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1. INTRODUCTION*

 
It is well known that the climate system can be 

considered as the prototype of a complex system, as it 
is composed by many subsystems and endowed with a 
lot of cause-effect circular chains. 

At present, Global Climate Models (GCMs) 
represent the main tools for grasping this complexity in 
a fully dynamical way. In particular, GCMs showed 
good results in their applications to reconstruction and 
attribution of recent climate change and they supply us 
with projections of future climate scenarios, too. 
However, despite of these positive features, their 
“building strategy” (conceptually described in Pasini 
2005) suffers from some drawbacks, e.g. the need to 
fine-tune some coupling parameters: this leads to a 
non-univocal reconstruction of the real system in the 
simulated model (an extensive discussion about this 
problem can be found in Pasini 2007). 

The recognition of the great complexity of GCMs 
and their dynamical behavior, together with the 
awareness of their drawbacks, led to adopt alternative 
strategies for catching the complexity of the climate 
system in a more direct and simple way. An example 
of these strategies can be found in Pasini et al. (2006), 
where the application of a neural network (NN) non-
dynamical model to the problem of attribution and 
reconstruction of the recent global and regional 
warming is described. Another well-founded strategy is 
the adoption of a “dynamical perspective” for the study 
of climate and the investigation of low-dimensional 
dynamical systems’ behavior in cases when this can 
resemble the dynamics of the real system: see Palmer 
(1993, 1999) for this approach. 

With reference to this latter strategy, it is 
worthwhile to stress that the classical Lorenz model 
(Lorenz 1963) mimics some features of the climate 
system (and its atmospheric subsystem), such as their 
chaotic behavior and the existence of preferred states 
or “regimes”. Furthermore, distinct regions on the 
Lorenz attractor show different predictabilities, exactly 
as distinct types of weather situations are endowed 
with different predictability horizons. Finally, changes 
in the frequency of occurrence of regimes can be 
observed both in the real system and in the toy Lorenz 
model, when external forcings increase. 
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In this framework, one can be induced to use the 
Lorenz system as a toy model for studying the course 
of predictability in past and future climate conditions. In 
particular, in this paper the ability of a NN model to 
recognize regions of distinct predictability on the 
Lorenz attractor is shown, even vs. dynamical 
estimations. Moreover, once added an external forcing 
to the Lorenz system (as a toy simulation of increase 
in anthropogenic forcings to the climate system), 
changes of predictability in this new scenario are found 
by both dynamical quantities and NN modeling. Finally, 
an attempt at an “operational” NN estimation of 
predictability on the unforced and forced attractors is 
investigated, too. 

In what follows I will briefly describe the NN tool 
developed by me and coworkers during the last years 
(section 2) and the dynamical properties of unforced 
and forced Lorenz models (section 3). Then, NN 
modeling will be applied to a forecast activity on the 
Lorenz attractors and consequences for predictability 
estimations will be discussed (section 4). In section 5 
an attempt at achieving an operational estimation of 
predictability in the unforced and forced situations will 
be performed. Finally, brief conclusions will be drawn 
and prospects of further study will be envisaged in the 
last section. 
 
2. THE NN TOOL 

  
A NN tool for both diagnostic characterization and 

forecast in complex systems has been developed 
some years ago (Pasini and Potestà 1995). Since that 
date it has been applied to diagnostic and prognostic 
problems in the boundary layer (Pasini and Potestà 
1995, Pasini et al. 2001, 2003a,b, Pasini and Ameli 
2003) and recently, as cited above, also to the 
analysis of climatic data (Pasini et al. 2006). 

As far as the kernel of this NN tool is concerned, 
it has been extensively described elsewhere (see, for 
instance, Pasini et al. 2003a). Here, it is sufficient to 
note that the NNs adopted are feedforward and 
characterized by a backpropagation training endowed 
with gradient descent and momentum terms in the 
rules for weights updating. Furthermore, an early 
stopping method is also available. 

Together with these quite standard features (see 
Hertz et al. (1991) and Bishop (1995) for two reviews 
on these topics), this tool provides us many training 
facilities, useful for handling historical data from 
complex systems. As far as the topology of these NNs 

mailto:pasini@iia.cnr.it


 

is concerned, it consists of one input layer, one 
hidden layer and one output layer. 

