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ABSTRACT 
 
Clear-air Turbulence (CAT) is a significant safety 
issue for aviation at upper levels in the atmosphere. 
Since CAT is not observable with traditional remote 
sensing techniques, it is particularly difficult to avoid. 
The current FAA-sponsored CAT forecasting product, 
the Graphical Turbulence Guidance System (GTG), 
calculates many indicators or diagnostics of CAT 
potential from larger-scale numerical weather 
prediction model output and compares them to 
current turbulence observations from pilots (PIREPs). 
It then combines the diagnostics using a global 
optimization technique to provide the final CAT 
forecast.  Theory suggests that many CAT 
diagnostics may vary in their predictive skill 
depending on the geographic region, but GTG is 
unable to exploit these regional dependencies due to 
an insufficient number of timely PIREPs.  Recently, 
more plentiful and objective observation data have 
become available from the In-situ Turbulence 
Observation System. This system is currently installed 
on about 200 United Airlines' aircraft and provides 
data at one minute intervals. This high-resolution data 
now allows the development of CAT forecasts on a 
regional scale. For each region of the continental U.S. 
(determined by CAT climatology), we have used the 
machine learning classification technique of Support 
Vector Machines to determine the best subset of CAT 
diagnostics that together have the highest forecasting 
performance, regardless of the diagnostics' individual 
performances. To search efficiently through the state 
space of all feature subsets, we used a forward 
selection algorithm; the search is guided by a five-fold 
cross validation method on test sets of in-situ 
observation data.  The results of the regional CAT 
forecasts determined in this manner are shown to 
provide better skill than the current GTG algorithm. 
This approach will ultimately be used to replace the 
current operational GTG CAT forecasting system.  
 
1. INTRODUCTION 
 
Pilots' ability to avoid turbulence during flight 
affects the safety of the millions of people who 
fly commercial airlines and other aircraft every 
year. Of all weather-related commercial aircraft 
incidents, 65% can be attributed to turbulence 

encounters, and major carriers estimate that 
they receive hundreds of injury claims and pay 
out ``tens of millions" per year (Sharman et al, 
2006). Turbulence can occur in clouds or in 
clear air. At upper levels, clear-air turbulence, or 
CAT, is particularly hard to avoid because it is 
invisible to traditional remote sensing 
techniques. One seasoned pilot noted that CAT 
was his “greatest worry” when flying (Salby, 
2006). In order to plan flight paths to avoid 
turbulence, air traffic controllers, airline flight 
dispatchers, and flight crews must know where 
CAT pockets are likely to be. The dynamical 
scales in which CAT appears, however, are far 
finer than those of any current weather model. 
And observations of the state of the system – 
reports radioed in by pilots who encounter CAT 
– are sparse and subjective. For these reasons, 
no currently available CAT forecasts meet the 
Turbulence Joint Safety Implementation Team's 
(TJIST) recommended  >0.8 probability of 
moderate-or-greater (MOG) turbulence detection 
and  >0.85 probability of null turbulence 
detection.  
 
The turbulence forecasting difficulty is due to 
two main factors: (1) turbulent eddies at the 
scales that affect aircraft (~100m) are a 
microscale phenomenon and NWP models 
cannot resolve that scale, and (2) lack of 
objective observational turbulence data. The 
prior factor has been addressed during the past 
50 years, by assuming that most of the energy 
associated with turbulent eddies at aircraft 
scales cascades down from larger scales of 
atmospheric motion (Dutton  and Panofsky 
(1970), Koshyk et al. (2001), Tung et al.(2003)). 
The turbulence forecast problem then becomes 
one of linking large-scale features resolvable by 
NWP models to the formation of aircraft-scale 
eddies. Numerous `rules of thumb' empirical 
linkages, termed turbulence diagnostics, were 
developed by the National Weather Service, 
airline meteorologists and academic 
researchers. The forecast skills of these 



diagnostics depend on the forecaster (for 
manual forecasts) and diminish with lead time; 
none meet the TJIST recommendations, either 
alone or used together in any current 
implementation. The diagnostics' skills reflect in 
part researchers' imperfect understanding of the 
atmospheric processes involved. 
 
