
 

8B.3 
 

SIEGE: A GRAPHICAL USER INTERFACE TO ENABLE MANAGEMENT OF LARGE NUMBERS OF 
WEATHER SIMULATIONS 

 
 

Jay Alameda, Robert Wilhelmson, Albert Rossi, Shawn Hampton 
National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 

Urbana, IL 61801 
 

Brian Jewett 
Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801 

 
Thomas Baltzer, Anne Wilson 

Unidata Program Center, UCAR, Boulder, CO 
 

1. INTRODUCTION 
 
In the LEAD project, we have focused on the 
most challenging users of numerical weather 
prediction, namely, the atmospheric science 
researchers, who are prone to use their own 
tools, their own modified versions of community 
codes such as the Weather Research and 
Forecasting (WRF) model, and are typically 
comfortable with elaborate shell scripts to 
perform the work they find to be necessary to 
succeed, to drive our development efforts. We 
will describe our graphical user interface, Siege, 
which we can adapt to a multiplicity of user 
scenarios, and is coupled to a multi-level 
workflow engine, to handle both the challenges 
of ensemble description and execution, as well 
as the detailed patterns of workflow on each 
computational resource; services to support the 
peculiarities of each platform being used to do 
the modeling (such as on TeraGrid), and the use 
of an RDF triple store and message bus 
together as the backbone of our notification, 
logging, and metadata infrastructure. The design 
of our ensemble management software and 
services attempts to come to grips with lack of 
control of elements surrounding and supporting 
the environment; we achieve this through 
multiple mechanisms including using the OSGI 
plug-in architecture, as well as the use of RDF 
triples as our finest-grain descriptive element. 
This combination, we believe, is an important,  
 
Corresponding author address: Jay Alameda, 
National Center for Supercomputing 
Applications, University of Illinois at Urbana-
Champaign, Urbana, IL, 61801: 
jalameda@ncsa.uiuc.edu 

stepping stone to building a cyberenvironment 
which aims to provides flexibility and ease of use 
far beyond the current range of typical problem 
solving environments. 
 

2. PROBLEM DESCRIPTION 
 
Computational atmospheric science researchers 
present a methodology of work that taxes the 
ability of conventional web portals to cleanly 
solve.  For instance, the advanced researcher 
will often want to work with either a modified 
community code such as the Weather Research 
and Forecasting (WRF) [WRF] code, or their 
own code designed to solve the problems of 
interest.  This causes problems for portals that 
provide access to high end computational 
resources such as those provided by TeraGrid 
[TeraGrid], as normally resource providers balk 
at providing a community user account 
unfettered access to their resources without full 
vetting of the user (which is normally done in the 
context of conventional peer-reviewed TeraGrid 
allocations).  This prevents the user from using 
their own code on the resource, through a 
conventional web portal.  Also, the researcher 
typically would have their own allocation to use; 
so using a community allocation would not allow 
the user to consume the resources awarded 
through the normal peer-review process.  Such 
researchers often want to easily move data to 
and from their workstation, for data preparation 
tasks and post-simulation analyses which can 
be most easily accomplished on their desktop 
compute platform.  They also want to be able to 
cleanly extend the computational experiments 
they are performing, either by adding 
parameters that need to be examined, or 
organizing their results by attributes newly 



 

discovered to be important, or changing the 
pattern of work to be accomplished based on 
new hypotheses and insights into the 
computational problem.  Thus, for this class of 
users, being able to easily modify the 
orchestration needed to accomplish the desired 
science is essential. 
 

3. SIEGE: DESKTOP ACCESS TO A SERVICE-
ORIENTED ARCHITECTURE. 
 
To properly address the requirements briefly 
outlined in section 2, we developed a 
complementary service-oriented architecture, 
driven by a desktop client that we denote as 
“Siege”[Siege].  The service-oriented 
architecture that we use in the system, depicted 
in figure 1, shows the desktop client, Siege, 
which interacts with the Troll ensemble broker 
stack and Vizier information services, to deploy 
applications controlled by the remote application 
container, ELF, which implements our own 
scripting language, OgreScript.  Tying the 
system together are the notification systems, 
currently using the Java Messaging Service 
(JMS) [JMS] channel ActiveMQ [ActiveMQ], and 

a metadata system (we are planning to integrate 
myLEAD into the JMS channel, to be able to 
create LEAD metadata objects [LMS] from 
metadata events published to the channel). 
 
The Siege desktop client is built using the 
Eclipse Rich Client Platform (RCP) [RCP], which 
has many advantages including ease of 
interface mockup, pluggable modules, and well-
defined extension points.  We are also using 
RCP to build our services, as it provides a nice 
modularity to better manage dependencies, 
especially on third-party libraries such as the 
jglobus [jglobus] client libraries that we use to 
access grid capabilities such as job submission 
and file management. 
 

With Siege, the user authenticates to a myproxy 
server backed with a Kerberos realm [myproxy] 
to allow delegation of short term grid credentials 
to the Siege client by mere use of a user’s 
Kerberos login at NCSA or on TeraGrid.  This 
login, which is granted as normal part of a user’s 
allocation at NCSA, allows users seamless 
access to computational resources through 
Siege, by use of their familiar Kerberos login (as 
depicted in Figure 2). 

 
Figure 2: Siege Myproxy Login, currently 
using Kerberos authentication for NCSA and 
TeraGrid. 
 