Finally, it is worthwhile to stress that in what 
follows the attention will be paid more on the 
possibility of achieving certain results by NN modeling 
than on the rate of performance obtained by the 
specific model adopted. As we will see, increase in 
performance can be envisaged by use of different 
input variables and/or different NN models.  

 
3. SOME DYNAMICAL PROPERTIES OF 
UNFORCED AND FORCED LORENZ MODELS 
 

As cited above, from a physical point of view the 
Lorenz model mimics some characteristic features of 
both atmosphere and climate. On the other hand, it 
has also a general relevance as far as its 
mathematical structure is concerned: it can be 
considered as the prototype of a large class of models 
of meteo-climatic importance (see Pasini and Pelino 
(2000) for the recognition of this class and the 
development of an extended formalism). 

Thus, here the Lorenz model (in its unforced and 
forced versions) will be adopted without delay for 
investigation: in this section, its dynamical properties 
will be analyzed. 

The classical Lorenz system (Lorenz 1963) reads 
as follows: 
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Here the choice of the parameters is the same as 

in Lorenz (1963), that is σ = 10, b = 8/3, r = 28: this 
leads to a chaotic behavior. 

 
 

 
 

Figure 1. Projection of the classical Lorenz attractor 
onto the x-y plane. 

 

The numerical integration of this system is 
performed through a 4th-order Runge-Kutta scheme 
with time step Δt = 0.01. After an initial transient 
period, the trajectories lie on a strange attractor 
endowed with fractal dimension (see Figure 1 for a 
picture of its projection onto the x-y plane). The states 
of the system oscillate chaotically around two 
symmetrical unstable fixed points and the left and the 
right “wings” of the attractor (which one can interpret 
as the regimes of the Lorenz model) are equally 
“visited” (in frequency) by the states themselves. 

This classical Lorenz model has been recently 
revisited in connection with studies about changes in 
atmospheric regimes induced by external forcings. In 
particular, Palmer and coworkers (Palmer 1999, Corti 
et al. 1999) showed that the observed climate change 
of the last decades "can be interpreted in terms of 
changes in the frequency of occurrence of natural 
atmospheric circulation regimes" (Corti et al. 1999). In 
this framework, the Lorenz system (with its wings-
regimes) represents a toy model in which we can 
recover a similar behavior, if it is forced by a weak 
external forcing. From this viewpoint that forcing can 
be interpreted as the analogue of the increase of 
anthropogenic forcings in the real climate system. A 
further research showed that a weak forcing added to 
the original unforced Lorenz model can lead to a 
relevant increase in the frequency of occurrence of 
extremely persistent events (Khatiwala et al. 2001). 

Following the formalism by Palmer (1999), a 
forced Lorenz system reads as follows: 
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Figure 2. Projection of the forced Lorenz attractor with 
f0 = 5 and θ = 90° onto the x-y plane: right wing is 
visited more frequently by the states of the system. 

 



 

Of course, when f0 = 0 we recover the classical 
unforced Lorenz system (1). Furthermore, Mittal et al. 
(2005) showed that putting a non-vanishing forcing 
also in the third equation is equivalent to retain the 
forcings in the first two equations and to shift the 
parameter r. Thus, we consider the form (2) of the 
forced Lorenz system as a quite general one. In what 
follows I explore the case θ = 90°. 

As one can see in Figure 2, in this forced case 
the shape of the attractor does not change 
substantially, but the states of the system “visit” the 
two wings-regimes in a different manner: this forcing 
leads to increase the frequency of occurrence of the 
regime which lies in the positive x-y quadrant. A 
rigorous investigation of this phenomenon can be 
performed if the probability density function of the 
states associated with the two wings-regimes is 
calculated, as in Palmer (1999). Here, I quantify this 
effect by calculating the mean values x , y  and z  
(shown in Table 1 for several values of f0): one can 
appreciate a net bias towards the positive x-y 
quadrant which presents a quasi-linear proportionality 
to the strength of the forcing. 