The imperfect nature of the current diagnostics 
leads forecasters to depend, at least partially, on 
available turbulence observations. Until recently, 
the only available observations were pilot 
reports (PIREPs), and they are the second 
factor contributing to the difficulty of turbulence 
forecasting (and forecast verification). PIREPs 
are sparse, aircraft-dependent, subjective 
reports by pilots of turbulence encountered 
during flight. Sharman et al. (2006) shows that 
PIREP inaccuracy is not as large as once 
thought (Schwartz, 1996), however, the 
distribution of reports is not representative of the 
state of the atmosphere because most non-
turbulent areas are not reported. 
 
One major effort by the FAA’s Aviation Weather 
Research Program (AWRP), some major 
airlines, and the National Center for Atmospheric 
Research’s Research Applications Laboratory 
(NCAR/RAL) is the development of a better 
turbulence observation data source: in-situ data 
of eddy dissipation rate (EDR) (Cornman et al. 
1995, 2004). In this system turbulence 
observations are recorded automatically every 
minute during cruise by on-board software. It 
addresses many of the faults of PIREPs: it is 
aircraft-independent, objective, less sparse, and 
is designed to be used quantitatively. Not only 
does it offer higher-resolution observations, but 
it also helps alleviate the inconsistent null-
turbulence reporting issues with PIREPs 
(Takacs et al., 2005).  
 
While the in-situ measurement and reporting 
system is still in its first and limited deployment, 
it is being incorporated already into the next 
release of NCAR/RAL’s CAT forecasting 
system, the Graphical Turbulence Guidance 
System (GTG).  However, the GTG algorithm 
was developed using PIREPs, and thus is 
designed to make the most of sparse and 
subjective observational data. Not surprisingly, 
simply adding in-situ data into the current 
algorithm results in only a modest improvement 
in forecasting accuracy (Kay et al. 2006). The 
authors believe that in order to fully exploit the 
potential of in-situ data, a new approach or 

forecasting algorithm is needed. This paper 
presents the initial work in using a machine-
learning technique, support vector machines, to 
reevaluate the forecasting accuracy of CAT 
diagnostics using in-situ data. In addition, the 
high volume of in-situ data is used to begin 
looking at regional differences in diagnostics’ 
forecasting accuracies, in an effort to further 
improve forecasting accuracy.  
 
2. IN-SITU DATA 
 
In-situ turbulence measurements are data 
recorded by special software on commercial 
aircraft during flight. This measurement and 
reporting system was developed at NCAR under 
FAA sponsorship in order to augment or replace 
PIREPs with a data source that has more 
precise location and intensity data. Insitu 
measurements use existing aircraft equipment 
and are reported using existing communications 
networks. Detailed coverage of in-situ data 
methods can be found in Cornman et al. (1995, 
2004). 
 
The in-situ-derived turbulence metric is the eddy 
dissipation rate (EDR), 1/3ε . EDR is recognized 
as an objective measure of atmospheric 
turbulence intensity (Panofsky and Dutton, 
1983). Two methods to estimate 1/3ε onboard 
aircraft were developed: the accelerometer-
based method and the vertical wind-based 
method. Both are aircraft-independent 
measurements, and both result in approximately 
the same turbulence measurements. 
 
Currently, only the accelerometer-based method 
is in use, in United Airlines 737 and 757 aircraft. 
Southwest Airlines and Delta Airlines are 
scheduled to use the wind-based method when 
the system is deployed in their aircraft, which is 
expected to happen by the end of the year. 
 
EDR data is reported once a minute except 
during takeoff and landing, when data is 
reported more frequently depending on rate of 
altitude change. Each in-situ data report is a 
location (latitude, longitude, and altitude) and a 
set of statistics about various turbulence levels 
calculated from a number of EDR 
measurements taken onboard during that 
minute.  
 
The set of statistics are the median eddy 
dissipation rate (medEDR) and the maximum 



eddy dissipation rate (maxEDR). Reporting just 
these two fields reduces transmission costs 
while still providing a way to distinguish between 
discrete and continuous turbulence events. The 
medEDR is the median value of a time series.  
The maxEDR value is the 95% value of the time 
series; as a protection measure against 
erroneous data, peak values are not used. 
 

