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1. INTRODUCTION 

  
 We describe an ongoing effort to build a Dynamic 

Data Driven Application System (DDDAS) for short-
range forecast of wildfire behavior using a coupled 
atmosphere-fire model injected with real-time weather 
data, images, and sensor streams. The system should 
change the forecast when new data is received. The 
basic approach is to encapsulate the model code and 
use an ensemble Kalman filter in time-space with a 
highly parallel implementation. Developments in the 
ensemble Kalman filter are presented, for out-of-
sequence data assimilation, hidden model states, and 
highly nonlinear problems. Parallel implementation and 
web-based visualization are also discussed. A 
schematic diagram of this system is shown in Figure 1. 

The motivation for this work is the obvious societal 
value of an accurate forecast compounded with the 
inherent challenge in modeling this nonlinear, rapidly-
changing phenomena, the difficulty in obtaining remote 
or in situ data about the fire itself, and the challenges of 
communicating the on-site, out-of-order data of 
unknown quality to supercomputers and using it to steer 
the model simulations. The work necessarily extends 
beyond data assimilation work in progress in 
atmospheric science due to the specific application 
challenges:  the model is strongly nonlinear and 
irreversible, and the data arrives out-of-order from 
disparate data sources. 

 The DDDAS is built upon a previously existing 
coupled atmosphere-wildfire model. Components have 
been developed and added which (1) save, modify, and 
restore the state of the atmosphere-wildfire model, (2) 
apply ensemble data assimilation algorithms to modify 
ensemble member states by comparing the data with 
synthetic data of the same kind created from the 
simulation state, (3) retrieve, process, and ingest data 
from both novel ground-based sensors and airborne 
platforms in the near vicinity of a fire, and (4) provide 
computational results visualized in several ways 
adaptable to user needs. 

  

2. MODEL DESCRIPTION 

 
  The original modeling system is composed of two 

parts: a numerical weather prediction model and a fire 
behavior model that models the growth of a wildfire in 
response to weather, fuel conditions, and terrain (Clark 
et al. 2004; Coen 2005). These are two-way coupled so 
that heat and water vapor fluxes from the fire feed back 
to the atmosphere to produce fire winds, while the 
atmospheric winds and changes in humidity in turn drive 
the fire propagation. This wildfire simulation model can 
thus represent the complex interactions between a fire 
and the atmosphere. 

2.1 Atmospheric Model 

 The meteorological model is a three-dimensional 
non-hydrostatic numerical model based on the Navier-
Stokes equations of motion, a thermodynamic equation, 
and conservation of mass equations using the anelastic 
approximation. Vertically stretched terrain-following 
coordinates allow the user to simulate in detail the 
airflow over complex terrain. Forecasted changes in the 
larger-scale atmospheric environment are used to 
initialize the outer of several nested domains and 
update lateral boundary conditions. Two-way interactive 
nested grids capture the outer forcing domain scale of 
the synoptic-scale environment while allowing the user 
to telescope down to tens of meters near the fireline 
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Figure 1. Schematic diagram of a wildland fire dynamic 
data-driven application system. This is the actual 
software structure. Blue blocks are functional units. 
Purple are data inputs and outputs. The observation 
function interprets the model variables in terms of 
observable quantities and produces synthetic data 
from the model state. The data assimilation compares 
the synthetic data and the real data, and adjusts the 
model state accordingly. 



2 

through horizontal and vertical grid refinement. Weather 
processes such as the production of cloud droplets, 
rain, and ice are parameterized using standard 
treatments. 

2.2 Fire Model 

 Although initial investigations began using the semi-
empirical fire model described in 2.2.1, a physically 
based model based on partial differential equations 
(PDEs) that more amenable to data assimilation is being 
developed (Section 2.2.2).   

