilation is being
developed (Section 2.2.2).

2.2.1 Fire model based on semi-empirical formula

Local fire spread rates depend on the modeled wind
components through an application of the Rothermel fire
spread formula (Rothermel 1972). The heat release rate
is based on Albini (1994) which characterizes how the
fire consumes fuels of different sizes with time after
ignition, distinguishing between rapidly consumed
grasses and slowly burned logs. Within each
atmospheric grid cell, the land surface is further divided
into fuel cells, with fuel characteristics corresponding to
the 13 standard fuel types (Anderson 1982). Four
tracers, assigned to each fuel cell, identify burning areas
of fuel cells and define the fire front. Fire spread rates
are calculated locally along the fire as a function of
fuels, wind speed and direction from the atmospheric
model (which includes the effects of the fire), and terrain
slope, while a local contour advection scheme assures
consistency along the fireline. The canopy may be dried
and ignited by the surface fire. Then a simple radiation
treatment distributes the sensible and latent heat into
the lowest atmospheric grid levels.

The empirical fire model is using a submesh
representation of the fire region. Within each cell on the
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Figure 2. Ignition is at time t=0 in the middle. Two
waves develop that travel from the ignition point to the
outside. The speed of propagation was calibrated
using past fire behavior data to about 0.1 m/s (this was
done by setting the diffusion coefficient correctly).

The spatial resolution (grid size) was 1 m. Simple finite
differences are used. This is 1D but important. We use
the shape of the 1D wave to compare with 1D
measurements (Figure 3).

fire model grid, a quadrilateral defines the burning
region. The burning area in each grid cell is defined by
the position of four moving points, called tracers. This
representation makes the fire area hard to adjust in data
assimilation (Sec. 3). For this reason, we have
developed a translation of the tracers into a level
function. The level function is given by values at nodes
of the fire grid. The fire region is where the level function
is positive. The absolute value of the level function is
approximately equal to the Euclidean distance from the
fireline. In data assimilation, the level function can be
increased or decreased just like the physical quantities
in the model.

2.2.2 PDE-based fire model

Our current experiments are with a simple fire model
(Mandel et al. 2004), which uses the reaction-
convection-diffusion equation for the temperature T and
fuel supply Sk,
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where k is the index for different fuel types, which could
be different vertical layers (ground, surface, and aerial
fuels). Equation (1) is the heat balance equation. The

term —VdVT models the heat diffusion, —av- VT is the

convection by wind with speed v, eaai is the heat
t

generated by burning the fuel, and —b(T —7,) is the

heat lost by flux to the ambient environment with
temperature T,. Equation (2) is the fuel balance
equation for fuel of type k. The equations are discretized
by simple central finite differences in space and the
second order trapezoidal method time. The nonlinear
system in each time step is solved by a matrix-free
Newton-GMRES method with preconditioning by FFT
inversion of the diffusion term. This numerical approach
is well suited for a diffusion-dominated problem.
Methods for convection dominated problems (strong
winds relative to the mesh scale) involving upwinding
and nonsymmetrical preconditioning are in
development. This simple model is capable of producing
a reasonable fire behavior with an advancing fire front.
The combustion wave solution is shown in Figure 2.

A more realistic model is under development, which
will include several species of fuel, radiative heat
transfer between, and evaporation of moisture. It is
anticipated that this model will replace the empirical fire
model and it will be coupled to the atmospheric model.
For related physics based fire models in the literature
see Linn et al. (2002) and Seron et al. (2005).

3. ENSEMBLE MODELING

Ensemble filters work by advancing in time a



The model state is a
probability distribution,
visualized in the two ENKF
figures as the superposition
of transparent temperature
profiles of ensemble
members.

3 Solution Methods:
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' standard ENKF algorithm
results in an unstable
solution because of the
nonlinear behavior of
wildfire.

(2) Stabilization gives the
regularized solution
ENKF+reg.

(3) Without data assimilation,
the solution would develop
as in the Comparison (data
assimilation would shift the
model towards the truth).