 
Figure 1. Taken from Sharman et al. (2006). 
This figure shows the probability distribution 
function (PDF) of three months of observed EDR 
values ( 1/3ε ) in each in-situ bin, both median 
(lower bar) and 95th percentile (upper bar). The 
open circles are estimates of the true lognormal 
distribution of turbulence based on the RUC20 
model (Frehlich & Sharman 2004). The fact that 
observed EDR distribution differs from the 
estimated distribution may reflect the ability of 
commercial air carriers to avoid some turbulence 
during flight. 
 
Due to transmission costs, both values are 
binned into 1 of 8 bins, and each possible pair of 
maxEDR/minEDR values for a minute is 
mapped to a single 8-bit character and then 
downloaded to the ground. The number of bins 
was limited by the available character sets, but a 
newer version of the algorithm now in 
development compresses the EDR data to 
enable more bins and thus a higher resolution of 
data. Currently, in-situ data is being downloaded 
from 89 United Airlines 757 aircraft. The 
software is installed on 96 757s and 101 737s. 
Figure 3 shows the geographic distribution of in-
situ data over winter 2005-2006. 
 
In-situ data provides a better representation of 
turbulence statistics in the atmosphere (Dutton 
(1980), Sharman et al. (2006)). Figure 1 shows 

that over 99% of in-situ reports are reports of 
null turbulence. If this distribution is 
representative, at any time at most 0.01% of the 
atmosphere at upper levels should contain MOG 
turbulence. In contrast, about half of PIREPs 
report null turbulence, 27% report light, 17% 
report moderate and 1% report severe; thus, 
pilots substantially underreport the null events. 
In-situ data overcomes this uncertainty by 
reporting data every minute during flight. 
 
The effort to understand in-situ intensity values 
relative to PIREP intensities is ongoing. For 
instance, is a 0.45 reading moderate or severe 
turbulence? Comparisons to qualitative PIREPs 
encounter many problems such as PIREP 
location and time errors, and overall lack of 
PIREPs.  A main problem is the fact that a pilot 
makes a report of his overall impression of the 
turbulent event, while in-situ data are 
measurements every minute; a turbulent event 
can span multiple minutes. How to match a 
series of in-situ data to one PIREP continues to 
be studied. Initial comparisons used the reading 
with the highest intensity in the event, defined as 
a consecutive series of 2nd-bin or higher in-situ 
readings (0.15 or higher), as representative of 
the event’s severity.  This value was compared 
to a PIREP, if there was one, from the same 
flight, within 40km, five minutes and 1000ft of 
the in-situ reading.  The lack of PIREPs severely 
limited the number of matches – only 328 
between August 2004 and November 2005 - but 
2nd bin in-situ values (0.15) roughly 
corresponded to light/moderate PIREPs 
(intensity 2) and 3rd bin in-situ values (0.25) 
roughly corresponded to moderate PIREPs 
(intensity 3). There were too few matches at 
higher in-situ bins to draw any conclusions.  
 
We defined MOG turbulence as 0.25 reading - 
3rd in-situ bin - or higher. This is based on the 
PIREP and in-situ data comparisons, and that 
GTG considers a PIREP of intensity 3 or higher 
to be MOG.   
 
3. CLEAR-AIR TURBULENCE DIAGNOSTICS 
 
A clear-air turbulence diagnostic is a simple 
turbulence model (equation) derived from 
qualitative expert knowledge based on 
experience or from basic physical principles. 
Through the years when forecasts were done 
manually, forecasters developed ``rules of 
thumb'' about what atmospheric conditions 
typically indicate turbulence. These rules of 



thumb were an attempt to link the large-scale 
meteorological data that was available and the 
micro-scale CAT that was the subject of the 
forecast (Hopkins, 1977). Forecasters later 
quantified these rules, creating CAT diagnostics.  
For instance, a major cause of CAT is thought to 
be the Kelvin-Helmholtz instability (Dutton and 
Panofsky, 1970). This typically happens in areas 
of strong vertical shear and low local Richardson 
number (Ri, the ratio of static stability and wind 
shear). Thus many qualitative CAT diagnostics 
concern shears and Ri.  There are many 
different diagnostics linking a large-scale 
condition to small-scale turbulence. Their 
predictive powers vary, depending upon the 
large-scale condition that each represents and 
how directly it is linked to turbulence. There are 
forty CAT diagnostics; the diagnostics cited in 
this paper are detailed in Appendix A. 
 