Siege provides simple mechanisms for 
describing, executing and monitoring workflows.  
For instance, a user can directly edit the xml 
description of the workflow, as depicted in 

Figure 3.  One such user prefers this, as the 
user can directly manipulate ranges of 
parameters to be explored in a parameter space 
study.  The XML description of the ensemble is 
expanded into the full graph of execution at job 
submission time.   
 
We are also prototyping user interfaces which 
guide the user to describe ranges and intervals 
of variables to be studied, in this case for a 
research weather code.  The prototype, shown 

SIEGE
(Rich Client)

TROLL
Ensemble 

broker
Scheduler
Execution

VIZIER

Host Info
Software Stack

ELF
(Application Container)

N
ot

ifi
ca

tio
n

M
et

ad
at

a

OgreScript
(Xml Scripting Language)

Figure 1: The Siege Service-Oriented 
Architecture for Ensemble Brokering 

Uses myproxy backed with Kerberos

Figure 3: Direct manipulation of XML-based 
ensemble description. 



 

in Figure 4, depicts indication of default ranges 
and variable value possibilities as well. 

 

 
Finally, we have prototyped a specific interface 
which is designed to allow the user to use 
Unidata’s Integrated Data Viewer (IDV) [IDV] to 
select the center of a domain to model the 
atmosphere using WRF, and then simply launch 
and monitor the resulting model on TeraGrid 
resources.  This interface, the use of which is 
described in paper 8B.6, was integrated to allow 
straightforward visualization of the model results 
in IDV as well, and is depicted in Figure 5. 

Figure 5: Simplified Unidata Workshop 
facility, which is integrated with the Unidata 
IDV, and allows simple selection of domain 
center latititude and longitude, as well as the 
NAM dataset for model initialization. 
 

5. RESULTS 
 
We have been able to use the Siege user 
interface and service architecture to manage 

runs made in the course of the Unidata 
workshop in July 2006 [UnidataWorkshop], as 
well as to support one of the coauthors (Jewett) 
work in understanding parametric sensitivities 
for interacting thunderstorms.  Through this, we 
have observed that we have a number of issues 
to address with respect to scalability and 
robustness – in no particular order: 

• in-memory service state is hard to 
manage, we need to persist all such 
state to a relational database so that 
services can be brought back up 
seamlessly without loss of information 

• gridFTP servers appear to have an 
issue handling many clients, with 
difficult-to-diagnose failures as a result 

• the web services in the stack need to be 
few in number, as well as as close to 
transactional as possible, with small 
items being used per interaction rather 
than complex objects 

But, even with the issues identified for 
resolution, we were able to successfully support 
the modeling efforts of the workshop attendees 
as well as our coauthor, and have charted a 
path for improved performance and scalability of 
the underlying service stack.  We also have 
shown that the Eclipse Rich Client Platform 
provides a powerful, flexible alternative user 
interface which integrates well with a user’s 
desktop platform.  The use of JMS for 
messaging has also proven to be a good choice, 
for its inherent flexibility and malleability to a 
variety of other messaging systems, as well as 
its performance, and finally, the ability to perform 
cluster-local orchestration readily facilitates local 
monitoring of batch processes.   

6.0  ACKNOWLEDGEMENTS 
 
LEAD is a Large Information Technology 
Research (ITR) Grant funded by the National 
Science Foundation under the following 
Cooperative Agreements: ATM-0331594 
(University of Oklahoma), ATM-0331591 
(Colorado State University), ATM-0331574 
(Millersville University), ATM-0331480 (Indiana 
University), ATM-0331579 (University of 
Alabama in Huntsville), ATM03-31586 (Howard 
University), ATM-0331587 (University 
Corporation for Atmospheric Research), and  
ATM-0331578 (University of Illinois at Urbana-
Champaign, with a sub-contract to the University 
of North Carolina).  This work has also been 
supported by SCI03-30554, SCI04-38712, and 

Figure 4: Ensemble Generator Interface for a 
weather research code 



 

SCI96-19019.  Any opinions, findings, 
conclusions, or recommendations expressed in 
this material are those of the authors and do not 
necessarily reflect those of the National Science 
Foundation. 

7. REFERENCES 
[WRF] The Weather Research&Forecasting 
Website, http://www.wrf-model.org/index.php. 
 
[TeraGrid] TeraGrid, http://www.teragrid.org/. 
 
[Siege] Siege – MRD-Public – Confluence, 
http://torcida.ncsa.uiuc.edu:8080/confluence/dis
play/MRDPUB/Siege 
 
[JMS] Java Message Service, 
http://java.sun.com/products/jms/ 
 
[ActiveMQ] ActiveMQ Home, 
http://www.activemq.org/site/home.html 
 
[LMS] LEAD Metadata Schema Repository, 
http://www.extreme.indiana.edu/rescat/metadata
/. 
 
[RCP], Rich Client Platform, 
http://wiki.eclipse.org/index.php/Rich_Client_Plat
form.  
 
[jglobus] CoG jglobus, 
http://dev.globus.org/wiki/CoG_jglobus. 
 
[myproxy] Myproxy Credential Management 
Service, http://grid.ncsa.uiuc.edu/myproxy/ 
 
[IDV] Unidata Integrated Data Viewer (IDV), 
http://www.unidata.ucar.edu/software/idv/. 
 
[UnidataWorkshop] 2006 Unidata Users 
Workshop: Expanding the Use of Models as 
Educational Tools in the Atmospheric & Related 
Sciences, 
http://www.unidata.ucar.edu/community/2006wo
rkshop/ 
 