Figure 3. Comparison of the results of 4 methods of
simulating 2-D growth of a fire using an ensemble of
solutions. The vertical axis is temperature and the 2
horizontal axes represent x- and y- spatial dimensions.
The exact solution (“truth”) is shown in the upper left.
Ensemble solution with a standard EnkF algorithm is
shown in the upper right, which creates unstable and
unphysical solutions. An EnkF solution with
stabilization with the Johns and Mandel (2004) method
is shown in the lower left, which produces the best,
physically realistic solution. The solution of the
ensemble without data assimilation is shown in the
lower right, in which the solution of the ensemble drifts
away from the solution. From Mandel et al. (2006).

collection of simulations started from randomly
perturbed initial conditions. When the data is injected,
the ensemble called the forecast is updated to get a
new ensemble called the analysis to achieve a least
squares fit using two conditions: change in the
ensemble members should be minimized, and the data
d should fit the ensemble members state u,

h(u)=~d 3)

where h is called the observation function. The weights
in the least squares are obtained from the covariances
of the ensemble and of the data error. For
comprehensive surveys of EnKF techniques, see
Evensen (2003), Evensen (2004), and Tippett et al.
(2003). In general, the EnKF works by forming the
analysis ensemble as linear combinations of the
forecast ensemble. This raises two concerns, especially
in highly nonlinear models: if the change of state in the
update is large, there may not be suitable forecast
members to make linear combinations of in order to
match the data. Hence, a linear combination of
realizable states may not itself be a realizable state.
This results in the need for large ensembles and
frequent small updates, and has the potential to break
down.

We are using filters based on the EnKF with data
perturbation (Burgers et al. 1998). But, even with the
simple wildfire model defined by Equations (1) and (2),
the data assimilation always produces an ensemble with

nonphysical solutions and then the simulation breaks
down numerically. Therefore, we have proposed a
regularization by adding a term involving the change in
the spatial gradient of ensemble members to the least
squares (Johns and Mandel 2004) (see Figure 3).
Existing ensemble filter formulas assume that the
observation function is linear, h(u)= Hu and then

compute with the observation matrix H. To simplify the
software, we have derived a mathematically equivalent
ensemble filter that only needs to evaluate h(u) for each
ensemble member. The ensemble update involves
computation with large dense matrices. Currently we are
using the SCALAPACK parallel linear algebra engine.
Future developments include the treatment of nonlinear
observation functions, and a hybrid deterministic/Monte
Carlo filter that can overcome very strong nonlinearity
by modifying the ensemble members to attract them to
the truth rather than relying on linear combinations,
while maintaining correct ensemble statistics, as well as
ability to relax the assumptions that the error distribution
is Gaussian (see Figure 4, and Mandel and Beezley
2007). An approximate one-sided inverse of the
observation function is needed for this (Sec. 6). For
assimilation of out-of-order data, we will use system
states that combine states at several times (Mandel et
al. 2004). The parallel computing framework we have
developed was designed with this in mind.

4. DATA SOURCES AND CHARACTERISTICS

Data comes from fixed sensors that measure
temperature, radiation, and local weather conditions
(Kremens et al. 2003). The fixed sensors, positioned so
as to provide weather conditions near a fire, are
mounted at various heights above the ground on a pole
with a tripod base. The data logging and transmission
electronics are buried in the soil in a protective box.
Wiring to the sensors and antennae is insulated. This
type of system will survive burn-over by low intensity
fires. These sensors supplement other sources of
weather data derived from permanent and portable
automated weather stations. The temperature and
radiation measurements provide the direct indication of
the fire front passage and the radiation measurement
can also be used to determine the intensity of the fire.
The raw data is logged and transmitted as comma
delimited ASCII. Measurement of temperature as one
of these sensors is burned over by fire is shown in
Figure 5, along with the model solution based on
Equations (1)-(2).