2.2.1 Fire model based on semi-empirical formula 

Local fire spread rates depend on the modeled wind 
components through an application of the Rothermel fire 
spread formula (Rothermel 1972). The heat release rate 
is based on Albini (1994) which characterizes how the 
fire consumes fuels of different sizes with time after 
ignition, distinguishing between rapidly consumed 
grasses and slowly burned logs. Within each 
atmospheric grid cell, the land surface is further divided 
into fuel cells, with fuel characteristics corresponding to 
the 13 standard fuel types (Anderson 1982). Four 
tracers, assigned to each fuel cell, identify burning areas 
of fuel cells and define the fire front. Fire spread rates 
are calculated locally along the fire as a function of 
fuels, wind speed and direction from the atmospheric 
model (which includes the effects of the fire), and terrain 
slope, while a local contour advection scheme assures 
consistency along the fireline. The canopy may be dried 
and ignited by the surface fire. Then a simple radiation 
treatment distributes the sensible and latent heat into 
the lowest atmospheric grid levels. 

 The empirical fire model is using a submesh 
representation of the fire region. Within each cell on the 

fire model grid, a quadrilateral defines the burning 
region. The burning area in each grid cell is defined by 
the position of four moving points, called tracers. This 
representation makes the fire area hard to adjust in data 
assimilation (Sec. 3).  For this reason, we have 
developed a translation of the tracers into a level 
function. The level function is given by values at nodes 
of the fire grid. The fire region is where the level function 
is positive. The absolute value of the level function is 
approximately equal to the Euclidean distance from the 
fireline. In data assimilation, the level function can be 
increased or decreased just like the physical quantities 
in the model. 

2.2.2 PDE-based fire model 

Our current experiments are with a simple fire model 
(Mandel et al. 2004), which uses the reaction-
convection-diffusion equation for the temperature T and 
fuel supply Sk,  
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where k is the index for different fuel types, which could 
be different vertical layers (ground, surface, and aerial 
fuels).  Equation (1) is the heat balance equation. The 
term !"d"T models the heat diffusion, !av "#T is the 

convection by wind with speed v, e
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generated by burning the fuel, and !b(T ! T
o
)  is the 

heat lost by flux to the ambient environment with 
temperature Ta. Equation (2) is the fuel balance 
equation for fuel of type k. The equations are discretized 
by simple central finite differences in space and the 
second order trapezoidal method time. The nonlinear 
system in each time step is solved by a matrix-free 
Newton-GMRES method with preconditioning by FFT 
inversion of the diffusion term. This numerical approach 
is well suited for a diffusion-dominated problem. 
Methods for convection dominated problems (strong 
winds relative to the mesh scale) involving upwinding 
and nonsymmetrical preconditioning are in 
development. This simple model is capable of producing 
a reasonable fire behavior with an advancing fire front.  
The combustion wave solution is shown in Figure 2.   

 A more realistic model is under development, which 
will include several species of fuel, radiative heat 
transfer between, and evaporation of moisture. It is 
anticipated that this model will replace the empirical fire 
model and it will be coupled to the atmospheric model. 
For related physics based fire models in the literature 
see Linn et al. (2002) and Seron et al. (2005). 

 

3. ENSEMBLE MODELING 

 
 Ensemble filters work by advancing in time a 

 
Figure 2. Ignition is at time t=0 in the middle. Two 
waves develop that travel from the ignition point to the 
outside. The speed of propagation was calibrated 
using past fire behavior data to about 0.1 m/s (this was 
done by setting the diffusion coefficient correctly).  
The spatial resolution (grid size) was 1 m. Simple finite 
differences are used. This is 1D but important. We use 
the shape of the 1D wave to compare with 1D 
measurements (Figure 3). 
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collection of simulations started from randomly 
perturbed initial conditions. When the data is injected, 
the ensemble called the forecast is updated to get a 
new ensemble called the analysis to achieve a least 
squares fit using two conditions: change in the 
ensemble members should be minimized, and the data 
d should fit the ensemble members state u, 

 
h(u) ! d                                                                (3) 

 
where h is called the observation function. The weights 
in the least squares are obtained from the covariances 
of the ensemble and of the data error. For 
comprehensive surveys of EnKF techniques, see 
Evensen (2003), Evensen (2004), and Tippett et al. 
(2003). In general, the EnKF works by forming the 
analysis ensemble as linear combinations of the 
forecast ensemble. This raises two concerns, especially 
in highly nonlinear models: if the change of state in the 
update is large, there may not be suitable forecast 
members to make linear combinations of in order to 
match the data.  Hence, a linear combination of 
realizable states may not itself be a realizable state.  
This results in the need for large ensembles and 
frequent small updates, and has the potential to break 
down. 

