
3B.2 DAP-ENABLED SERVER-SIDE DATA REDUCTION AND ANALYSIS

Daniel L. Wang∗, Charles S. Zender, and Stephen F. Jenks
University of California, Irvine

1. INTRODUCTION

Despite the frenetic pace of technology advance-
ment towards faster, better, and cheaper hardware,
terascale data reduction and analysis remain elu-
sive for most. Disk technology advances now en-
able scientists to store such data volumes locally,
but long-haul network bandwidth considerations all
but prohibit frequent terascale transfers. Bell et al.
(2006) have noted that downloading data for com-
putation is worthwhile only if the analysis involves
more than 100,000 CPU cycles per byte of data,
meaning that a 1GB dataset is only worth down-
loading if analysis requires 100 teracycles, or nearly
14 hours on a 2GHz CPU. In data-intensive science,
data volume rather than CPU speed drives analysis,
pointing to a need for a system that locates colo-
cates computation with data.

Our system provides a facility for colocat-
ing computation with data sources, leveraging
shell script-based analysis methods to specify de-
tails through an interface piggy-backed over the
Data Access Protocol (DAP) protocol, implemented
through a custom OPeNDAP data handler (Cornil-
lon, 2003). Scripts of netCDF Operator (NCO)
(Zender, 2006b) commands are sent through an
interface extended from DAP’s subsetting facility
and processed by a server-side execution engine.
Resultant datasets may be retrieved in the same
DAP request, or deferred for later retrieval. Ad-
ditional processing efficiency is available through
script-based parallelism. Our execution engine op-
tionally parses scripts for data-dependencies and
exploits parallelism opportunities from the extracted
dataflow. With this capability, existing analyses
can better utilize the available parallelism of high-
capacity datacenter hardware.

2. RELATED WORK

Other systems for remote computation exist in many
areas and can be characterized by their generality
and computation size. Grid computation engines
remain the most general, allowing the widest va-
riety of heavy computational tasks to be run on
a heterogeneous set of remote systems (Foster

∗Corresponding author address: Daniel L. Wang, Depart-
ment of EECS, 425 Engineering Tower, Irvine, CA; e-mail:
wangd@uci.edu

and Kesselman, 1998). Unfortunately, their appli-
cation independence means that, in practice, data-
dependencies cannot be specified automatically,
and that data locality is generally ignored in favor
of greater scheduling flexibility for higher through-
put. The Globus toolkit for grid systems allows
users to define input and output files to be staged
to and from compute nodes (Foster and Kessel-
man, 1997), but this capability may not be de-
sired for data-intensive computation, where data
volume is more significant than computation com-
plexity. Systems for remote data access that spe-
cific to geoscience data processing are also in wide
use. While such systems succeed in providing sim-
ple, lightweight access to large, remote datasets,
their interfaces remain optimized for operations on
small volumes of data, prompting scientists to uti-
lize other tools such as NCO for larger-volume data
analysis and reduction.

The Open-source Project for a Network Data
Access Protocol (OPeNDAP) server serves a signif-
icant fraction of available geoscience data (Cornil-
lon, 2003). It provides metadata querying and sub-
setting capabilities as well as access to raw data.
The Earth System Grid II (ESG) project aims to
address concerns similar to those of this project,
and is in development of filtering servers that permit
data to be processed and reduced closer to its point
of residence (Foster et al., 2002). The NCO tools
supported by our system operate on data stored
in network Common Data Form (netCDF) (Rew
and Davis, 1990). netCDF is a self-describing,
machine-independent format for representing sci-
entific data, and is the most popular format for ex-
changing ocean-atmosphere model output.

3. OVERVIEW

Our system, currently called SSDAP (Server-Side
DAP), is implemented as a wrapper to the netCDF
data handler in an OPeNDAP instance. Just as
in generic DAP protocol transactions, SSDAP re-
quests are sent to an httpd, where they are
shunted to the OPeNDAP CGI handler, which
parses the request and forwards the result to a
data-handler specific to the dataset file format. Our
customized netCDF data handler processes the re-
quested script, if available, forwarding the request

1

to the standard netCDF data handler otherwise.
From a client’s perspective an SSDAP-enabled

OPeNDAP server instance is indistinguishable from
a vanilla OPeNDAP installation, except for ad-
ditional script-processing capabilites. To initiate
server-side analysis, the client makes a standard
DAP request using a special constraint expression
that signals the existence of a script, sent in the
same request via HTTP POST. Simple directives in
scripts flag files as “output” or “temporary”, facilitat-
ing proper execution and transmission of results.