Forecasters use these diagnostics by mapping 
their values to different turbulence severity 
levels. In this way, forecasters took their 
qualitative knowledge about large-scale 
atmospheric conditions and their relationship to 
small-scale turbulence, quantified it in the form 
of diagnostic equations, then interpreted the 
results using thresholds to produce a qualitative 
forecast. The GTG forecasting system does 
exactly the same thing. Its authors used several 
years' worth of PIREPs to develop threshold 
values for each diagnostic that map to different 
levels of PIREP turbulence severity. With the 
newly available in-situ data, we now have the 
opportunity to reevaluate these diagnostics’ 
forecasting ability.  
 
4. METHODOLOGY 
 
Turbulence forecasting, in its current state, is 
essentially the task of classifying atmospheric 
indicators of turbulence: the forecast reflects the 
number of diagnostics which indicate turbulence 
in an area.   While it might seem obvious to 
simply use the individually best-performing 
diagnostics for forecasting, as was done with 
GTG, that approach allows one to possibly miss 
a different set of diagnostics that might perform 
better, as a group, than the set of the individually 
top-ranked diagnostics (Kohavi (1995,1997), 
Guyon (2003)).  
 
Specifically, we were trying to determine which 
subset of diagnostics will give the most accurate 
turbulence forecast, using the new in-situ data 
for verification. This emphasis on group 

performance differs from the method used to 
pick the set of diagnostics for GTG correlation. 
The method used to pick the GTG set (Sharman 
et al. (2000, 2004)) evaluated each diagnostic's 
prediction accuracy in GTG (measured by TSS, 
see Section 4.3), and then formed a ranking of 
all the diagnostics. Next, diagnostics were 
evaluated for inter-correlation; of correlated 
pairs, the lowest-ranking diagnostic was 
replaced. Then, prediction accuracy was 
measured using only the highest-ranked 
diagnostic. Next, the second highest-ranked 
diagnostic was added back in, and the 
performance was measured; if it increased, the 
next diagnostic was added, until it was found 
that the diagnostic addition negatively affected 
the performance of GTG. This method resulted 
in the set of ten diagnostics chosen for GTG: 
Frntth, ETI1, TempG, SATRi, CP, EDRS10, 
NCSU1, DTF3, SIGW10, and UBF (see 
Appendix A). In this study, we instead looked for 
the best performing diagnostics as a group, 
regardless of their individual prediction 
accuracies. Results from Sharman et al. (2000) 
show that no single diagnostic can produce a 
more accurate forecast than can multiple 
diagnostics together, supporting this multiple-
diagnostic approach.   
 
4.1 Support Vector Machines  
 
The Support Vector Machine (SVM) is a popular 
machine learning technique for classification. 
Generally, a classifier is an algorithm that 
predicts a data classification given (presumably) 
relevant data features. The SVM produces a 
model that predicts the class label by setting 
parameter values of an optimization problem 
based on its input data (Hsu et al., 2003)  
 
In order to learn the relationships (parameter 
values) between these data features and the 
class label, we first train a classifier by giving it 
many known feature/class pairs. Each pair is 
known as a data instance. A data instance k 
consists of a set of features ,i kx   (in 
our case, the n diagnostics) and a target class 
label y (turbulence or no turbulence).  

1...i n=

 
The SVM is trained on many data instances 
called a training set. The SVM prediction 
accuracy is estimated using a test set of data 
instances with known class labels which were 
not used during training. Using a test set instead 
of the training set for accuracy estimation better 



reflects the SVM's ability to classify unknown 
data. 
 