 We are using filters based on the EnKF with data 
perturbation (Burgers et al. 1998). But, even with the 
simple wildfire model defined by Equations (1) and (2), 
the data assimilation always produces an ensemble with 

nonphysical solutions and then the simulation breaks 
down numerically. Therefore, we have proposed a 
regularization by adding a term involving the change in 
the spatial gradient of ensemble members to the least 
squares (Johns and Mandel 2004) (see Figure 3). 
Existing ensemble filter formulas assume that the 
observation function is linear, h(u) = Hu  and then 

compute with the observation matrix H. To simplify the 
software, we have derived a mathematically equivalent 
ensemble filter that only needs to evaluate h(u) for each 
ensemble member. The ensemble update involves 
computation with large dense matrices. Currently we are 
using the SCALAPACK parallel linear algebra engine. 
Future developments include the treatment of nonlinear 
observation functions, and a hybrid deterministic/Monte 
Carlo filter that can overcome very strong nonlinearity 
by modifying the ensemble members to attract them to 
the truth rather than relying on linear combinations, 
while maintaining correct ensemble statistics, as well as 
ability to relax the assumptions that the error distribution 
is Gaussian (see Figure 4, and Mandel and Beezley 
2007). An approximate one-sided inverse of the 
observation function is needed for this (Sec. 6). For 
assimilation of out-of-order data, we will use system 
states that combine states at several times (Mandel et 
al. 2004). The parallel computing framework we have 
developed was designed with this in mind.  

 

4. DATA SOURCES AND CHARACTERISTICS 

 
 Data comes from fixed sensors that measure 

temperature, radiation, and local weather conditions 
(Kremens et al. 2003). The fixed sensors, positioned so 
as to provide weather conditions near a fire, are 
mounted at various heights above the ground on a pole 
with a tripod base. The data logging and transmission 
electronics are buried in the soil in a protective box. 
Wiring to the sensors and antennae is insulated. This 
type of system will survive burn-over by low intensity 
fires. These sensors supplement other sources of 
weather data derived from permanent and portable 
automated weather stations. The temperature and 
radiation measurements provide the direct indication of 
the fire front passage and the radiation measurement 
can also be used to determine the intensity of the fire. 
The raw data is logged and transmitted as comma 
delimited ASCII.  Measurement of temperature as one 
of these sensors is burned over by fire is shown in 
Figure 5, along with the model solution based on 
Equations (1)-(2). 

  Data also comes from images taken by sensors on 
either satellites or airplanes. The primary source of 
image data is the Wildfire Airborne Sensor Project 
(WASP) (Li et al. 2005). This three wavelength digital 
infrared camera system is carried on an airplane that is 
flown over the fire area.  Camera calibration, an inertial 
measurement unit, GPS, and digital elevation data are 
used in a processing system to convert raw images to a 
map product with a latitude and longitude associated 
with each pixel.  The three wavelength infrared images 
can then be processed using a variety of algorithm 

 
Figure 3.  Comparison of the results of 4 methods of 
simulating 2-D growth of a fire using an ensemble of 
solutions.  The vertical axis is temperature and the 2 
horizontal axes represent x- and y- spatial dimensions. 
The exact solution (“truth”) is shown in the upper left. 
Ensemble solution with a standard EnkF algorithm is 
shown in the upper right, which creates unstable and 
unphysical solutions. An EnkF solution with 
stabilization with the Johns and Mandel (2004) method 
is shown in the lower left, which produces the best, 
physically realistic solution.  The solution of the 
ensemble without data assimilation is shown in the 
lower right, in which the solution of the ensemble drifts 
away from the solution. From Mandel et al. (2006). 
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approaches (Li et al. 2005, Dozier 2006) to extract 
which pixels contain a signal from fire and to determine 
the energy radiated by the fire (Wooster et al. 2003, 
Smith et al. 2005). The original pixel values, the derived 
probability of fire in each pixel, and the latitude and 
longitude information are stored as GeoTIFF images. 