4. EXAMPLE SCRIPT

We tested our system with a script that resamples
Community Atmospheric Model simulation data into
time-steps that can be better compared against
observed NASA Quick Scatterometer (QuikSCAT)
data (Tsai et al., 2000). In this script, ten years of
data at 20-minute timesteps are masked for their
surface wind speed values at 6:00AM and 6:00PM,
the local times from the QuikSCAT satellite passes.
The script contains over 14,000 NCO command-
lines for masking, averaging, concatenating, and
editing, which produce 228MB of resultant data
from 8230MB of input data, and generate 26GB
of temporary intermediate files in the process. A
dataflow summary of this example is shown in Fig-
ure 1.

5. USAGE

Usage of SSDAP is designed to require minimal
training. Shell scripts of NCO commands (Zender,
2006a) require only small modifications to flag com-
mand outputs as temporary or output files. Figures
2 and 3 illustrate these modifications, which are
necessary to eliminate unnecessary transfer of un-
wanted intermediate data. Once the script is appro-
priately modified, it can be sent via HTTP to a stan-
dard OPeNDAP URL, tagged with a special OPeN-
DAP constraint expression signalling the presence
of a computation script via HTTP POST. Computa-
tion proceeds remotely at the OPeNDAP instance
and produces a result that is transmitted back in
the standard DAP fashion. Overall, using SSDAP
requires two things: modification of scripts to sig-
nal temporary and output files, and submission to
a modified OPeNDAP server rather than executing
on the local workstation. Future work will eliminate
manual script modification in the majority of cases.

Our simplified usage depends on an execu-
tion engine implemented as a OPeNDAP data han-
dler. This execution engine parses the user script
for basic correctness and dataflow information, and

10 years of model data
12 files/month

72 timesteps/day

For each year(10)

ncrcat
Concatenate files into a year

year 1
repeat
other 9
ncrcat

For each of AM/PM(2)

ncap
Add masking variable

am
repeat
for pm

For each day(365)

ncwa
Mask for 6AM

day 1
repeat

remaining364
days

ncap
Adjust time value=6AM

ncrcat
Concatenate days into year

Set of resampled
6AM/6PM time series

 in years

other 364+365 files
for this year

other 9 concat’ed
year files

FIG. 1: Example script dataflow

original script that obtains a yearly average
ncrcat -O model.1990*.nc model.yr.nc
ncwa -O model.yr.nc model.avg.nc

SSDAP-version of original script
ncrcat -O model.1990*.nc %tempf_model.yr.nc%
ncwa -O %tempf_model.yr.nc% %outfile_model.avg.nc%

FIG. 2: Original and SSDAP-modified script compari-
son

manages execution of the script commands, option-
ally detecting and exploiting parallelism where avail-
able. The example script contains numerous paral-
lelism opportunities, easily providing the four cores
of our dual Opteron 270 test machine with constant
work from start to finish. When all work is com-
pleted, the resultant data file can be immediately
returned to the user, or, alternatively retrieved later,
if there are multiple files. The DAP protocol does not
have the facility to transmit multiple files in a single
transaction.

6. RESULTS

We tested our system with the above example script
on a dual Opteron 270 with 16GB of memory with
dual 500GB SATA drives in RAID 1, running a Cen-
tOS 4.3 kernel. In our example, a scientist can avoid
downloading nearly 8GB, by obtaining just 228MB
of output rather than the entire input dataset. This
illustrates the potential savings possible from elim-
ination of unnecessary network traffic. Even given
a decent 1MByte/s bandwidth to the data source,
saving 8GB of downloading saves 136 minutes of
transfer time.