 
Figure 2.  A schematic showing a binary Support 
Vector Machine classifier with a linearly 
separating hyperplane. The data points on the 
margin lines are the support vectors. 
 
During training, each feature vector kX is 
mapped into a higher dimensional space. The 
SVM finds a linearly separating hyperplane with 
the maximal margin between class means in this 
higher dimensional space. A schematic of this 
hyperplane and margins for a binary classifier is 
shown in Figure 2.  
 
To classify an example, the SVM calculates the 
distance of that example to each class mean 
through a series of dot products, and classifies it 
in whatever class has the closest mean (Chen et 
al., 2003). This series of dot products is at the 
heart of the model and is a measure of vector 
similarity called a kernel function: 
 

( , ) ( ) ( )T
i j i jK x x x xφ φ=   

 
For implementation of the SVM, we will use the 
LibSVM library (Chang and Lin, 2003). LibSVM 
provides four basic kernels and an optional 
program that selects the model (i.e., does a 
parameter search). From previous studies 
(Abernethy, 2005) we know that the radial basis 
function kernel gives good performance for our 
domain: 

  
2( , ) exp( || || ), 0i j i jK x x x xγ γ= − − >  

  

 Figure 3. Geographic distribution of the in-situ 
data used in this study.  
 
The radial basis function kernel only has two 
parameters: γ  and C, a penalty parameter for 
the SVM error term. From the previous study, 
the LibSVM program chose 8γ =  and C=2, so 
those values are used here. 
 
4.2 Data 
 
This study used data from winter 2005-2006 
(October – March), since there are more CAT 
events during winter (Sharman et al.,2000). The 
National Center for Environmental Prediction’s 
Rapid Update Cycle model at 13km resolution 
(RUC13) provided the environmental data to 
calculate 40 CAT diagnostics at every grid point 
(Sharman et al., 2006). Diagnostics were 
calculated for hours 12Z, 15Z, 18Z and 21Z, at 
analysis time (zero-hour forecast) and the six-
hour forecasts.  Diagnostics were matched by 
location and hour on the RUC13 grid to in-situ 
data from the In-Situ Reporting System. If there 
was more than one in-situ reading in a grid box 
during the hour, only the highest intensity 
reading was used. Thus, one in-situ observation 
was matched to 40 diagnostics at a grid point. 
Only data at FL200 (20000ft) and higher were 
included, since the in-situ data was only 
available at these heights. The geographic 
distribution of the in-situ data used is shown in 



Figure 3.  The full winter contained 2855084 
matches for the  
 
 
analysis times, and 2527596 matches for set 
six-hour forecast times. 
 
To find the best subset of the 40 CAT 
diagnostics, we executed a forward search 
through the space of all subsets (Kohavi and 
Sommerfield, 1995), using SVMs as the 
evaluation function. At each step, an SVM is 
trained on training data containing only the 
current subset of diagnostics and their in-situ 
observation matches.  
 
Analysis-time diagnostics/in-situ matches were 
used to train the SVMs. The distribution of the 
data used during the SVM training process is a 
very important factor in the ability of a classifier 
such as SVMs to discriminate between the two 
classes (Japkowicz, 2000). SVMs aim for the 
lowest overall error rate. In our case, where in-
situ data is over 99% null observations, an SVM 
could simply classify everything as null and have 
a less than 1% overall error rate. We found this 
to be true in preliminary tests and it is well-
supported in the literature (Japkowicz (2000), 
Wiess and  Provost (2001), Chen et al. (2004), 
Wu and Change (2005)). To work well, the 
training data set must have a large number of 
examples from each class. The best proportion 
of examples from each class to have in a 
training set is case-dependent. For cases such 
as ours, this distribution requirement means 
altering the distribution of the data in the training 
set, rather than having the training set be a 
representative sample from the available in-situ 
data. There are multiple methods for creating a 
new training set with acceptable proportions of 
MOG reports and null reports. The methods 
applicable to this project include altering the 
kernel, increasing the number of MOG reports, 
or decreasing the number of null reports. To 
increase the number of MOG reports, we could 
synthetically create more that look statistically 
similar to real MOG reports. Decreasing the 
number of null reports (to increase the 
proportion of MOG reports) means simply not 
including some percentage of the null reports in 
a training set (but including all MOG reports). 
Here, the latter method was chosen. Since the 
in-situ data set is more than 99% null turbulence 
(0.05, 1st bin), we rebalanced the training data 
such that 40% of the data were of Moderate-or-
Greater (MOG) turbulence, and 60% were null 