Apart from the bias just discussed, other 
dynamical properties of the Lorenz attractor reveal 
litlle changes when forcing increases, at least till f0 = 
5: this value is considered a limit beyond which the 
model behavior changes qualitatively (see, for 
instance, Annan 2005), finally reaching the situation 
of a stable fixed point as attractor. In Table 1 the 
values of the positive Lyapunov exponent (PLE) and 
of the fractal dimension of the attractor (DIM) are 
shown (refer to Wolf et al. (1985) and Briggs (1990) 
for methods of calculation). As well known, their 
values represent two “measures” of chaos. Note that 
the differences between the unforced values and the 
forced ones of PLE and DIM are very little when f0 = 
2.5 is considered, while they are quite significant 
when the forcing is doubled. 

 
Var. F0 = 0 f0 = 2.5 f0 = 5 f0 > 10 

x  -0.0476 1.1838 2.7596 f. p. 
y  -0.0473 1.1845 2.7608 f. p. 
z  23.526 23.643 24.029 f. p. 

PLE 0.905 0.880 0.759 < 0 
DIM 2.062 2.060 2.053 0 

g  9.06 
x 10-3

8.90 
x 10-3

7.56 
x 10-3 < 0 

 
Table 1. Dynamical variables for the classical 
unforced Lorenz system (f0 = 0) and for several forced 
Lorenz systems with θ = 90° (f. p. means that when f0 
> 10 the attractor is a fixed point whose coordinates 
depend on the intensity of f0). 

 
After this brief dynamical analysis of unforced and 

forced attractors, let’s come to the topic of 
predictability. The local predictability on the unforced 
Lorenz attractor has been extensively studied in 
Evans et al. (2004) by means of the so called bred-
vector growth, i.e. the rate of divergence of 

trajectories starting from very close points on the 
attractor itself. 

A bred vector is a vector  which simply 
represents the 3D-Euclidean distance between two 
states (points) on the Lorenz attractor after a certain 
number (n) of time steps in two model runs, if the 
second run is originated from a slight perturbation 
(
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) in the initial conditions. We define the bred-
growth rate g as: 
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As shown in Evans et al. (2004), g can be used to 

identify regions of distinct predictability on the 
unforced Lorenz attractor. Furthermore, these authors 
were able to find prediction rules for regime changes 
and persistence in a new regime. 

Notably, these prediction rules will be 
reconsidered and improved by Yadav et al. (2005), 
who extended their investigation to forced Lorenz 
models, too. However, if we exclude this peculiar 
discovery, no attempt at estimating global or local 
predictability on forced Lorenz models has been 
performed, at my knowledge. 

Here, by adopting the method by Evans et al. 
(2004), after having fixed n = 8, a total of 60,000 bred-
growth rates have been calculated, 20,000 related to 
points of the unforced attractor and the others related 
to states of two forced attractors with f0 = 2.5 and f0 = 
5, respectively. The results for the mean values of g 
are presented in Table 1, while in Figures 3 and 4 two 
plots of growth-rate classes on the unforced and a 
forced attractor are shown. In Table 2 the notation 
adopted for the specific division into predictability 
classes is explained. 

Even if from a quick look at Figures 3 and 4 it is 
plain that regions of distinct predictability exist on the 
attractors, these two pictures are quite similar and we 
are not able to distinguish clear changes in the local 
predictability distributions. However, an analysis of the 
mean values of g ( g ) in Table 1 shows that a 
sensible (nonlinear) decrease in the bred-growth rate 
happens when the forcing achieves f0 = 5. Some 
more piece of information is given in Table 3, where 
the number of states associated with a certain class 
of g is shown: clearly, one is able to appreciate the 
consistent increase in the blue class and the even 
more significant decrease in the red class when 
passing from the unforced situation to the forced one 
with f0 = 5. 

 
Class Bred-growth rate 
Blue g < 0 

Green 0 ≤ g < 0.04  
Yellow 0.04 ≤ g < 0.064 
Red g ≥ 0.064 

Table 2. The predictability classes considered in this 
study. 

 



 

 
 

Figure 3. Regions of distinct local predictabilities on 
the unforced Lorenz attractor.  