 Data from previous fires are stored in a data center 
in GeoTIFF (images), Excel spreadsheet files, or text 
files (sensors). The Excel data is made more accessible 
by converting it to a comma separated value (CSV) 
format. GPS information is stored about each fixed-
location sensor. Each sensor's data is time stamped to 
identify when the data was collected or received (if it 
comes without a time stamp). For mobile sensors, both 
the time stamp and GPS information is available. 

 Data that comes into the data center must go 
through a process consisting of up to six steps:  

• Retrieval: Get the data from sensors. This may 
mean receiving data directly from a sensor or 
indirectly through another computer or storage 
device (e.g., a disk drive).  

• Extraction: The data may be quite messy in 
raw form, thus the relevant data may have to 
be extracted from the transmitted information.  

• Conversion: The units of the data may not be 
appropriate for our application.  

• Quality control: Bad data should be removed or 
repaired if possible. Missing data (e.g., in a 
composite satellite photo) must be repaired. 

• Store: The data must be archived to the right 
medium (or media). This might mean a disk, 
tape, or computer memory, or no storage 
device at all if data is not being archived 
permanently or only temporarily.  

• Notification: If a simulation is using the data as 
it comes into the data center, the application 
must be informed of the existence of new data. 

 

5. INFORMATION FLOW 

 
In order to run a demonstration simulation, we 

create a script that lists the sensors that will be included 
in a run. Multiple runs are handled with a script each. A 
data center approach is used to store data. We can 
retrieve the data from a remote site using a simple 
agent-based approach or direct remote copying. 

 We are using an Apple XGrid in a University of 
Kentucky computer science student laboratory to 
introduce sensor uncertainty into the simulations, 
independent of the actual scripts we create. The 
sensors provide data to the running simulation, which is 
currently in Colorado. The methodology is portable to 
any Grid environment, not just Apple's. 

 When a computer in the sensor Grid is idle, data 
streams regularly based on the scripts we created. We 
must  do time zone translation on the time stamps when 
running a simulation in order to be robust. When 
someone logs into a computer in the sensor Grid and 
uses the computer, our sensor code is put to sleep 
automatically by the XGrid controller and the sensors 
therein are offline until the computer has been idle for 
some period of time that we cannot control. Using only 
cycles on idle computers is typical of many Grid 
environments. 

 The actual network streaming tool uses a standard 
TCP client-server scheme. The TCP protocol is a 
reliable byte stream protocol and underlying network 
instabilities are accommodated reliably. The programs 
are small Java codes using built in networking (e.g., 
write once, write all capabilities) and data encryption 
methods. The programs are fast and run on almost 
anything without recompiling. 

 The sensor network operates either actively 
(sending data to a specific set of locations) or passively 
(sending data to requestors). In an active mode, each 
sensor is represented by a single client (more than one 
sensor can be on the client, however). When it is time to 
send data, three-way handshaking is used to create a 
TCP connection to the remote server and send data 
through it. In a passive mode, each sensor is a server 
and clients receive data by creating a connection to it 
and reading data. 

 The data used by the sensor network is normally 
kept in a remote data center and only data to be 
transmitted soon is pre-fetched. The actual computer 
load is quite small since much of the time the sensor 
program is asleep and only periodically does it wake up 

 
Figure 4.  Schematic demonstrating the problems 
associated with assuming a Gaussian error distribution 
for the problem of modeling reaction-based problems 
like wildfires.  The abscissa is temperature and the 
vertical axis represents the probability of a solution of 
this temperature. Problems such as this typically exhibit 
bimodal distribution (with the density having two peaks), 
concentrated about either a state of Burning (high 
temperatures above the ignition temperature, indicated 
by the red vertical line) or  a state of Not Burning 
(having a temperature below ignition). This distribution 
is not Gaussian. Hence methods like EnKF, which rely 
on the Gaussian assumption, do not work well, as they 
smear the error distribution of states including both 
burning and not burning toward a mean temperature 
indicated here by the dashed line, which is to the left of  
(i.e. below) the ignition temperature. 
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to do data transfers. What is important is network 
bandwidth and reliability. Having an acceptable latency 
time is less important. 