(less than MOG) turbulence. We did this by 
keeping all the MOG observations and choosing 
null observations randomly to be 60% of the set. 
This proportion of MOG/nulls resulted in the best 
SVM classification rate in an earlier study of 
SVMs with CAT diagnostics and in-situ data 
(Abernethy, 2005).  
 
4.3 Search 
 
Our search for the best subset of diagnostics is 
essentially the task of feature subset selection 
(Guyon and Elisseef, 2003). We are faced with 
the choice between 40 diagnostics, knowing that 
some may not improve our current forecasting 
accuracy. The wrapper method in feature subset 
selection executes a state space search for a 
good feature subset, estimating prediction 
accuracy using an induction algorithm – here, 
we used SVMs. We used a simple hillclimbing 
search. Each state is a subset of diagnostics, 
and the search operator is “add a diagnostic”. 
The search chooses the best addition to the 
current subset based on the classification 
performance of an SVM using the current subset 
plus an additional diagnostic. This approach to 
the search is called forward selection. Thus, we 
start with an empty subset and added 
diagnostics stepwise; our stopping condition was 
no further classification performance 
improvement.  
 
At each step, sets of training data, testing data, 
and holdout data were generated containing 
only the current subset of diagnostics plus the 
proposed addition to that set. Training data 
consisted of the set of analysis-time 
observation/diagnostic matches, and the test 
and holdout sets consisted of the set of six-hour 
observation/diagnostic matches (divided 
between the two files). An SVM was trained on 
the training data using 5-fold cross-validation, 
and the resulting model was tested on the 
testing data, outputting overall classification 
accuracy. 
 
For comparison with GTG evaluations we 
wanted the classification accuracies of both 
classes – MOG and null – to weigh equally in 
the estimated prediction accuracy used to 
choose the next node expansion. The 
classification accuracy given by LibSVM reflects 
the number of samples in each class, which was 
40% MOG and 60% null. We added an extra 
step wherein we took the classification accuracy 



of each class and factored them equally into the 
final assessment: 
 
True Skill Score (TSS ) = MOG classification 
accuracy + Null classification accuracy -1  
 
Thus, -1 < TSS < 1.  
 
TSS is part of the scoring function in GTG 
(Sharman et al., 2006). To establish a baseline, 
we first ran the search over data from the entire 
U.S (see Figure 3). We then divided the U.S into 
two geographic regions, one to the west of 
100W meridian, and one to the east of it, and 
executed independent searches on both regions 
in order to see if diagnostics performed 
differently in different areas.  We plan to further 
refine and divide regions in the near future, but 
for this study, we have simply isolated the 
mountainous terrain, and the mountain-wave 
turbulence, in the west region.  When the 
hillclimbing searches terminated, a final TSS 
was calculated from the chosen subsets’ 
classification performances on the holdout data 
set. 
 
5. RESULTS 
 
Our subset searches yielded sets of diagnostics 
with higher TSSs than that of the GTG 
combination, TSS = 0.453 (Sharman et al., 
2006). Our baseline search, using data from the 
entire U.S., yielded a TSS of 0.463 using the 
diagnostic subset ETI1, STABinv, AGinv, 
netRiTW, TempG, and SIGW10 (see  Appendix 
A). For our west region, the best set found was 
ETI1, ETI2, STABinv, PVORT, ABSIA, AGinv, 
TempG, SPEED, negNVA, SIGW10 with a TSS 
of 0.465.  The east region search resulted in the 
highest TSS overall, 0.562, using the 
diagnostics CP, ETI1, Frntth, and UBF.  
 