 
 

 
 

Figure 3. Regions of distinct local predictabilities on a 
forced Lorenz attractor with f0 = 5 and θ = 90°. 

 
 

Class f0 = 0 f0 = 2.5 f0 = 5 
Blue 10185 10270 

(+0.8%) 
10535 

(+3.4%) 
Green 4469 4475 

(+0.1%) 
4488 

(+0.4%) 
Yellow 2569 2526 

(-1.6%) 
2601 

(+1.3%) 
Red 2777 2729 

(-1.8%) 
2376 

(-14.4%) 
 
Table 3. Number of states belonging to each class of 
predictability on the unforced Lorenz attractor and on 
two forced ones. 

 
As a consequence of this brief dynamical 

analysis, in what follows I will limit to compare results 
between the unforced situation and the case f0 = 5: 
this value of the external forcing is enough for 
obtaining consistent dynamical differences but does 
not change the general (chaotic) behavior of the 

model. This will allow me to avoid problems about 
results’ interpretation encountered in a previous paper 
(Pasini and Pelino 2005). 
 
4. CHANGES IN PREDICTABILITY RECOGNIZED 
BY NN FORECASTING 
 

Forecasting future states of the Lorenz system by 
NNs is not a new idea. Nevertheless, past attempts 
essentially dealt with the prediction of the time series 
for a single variable of the Lorenz system (usually the 
x variable), with the aim of reconstructing its complete 
dynamics under the conditions prescribed by the 
Takens theorem (Takens 1981): see, for instance, de 
Oliveira et al. (2000) and Boudjema and Cazelles 
(2001), and references therein. This permits to mimic 
the reconstruction of an unknown dynamics by 
observational data in a complex system. 

A notable paper, which is correlated enough with 
the discussion at the previous section about regime 
changes, is that by Roebber and Tsonis (2005), 
where the authors used NNs as a method to improve 
the prediction of flow transitions in the cases of two 
simple mathematical systems. 

Here, my aim is different. I would like to answer 
the following questions: “Is NN forecasting 
performance related to local predictability?”; then: 
“Can one appreciate changes in predictability in 
forced situations by means of NN forecasting 
performance?”; and finally: “Can NN modeling supply 
us with an operational estimation of the predictability 
on the Lorenz attractors?”. 

In doing so, I consider the full dynamics of the 
unforced and forced Lorenz systems (with 3 inputs, 
one for each variable, in this attempt). Here I do not 
discuss how to choose the optimal topology for 
networks. It is worthwhile to stress that 15 neurons 
are included in a single hidden layer: this number is 
sufficient to obtain a good representation of the 
underlying function but not so big to determine some 
kind of overfitting. 

Now, for each class of bred-growth rate, the NN  
model is trained to make a single-step forecast from t0 
to t0 + n  (here, of course, n = 8 is chosen, as in the 
bred-growth calculations). Attempts at performing 8 
forecast steps (to achieve the same final forecast 
horizon) result in very poor performance, as already 
noted in other studies (Pasini and Ameli 2003) and as 
known from theoretical considerations (Atiya et al. 
1999). The total sets of Lorenz simulated data 
(20,000 input-target patterns for each case) are 
divided into a training set (80% of data) and a 
validation/test set (20%). The networks are endowed 
with 3 outputs (the 3-dimensional position after 8 time 
steps of integration). Furthermore, here the 3D-
Euclidean distance between output and target points 
is considered as a measure of forecasting 
performance: of course, lower is this distance better is 
the performance of the NN model. 

As shown in Table 4, the mean errors of the NN 
model (expressed in terms of the mean distance 
between output and target points) clearly depend on 

 



 

the bred-growth classes and exhibit the best 
performance on the blue region of the attractor and 
the worst one on the red points. Performance on 
green and yellow classes presents intermediate 
values and, even if it is impossible to distinguish 
between them because each value falls inside the 
error bar associated to the other one, however these 
are well separated from the performance values of the 
other two classes (blue and red). In this Table, 
together with the mean distance between output and 
target points, error bars coming from ensemble runs 
of the model are shown. This is a way for permitting 
the networks to widely explore the landscape of the 
cost function and for assessing uncertainties in the 
results: these error bars represent ± 2 standard 
deviations. 