Data also comes from images taken by sensors on
either satellites or airplanes. The primary source of
image data is the Wildfire Airborne Sensor Project
(WASP) (Li et al. 2005). This three wavelength digital
infrared camera system is carried on an airplane that is
flown over the fire area. Camera calibration, an inertial
measurement unit, GPS, and digital elevation data are
used in a processing system to convert raw images to a
map product with a latitude and longitude associated
with each pixel. The three wavelength infrared images
can then be processed using a variety of algorithm
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work here
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Figure 4. Schematic demonstrating the problems
associated with assuming a Gaussian error distribution
for the problem of modeling reaction-based problems
like wildfires. The abscissa is temperature and the
vertical axis represents the probability of a solution of
this temperature. Problems such as this typically exhibit
bimodal distribution (with the density having two peaks),
concentrated about either a state of Burning (high
temperatures above the ignition temperature, indicated
by the red vertical line) or a state of Not Burning
(having a temperature below ignition). This distribution
is not Gaussian. Hence methods like EnKF, which rely
on the Gaussian assumption, do not work well, as they
smear the error distribution of states including both
burning and not burning toward a mean temperature
indicated here by the dashed line, which is to the left of
(i.e. below) the ignition temperature.

approaches (Li et al. 2005, Dozier 2006) to extract
which pixels contain a signal from fire and to determine
the energy radiated by the fire (Wooster et al. 2003,
Smith et al. 2005). The original pixel values, the derived
probability of fire in each pixel, and the latitude and
longitude information are stored as GeoTIFF images.

Data from previous fires are stored in a data center

in GeoTIFF (images), Excel spreadsheet files, or text
files (sensors). The Excel data is made more accessible
by converting it to a comma separated value (CSV)
format. GPS information is stored about each fixed-
location sensor. Each sensor's data is time stamped to
identify when the data was collected or received (if it
comes without a time stamp). For mobile sensors, both
the time stamp and GPS information is available.

Data that comes into the data center must go

through a process consisting of up to six steps:

e Retrieval: Get the data from sensors. This may
mean receiving data directly from a sensor or
indirectly through another computer or storage
device (e.g., a disk drive).

e  Extraction: The data may be quite messy in
raw form, thus the relevant data may have to
be extracted from the transmitted information.

e  Conversion: The units of the data may not be
appropriate for our application.

e Quality control: Bad data should be removed or
repaired if possible. Missing data (e.g., in a
composite satellite photo) must be repaired.

e  Store: The data must be archived to the right
medium (or media). This might mean a disk,
tape, or computer memory, or no storage
device at all if data is not being archived
permanently or only temporarily.

e  Notification: If a simulation is using the data as
it comes into the data center, the application
must be informed of the existence of new data.

5. INFORMATION FLOW

In order to run a demonstration simulation, we
create a script that lists the sensors that will be included
in a run. Multiple runs are handled with a script each. A
data center approach is used to store data. We can
retrieve the data from a remote site using a simple
agent-based approach or direct remote copying.

We are using an Apple XGrid in a University of
Kentucky computer science student laboratory to
introduce sensor uncertainty into the simulations,
independent of the actual scripts we create. The
sensors provide data to the running simulation, which is
currently in Colorado. The methodology is portable to
any Grid environment, not just Apple's.

When a computer in the sensor Grid is idle, data
streams regularly based on the scripts we created. We
must do time zone translation on the time stamps when
running a simulation in order to be robust. When
someone logs into a computer in the sensor Grid and
uses the computer, our sensor code is put to sleep
automatically by the XGrid controller and the sensors
therein are offline until the computer has been idle for
some period of time that we cannot control. Using only
cycles on idle computers is typical of many Grid
environments.

The actual network streaming tool uses a standard
TCP client-server scheme. The TCP protocol is a
reliable byte stream protocol and underlying network
instabilities are accommodated reliably. The programs
are small Java codes using built in networking (e.g.,
write once, write all capabilities) and data encryption
methods. The programs are fast and run on almost
anything without recompiling.

The sensor network operates either actively
(sending data to a specific set of locations) or passively
(sending data to requestors). In an active mode, each
sensor is represented by a single client (more than one
sensor can be on the client, however). When it is time to
send data, three-way handshaking is used to create a
TCP connection to the remote server and send data
through it. In a passive mode, each sensor is a server
and clients receive data by creating a connection to it
and reading data.