While some of the diagnostics in the chosen 
subsets are also in the GTG combination, our 
study found that other diagnostics, such as 
AGinv and STABinv, appear to work well as part 
of  a group despite having a lower individual 
forecasting accuracy (and thus not being chosen 
as part of the GTG combination). These initial 

results support our group performance 
approach. In addition, the fact that different 
diagnostics were chosen in the east and west 
regions indicate that diagnostics can perform  
differently in different areas of the country, 
reflecting the geographic differences in the 
large-scale atmospheric processes they 
represent.  
 
The number of diagnostics that differ between 
the GTG combination and those our SVMs 
chose is larger than expected. We can attribute 
this at least in part to the difference in the 
algorithms - SVM versus GTG’s fuzzy logic 
algorithm- and the evaluation functions: True 
Skill Score versus area under the ROC curve 
(Sharman et al. 2006)), although these two are 
similar. Our initial assumption was that the GTG 
set of diagnostics, due to their high individual 
prediction accuracies, would also have high 
classification accuracies using an SVM; a 
forward search through the GTG set should find 
that all ten diagnostics produce the highest TSS. 
However, this was not the case. We executed a 
hillclimbing search using only the GTG set of 
and found that it terminated at a set of three 
diagnostics: ETI1, TempG, and SIGW10. These 
differences will require further investigation. 
 
6. FUTURE WORK 
 
Our initial study supports the idea that 
developing specialized forecasts for different 
regions of the CONUS (Continental U.S.) can 
improve overall turbulence forecasting accuracy. 
Our next steps are to develop several 
geographic regions that may further improve 
forecasting accuracy with their own sets of 
diagnostics, and to explore regionalizing the 
forecast by altitude. While SVMs provided a 
general classification algorithm for this study, 
other algorithms such as random forests may be 
suitable, also. We also intend to improve the 
search itself by using a best-first search which 
has shown to improve search results (Kohavi 
and Sommerfield, 1995).  In addition, we must 
devise a way to merge all the regional forecasts 
together to make one coherent CAT forecast for 
the CONUS. 
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Appendix A.  GTG turbulence diagnostics 

This Appendix is a partial list of the current suite of turbulence diagnostic algorithms.  Note that in 
some cases the constituent components of a diagnostic may itself be used as a turbulence index. 

 



1. Richardson number and its components (e.g., Endlich 1964, Kronebach 1964, Dutton and 
Panofsky, 1970, etc).  Theory and observations have shown that at least in some situations clear-
air turbulence patches are produced by Kelvin-Helmholtz (KH) instabilities.  This occurs when the 
Richardson number (Ri) becomes small.  Therefore, theoretically, regions of small Ri should be 
favored regions of turbulence, where 
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A1.1 with A1.2b is the SatRi diagnostic. Equation 1.2a is the STAB diagnostic, and this study 
used the inverse of STAB (STABinv). Here θ is potential temperature, θe is equivalent potential 
temperature, g is the acceleration due to gravity, z is the vertical direction, and v is the horizontal 
wind vector with components u,v in the east-west and north-south directions respectively. 

2. Turbulent kinetic energy (tke) formulations.  These are based on the tke balance equation, 
assuming horizontal homogeneity and stationarity.  The Colson-Panofsky index (Colson and 
Panofsky 1965) uses dimensional arguments in a stable atmosphere to estimate clear-air 
turbulence intensities as 

 2 2= V
crit

RiCP S
Ri

λ (1− ),                   (A2.1) 

    
where λ is a length scale, taken as the local value of vertical grid increment ∆z, and Ricrit is an 

empirical constant (≈0.5).   
Marroquin (1998) DTFs (Diagnostic TKE Formulations) used k-ε closure equations (e.g. Stull 

1988) and other simplifications to derive diagnostics for tke and/or ε, giving e.g. for DTF3, 
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where c1=1.44, c2=1.0, c3=1.92 (Stull 1988, p. 219) , and KM and Pr are  taken as adjustable 
constants to get best agreement with observations. 