  

6. DATA INJECTION INTO THE ENSEMBLE 

 
  The data is related to the model by the observation 

equation (3). The observation function h maps the 
system state u to synthetic data, which are the values 
the data would be in the absence of modeling and 
measurement errors. Knowledge of the observation 
function, the data, and an estimate of the data error 
covariance is enough to find the correct linear 
combinations of ensemble members in the ensemble 
filter. The data assimilation code also requires an 
approximate inverse g  of the observation function. For 

a system state u and data d, g h u( ) ! d( ) is the 

direction in which the system state can change to 

decrease a norm of the data residual h u( ) ! d . For an 

observation function that is simply the value of a 
variable in the system state, the natural choice of 
approximate inverse can be just the corresponding term 
of the data residual, embedded in a zero vector. 

 Building the observation function and its 
approximate inverse requires conversion of physical 
units between the model and data, and conversion and 
interpolation of physical coordinates. In addition, 
synthetic data at instants of time between the simulation 
time of ensemble members need to be interpolated to 
the data time. The data injection itself is done by 
updating the ensemble to minimize a weighted sum of 
the data residual and the change in the ensemble (as 
described in Sec. 3). 

 The data items enter in a pool maintained by the 
data acquisition module. The assimilation code can 
inquire the data acquisition module if there are any new 

data items available, request their quantitative and 
numerical properties, and delete them from the pool 
after they are no longer needed. The properties of the 
data items include a time stamp, encoding of the type 
and parameter values of the observation function and its 
approximate inverse, estimate of the error of the data, 
and finally the numerical values of the data itself. From 
the point of view of the assimilation code, all information 
about physical units, etc., is encoded in the observation 
function. 
 

7. DELIVERY OF COMPUTATIONAL RESULTS 

 
Visualization of the model output as an image is 

accomplished by brightness, color encoding, and 
transparency for a visual indication of the location and 
intensity of the fire, and of the probability distribution of 
the forecast. 3-D visualization of the fire is more 
complex and complexity increases if high spatial 
resolution of the output is desired.  3-D visualization 
uses model output from the fire propagation code for the 
flame region and from the atmospheric code for 
visualization of smoke. Ensemble statistics are used for 
visualization of probability. 

 The geographic output of the fire model in 2-D or 3-
D is visualized in a number of ways. A PDF file of the 
output as a map is generated for potential output as 
hardcopy view of the fire at a set point in time. For 
computer based mapping, manipulation, and 
visualization of the model output, file formats compatible 
with the geographic information system (GIS) products 
are generated. 

 The time varying output for both 2-D and 3-D is also 
used to generate a movie playable in any of the media 
formats, e.g., MPEG. The user may select movie 
duration up to the maximum extent of the model 
forecast. 

 An intuitive and easy method for map visualization 
is to use a web-based mapping server, e.g., GIS 
software, Google Maps, or Google Earth.  These web-
based programs simplify access to map and image 
data. They let us display model output movies on top of  
a relevant map background.  Within Google Earth, for 
example, this allows User control of the viewing 
perspective, zooming into specific sites, and selecting 
the time frame of the visualization within the parameters 
of the current available simulation.  These web-based 
programs also allow switching between background 
types, for example, USGS topographic maps or high-
resolution satellite images with a road layer or other 
pertinent layers such water sources added. 
 

8. CONCLUSIONS 

 
 We are progressing towards a full computational 

test. Data will move, possibly unreliably, from remote 
sensors to a remote computational machine. Our 
simulations will be data-driven in terms of the models 
and scales we use. The choices of models and scales 
will be made in part based on the data streaming in. We 

 
Figure 5. Measured and computed temperatures (in 
oC) as a function of time (seconds). Data was 
measured using the instrument described in 
Kremens et al. (2003), while the model results were 
computed from the model described in Section 2.2.2. 
From Mandel et al. (2006). 
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are now in a position to develop the final piece of our 
DDDAS strategy:  having the simulation control how 
much data is needed and from where in order to 
improve the quality of the flame wave front predictions. 
Only then will we have a truly symbiotic relationship 
between the running computations and data collection. 
Our current test should have the right ingredients to 
predict how our DDDAS will work in a planned future 
field test with a real wildland fire. 
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