The data used by the sensor network is normally
kept in a remote data center and only data to be
transmitted soon is pre-fetched. The actual computer
load is quite small since much of the time the sensor
program is asleep and only periodically does it wake up
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Figure 5. Measured and computed temperatures (in
°C) as a function of time (seconds). Data was
measured using the instrument described in
Kremens et al. (2003), while the model results were
computed from the model described in Section 2.2.2.
From Mandel et al. (2006).

to do data transfers. What is important is network
bandwidth and reliability. Having an acceptable latency
time is less important.

6. DATA INJECTION INTO THE ENSEMBLE

The data is related to the model by the observation
equation (3). The observation function h maps the
system state u to synthetic data, which are the values
the data would be in the absence of modeling and
measurement errors. Knowledge of the observation
function, the data, and an estimate of the data error
covariance is enough to find the correct linear
combinations of ensemble members in the ensemble
fiter. The data assimilation code also requires an
approximate inverse g of the observation function. For

a system state u and data d, g(h(u)-d)is the

direction in which the system state can change to
decrease a norm of the data residual h(u)—d . For an

observation function that is simply the value of a
variable in the system state, the natural choice of
approximate inverse can be just the corresponding term
of the data residual, embedded in a zero vector.

Building the observation function and its
approximate inverse requires conversion of physical
units between the model and data, and conversion and
interpolation of physical coordinates. In addition,
synthetic data at instants of time between the simulation
time of ensemble members need to be interpolated to
the data time. The data injection itself is done by
updating the ensemble to minimize a weighted sum of
the data residual and the change in the ensemble (as
described in Sec. 3).

The data items enter in a pool maintained by the
data acquisition module. The assimilation code can
inquire the data acquisition module if there are any new

data items available, request their quantitative and
numerical properties, and delete them from the pool
after they are no longer needed. The properties of the
data items include a time stamp, encoding of the type
and parameter values of the observation function and its
approximate inverse, estimate of the error of the data,
and finally the numerical values of the data itself. From
the point of view of the assimilation code, all information
about physical units, etc., is encoded in the observation
function.

7. DELIVERY OF COMPUTATIONAL RESULTS

Visualization of the model output as an image is
accomplished by brightness, color encoding, and
transparency for a visual indication of the location and
intensity of the fire, and of the probability distribution of
the forecast. 3-D visualization of the fire is more
complex and complexity increases if high spatial
resolution of the output is desired. 3-D visualization
uses model output from the fire propagation code for the
flame region and from the atmospheric code for
visualization of smoke. Ensemble statistics are used for
visualization of probability.

The geographic output of the fire model in 2-D or 3-
D is visualized in a number of ways. A PDF file of the
output as a map is generated for potential output as
hardcopy view of the fire at a set point in time. For
computer based mapping, manipulation, and
visualization of the model output, file formats compatible
with the geographic information system (GIS) products
are generated.

The time varying output for both 2-D and 3-D is also
used to generate a movie playable in any of the media
formats, e.g., MPEG. The user may select movie
duration up to the maximum extent of the model
forecast.

An intuitive and easy method for map visualization
is to use a web-based mapping server, e.g.,, GIS
software, Google Maps, or Google Earth. These web-
based programs simplify access to map and image
data. They let us display model output movies on top of
a relevant map background. Within Google Earth, for
example, this allows User control of the viewing
perspective, zooming into specific sites, and selecting
the time frame of the visualization within the parameters
of the current available simulation. These web-based
programs also allow switching between background
types, for example, USGS topographic maps or high-
resolution satellite images with a road layer or other
pertinent layers such water sources added.

8. CONCLUSIONS

We are progressing towards a full computational
test. Data will move, possibly unreliably, from remote
sensors to a remote computational machine. Our
simulations will be data-driven in terms of the models
and scales we use. The choices of models and scales
will be made in part based on the data streaming in. We



are now in a position to develop the final piece of our
DDDAS strategy: having the simulation control how
much data is needed and from where in order to
improve the quality of the flame wave front predictions.
Only then will we have a truly symbiotic relationship
between the running computations and data collection.
Our current test should have the right ingredients to
predict how our DDDAS will work in a planned future
field test with a real wildland fire.
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