Figure 4 summarizes the test results, estimat-
ing transfer time using an average bandwidth of
220bytes/sec. Computation cost on our test sys-
tem was measured as roughly 53 minutes in lo-
cal (non server-based) serial execution, with overall
speedups of 0.80 (67 minutes) and 1.93 (28 min-
utes)for server-based execution in serial and paral-
lel modes, respectively. The performance penalty in
the server-based serial execution mode illustrates
overhead from parsing and database queries nec-
essary to manage execution. However, with net-
work transfer costs included, we see speedups of

SSDAP filename Description
path/name path to file on the server

%tempf name% an intermediate file
%outfile name% a result file desired by the user

FIG. 3: SSDAP basic syntax

SSDAP SSDAP
Local serial serial parallel

Transfer size 8230MB 228MB 228MB
Transfer time 137:11 3:48 3:48
Compute time 53:18 67:02 27:38
Total time 190:29 70:50 31:26

Speedup (Transfer) 1.00 36.1 36.1
Speedup (Compute) 1.00 0.80 1.93
Speedup (Total) 1.00 2.69 6.06

FIG. 4: Timing results (Times shown as mm:ss,
220bytes/sec bandwidth)

2.69 (71 minutes) and 6.06 (31 minutes) in se-
rial and parallel modes, clearly showing the signif-
icance and benefit of eliminating unnecessary net-
work traffic. Currently, execution speed seems lim-
ited by I/O parallelism, limiting the benefit of addi-
tional processors. Future work will include confir-
mation and characterization of this bottleneck and
explore possible solutions.

Our system targets scientists with compute ca-
pacity or network connectivity less than what a data
center offers, which we believe should include most
scientists. Data centers should benefit as well from
reduced external network usage, which is often
more costly than CPU speed. Since scripts are
transferred to data sources, additional insight may
result from the aggregated knowledge of scientists’
data usage patterns.

7. CONCLUSION

A server-side data reduction and analysis system
saves scientists time and bandwidth, enabling them
to exploit potentially greater computing resources
with minimal additional effort. We leverage exist-
ing script-based methods of analysis and the widely
used DAP protocol to provide simple distributed
computing to non-computer-scientists. Initial tests
and use cases show the potential for significant
bandwidth savings and faster results generation.
While performance of the current implementation
provides a significant speedup, future implementa-
tions will further exploit clustering and parallelism
available at the data center, further enhancing per-
formance. Systems such as ours that colocate com-
putation with data will be well poised to meet the
demands of more comprehensive, more detailed,
and more frequent analyses, and will facilitate data-
intensive science.

8. ACKNOWLEDGEMENTS

This material is based upon work supported by the
National Science Foundation under Grants ATM-
0231380 and IIS-0431203.

REFERENCES

Bell, G., J. Gray, and A. Szalay, 2006: Petascale
computational systems. IEEE Computer, 39(1),
110–112. 1

Cornillon, P., 2003: OPeNDAP: Accessing data in
a distributed, heterogeneous environment. Data
Science Journal, 2, 164–174. 1, 2

Foster, I., E. Alpert, A. Chervenak, B. Drach,
C. Kesselman, V. Nefedova, D. Middleton,
A. Shoshani, A. Sim, and D. Williams, 2002: The
Earth System Grid II: Turning Climate Datasets
Into Community Resources. In Proceedings of
the 18th International Conference on Interactive
Information and Processing Systems for Mete-
orology, American Meterological Society, AMS
Press, Boston, MA. 2

Foster, I. and C. Kesselman, 1997: Globus: A Meta-
computing Infrastructure Toolkit. International
Journal of Supercomputer Applications, 11(2),
115–128. 2

Foster, I. and C. Kesselman, 1998: The Grid:
Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, San Francisco, CA. 2

Rew, R. K. and G. P. Davis, 1990: NetCDF: an in-
terface for scientific data access. IEEE Computer
Graphics and Applications, 10(4), 76–82. 2

Tsai, W.-Y., M. Spencer, C. Wu, C. Winn, and K. Kel-
logg, 2000: SeaWinds on QuikSCAT: Sensor De-
scription and Mission Overview. In Proceedings
of the IEEE International Geoscience and Re-
mote Sensing Symposium, volume 3, Honolulu,
HI, 1021–1023. 4

Zender, C. S., 2006a: NCO User’s Guide, version
3.1.4. http://nco.sf.net/nco.pdf. 5

Zender, C. S., 2006b: netCDF Operators (NCO)
for analysis of self-describing gridded geoscience
data. Submitted to Environ. Modell. Softw. Avail-
able from http://dust.ess.uci.edu/ppr/ppr
Zen07.pdf. 1

http://dust.ess.uci.edu/ppr/ppr_Zen07.pdf
http://dust.ess.uci.edu/ppr/ppr_Zen07.pdf

	INTRODUCTION
	RELATED WORK
	OVERVIEW
	EXAMPLE SCRIPT
	USAGE
	RESULTS
	CONCLUSION
	ACKNOWLEDGEMENTS