 
Class f0 = 0 f0 = 5 
Blue 5.66 ± 0.15 5.24 ± 0.23 

Green 6.58 ± 0.25 6.14 ± 0.20 
Yellow 6.62 ± 0.24 6.11 ± 0.30 
Red 8.36 ± 0.41 8.30 ± 0.45 

 
Table 4. Performance of NN forecasts on the test sets 
in terms of mean distance between output and target 
points. 
 

When the forced system is considered, 
analogously to the decrease of the mean value of g in 
Table 1, also the total mean forecast error of the NN 
model decreases. This is an expected result, because 
now there is a net shift of less predictable points to 
more predictable ones (see Table 3), with a more 
frequent permanence of the system’s state in regions 
of high predictability. Furthermore, the results on the 
blue region shows a statistical significant 
improvement in performance in this specific class and 
also the improvements in green and yellow class are 
close to a full statistical significance: this could 
suggest that changes in predictability, locally on the 
attractor, can be important, even if this hypothesis is 
not verifiable in this context. 

In any case, the goodness of a NN forecast is 
related to the specific class of predictability. 
Moreover, we can appreciate a net increase in both 
dynamical predictability and NN performance in a 
forced situation. 

A closer look at these results, in terms of the 
distributions of NN forecast errors for each class, 
permits to reveal that unimodal distributions (for blue 
and green classes) tend to split to quasi-bimodal 
distributions for yellow and red classes. In Figures 5 
and 6 these distributions are shown for the blue and 
the yellow class, respectively, in the unforced case. 
Similar results hold for NN modeling on the forced 
systems. This fact implies a sensitivity of forecast 
performance to regions where a change of regime is 
possible and two close trajectories could evolve to 
opposite wings on the attractor. For instance, if one 
refers to Figures 3 and 4, it is very clear that the 
trajectories which end onto red points come from the 

middle of the attractor where they undergo a 
“bifurcation” towards the left or the right wing of the 
attractor itself. 
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Figure 5. Error distribution in NN forecasts for the 
blue class on the unforced attractor. 
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Figure 6. Error distribution in NN forecasts for the 
yellow class on the unforced attractor. 

 
 

5. AN OPERATIONAL ESTIMATION OF 
PREDICTABILITY 
 

In the previous section, the sensitivity of the 
forecasting performance of a NN model to different 
regions of predictability on Lorenz attractors has been 
shown. In this framework, peculiar increases in 
predictability and NN performance have been 
recognized when a weak external forcing is 
superimposed to the classical Lorenz system. 

 



 

Even if some details of NN modeling must be 
better considered (I will briefly deal with them in the 
concluding section), this approach reveals a concrete 
application of an artificial intelligence technique to the 
analysis of predictability in a toy system which shows 
important meteo-climatic features. 

Nevertheless, the consideration of NN forecasting 
performance represents just an a posteriori 
recognition of the predictability of the initial state on 
the Lorenz attractors. In fact it is available only after 
our knowledge of the results of the dynamical 
integration of the Lorenz system, while, from an 
operational point of view, the single NN forecasts give 
us just information about a possible trajectory, with no 
relation to predictability. 

Thus, we could search for methods which can 
lead NN modeling to achieve an estimation of 
predictability on the Lorenz attractors which is fully 
operational. In this framework, in a previous paper 
(Pasini and Pelino 2005) the increase in the amplitude 
of error bars in NN performance when going from low 
bred-growth rates to high ones has been recognized. 
This led to explore a NN ensemble forecast approach 
by supposing that the spread of NN ensemble 
forecasts on distinct points could resemble a similar 
increase and could become an index of the peculiar 
local predictability of any Lorenz state. Unfortunately, 
the not very good NN forecasting performance (to be 
briefly discussed later) did not permit to find 
significant results by this attempt. 

In this paper I will follow a different approach: a 
NN forecast of bred-growth rates for any point of the 
attractors is performed, leading us to obtain a direct 
estimation of this variable, which well represents the 
local predictability values. In doing so, NNs endowed 
with 3 inputs, one hidden layer (in which the number 
of neurons is more than doubled) and 1 output are 
used. 