3. Eddy dissipation rates estimated from second-order structure functions (Frehlich and Sharman 
2004a, 2004b).  The structure function of variable q is defined as 

    2( ) [ ( ) ( )]qD s q x q x s=< − + >   
where <> denotes an ensemble average.  The structure functions of the velocity components 
parallel or normal to the displacement vector s=(x,y,z) can be related to turbulence intensity ε 
(for q=u,v) or σw

2  (for q=w, the vertical velocity component) through  
 2/3( ) ( ( )   )REFq q sD s C D sε  ∝  (A3.1) 
 
 2( )( )   ww w sD s C σ∝             (A3.2) 
 
 where Cq(s) and Cw(s)  take into account NWP model specific spatial filtering effects, and DREF is 

given by Lindborg (1999); for small s it is proportional to s+2/3.  In the text the relation (A3.1) to 
derive ε1/3 is indicated as “EDR” and relation (A3.2) to derive σw is indicated as “SIGW.” 



4. Frontogenesis function.  Fronts contain regions of low Ri  and therefore may be conducive to 
turbulence (e.g., Jacobi et al. 1996) and can also be a source of gravity waves that may be 
unstable (e.g., Lane et al. 2004).  The definition of the frontogenesis function is (e.g., Bluestein 
1992, vol. 2, p. 253) 

where is the Eulerian timederivative.
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Dt
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 This can be rewritten in two dimensions using the thermal wind relation as 
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Expanding on a constant θ surface and invoking continuity gives 
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This is the form used in GTG at upper-levels.  Note that its formulation is based on an isentropic 
coordinate system (as used at upper-levels in the RUC model).  

5. Ellrod indices (Ellrod and Knapp 1992), ETI1 and ETI2. These indices are derived from 
simplifications of the frontogenetic function.  As such it depends mainly on the magnitudes of the 
potential temperature horizontal gradient (proportional to SV  through the thermal wind relation) 
and deformation.  Two variants were developed: 

TI1 = SV DEF       (A5.1) 

TI2 = SV (DEF - ∆H )     (A5.2) 

where DEF = ( DSH
2  + DST

2 )1/2 .      (A5.3) 

 

6. Potential vorticity (PVORT) (Knox 2001) or horizontal gradient of PV (Shapiro 1978) 
|PV|                  (A6.1) 

|∇PV|,                  (A6.2) 

where aPV g
p
θζ ∂

= −
∂

. 

 
7.Horizontal temperature gradient, TempG.  This is a measure of the deformation and also vertical 

wind shear from the thermal wind relation, and is routinely used by airline forecasters.  It was also 
used in Buldovskii et al. (1976). 
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8. Wind related indices.  Besides the speed vertical shear (A1.3), the wind speed  

s= |v|                   (A8.1) 

may be related to turbulence.  A8.1 is the SPEED diagnostic.    



9. Unbalanced flow (UBF) diagnostics (Knox 1997, Knox 2001, McCann 2001, O’Sullivan and 
Dunkerton 1995, Koch and Caracena 2002).  There is some evidence that regions of strong 
imbalance may be related to turbulence aloft (e.g., Knox 1997; McCann 2001; Koch and 
Caracena 2002).  The UBF diagnostic formulation used within GTG was developed by Koch and 
Caracena (2002) and McCann (2001), and derives from the residual R of the nonlinear balance 
equation 
 

2 2 ( , )R J u v f uζ β= −∇ Φ + + −                         (A9.1) 

where Φ is geopotential, J is the Jacobian operator, and β is the Coriolis frequency gradient. 
Other unbalanced flow related diagnostics developed by McCann (2001) and used in a case 

study by Knox (2001) include  
                 (A9.2) 2ABSIA = |v - v | , i c

where    2
c siv  = |  · | /f and v  = K  | |  /fv v v

  and    AGI = +f/2,curvζ            (A9.3) 

  with    = K | |curv sζ v  

  and where Ks  is the streamline curvature. 

10. North Carolina State University Index (NCSU1) is described in Kaplan et al. (2004), and was 
developed from investigations of several severe turbulence encounters: 
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11. Negative vorticity advection (NVA).  A rule-of-thumb forecasting approach used by the airlines is 
to look for regions of large NVA computed as follows (Bluestein 1992, vol. 1, p. 335): 
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