As shown in Table 5, even if the networks 
adopted here are very simple, the NN forecasts of 
bred-growth rate show quite good performance and 
contribute to open a new scenario in which NNs could 
be operationally used for estimations of the local 
predictability referred to single states on the Lorenz 
attractors. Furthermore, a statistical significant 
increase in performance is shown when an external 
forcing is applied. This result reveals that, not only the 
presence of an external forcing permits to better 
forecast the future states on the attractors (as shown 
in the previous section), but also the NN estimation of 
the predictability itself is improved in these forced 
situations. 
 

 f0 = 0 f0 = 5 
R 0.660 ± 0.011 0.684 ± 0.010 

 
Table 5. Performance of NN estimation of the bred-
growth rates on the test sets in terms of the linear 
correlation coefficient (NN forecasts vs. calculated 
values through dynamical integration). The error bars 
represent ± 2 standard deviations. 

In order to obtain some more piece of information 
on the ability of the NN model to recognize different 
classes of predictability, I perform a simple statistical 
analysis by means of a contingency table (Table 6), 
where the threshold for bred-growth rate is fixed to 
0.04: this value allows us to understand how well NNs 
can discern about situations in which trajectories may 
be undergone to “bifurcations” or not (see the 
discussions above).  

 
DET \ FOR No Yes Sum 

No a b g 
Yes c d h 
Sum e f n 

 
Table 6. Contingency table at a defined threshold 
distinguishing between events and nonevents. 
 

Referring to Table 6, several indices of 
performance are calculated as follows for two runs of 
the NN model: 

 
POD (Probability Of Detection) = ; h/d
FAR (False Alarm Ratio) = ; f/b
HR (Hit Rate) = ( ) n/da + ; 
CSI (Critical Success Index) = ; ( )hb/d +
HSS (Heidke's Skill Statistics) = 
( )[ ] ( )hegfbcad2 +− . 

 
The results are shown in Table 7. As one can 

see, the forecasting performance in estimating local 
predictability is always better in the forced situation. 
Because of the goodness of HSS as a measure of 
performance (see, for instance, the discussion in 
Marzban 1998) the big difference in its values 
appears as particularly significant. 

 
Index f0 = 0 f0 = 5 
POD 0.907 0.941 
FAR 0.154 0.138 
HR 0.810 0.841 
CSI 0.778 0.818 
HSS 0.289 0.512 

 
Table 7. Indices of performance in NN forecasts of 
the bred-growth rate (threshold = 0.04). 

 
Even if the performance results are not very good 

in absolute terms, however this section has shown 
that NNs are able to estimate local predictability on 
the Lorenz attractors and that this estimation is more 
performant in a forced situation, when compared with 
an unforced one. 
 
6. CONCLUSIONS AND PROSPECTS 
 

In this paper I have applied a non-dynamical 
approach (NN modeling) to the analysis of 
predictability in unforced and forced Lorenz systems. 

 



 

A first result obtained here is that the 
performance of NNs in forecasting future states on 
the Lorenz attractors depends on the predictability 
class of the states themselves. In this framework, 
when passing from the unforced Lorenz system to a 
forced one, predictability increases and, analogously, 
NN performance increases as well. This preliminary 
result shows the sensitivity of NN forecasting to the 
values of local predictability and leads to rediscover 
an increase of predictability in forced situations also 
by a non-dynamical method. However, it does not 
permit to obtain an operational estimation of the 
predictability itself. 

In section 5, this operational estimation has been 
achieved by directly forecasting the values of bred-
growth rate through NNs. In this context, we have 
seen that the presence of a weak external forcing 
leads to better forecasting the future states of the 
system (as shown in section 4). Even more 
significative is the recognition that local predictability 
is operationally better forecasted in a forced situation. 

Therefore, by exploring the simple case studies 
related to unforced and forced Lorenz systems (here 
considered as toy models of the climate and its 
atmospheric subsystem), the present paper leads to 
envisage an increased predictability in future meteo-
climatic scenarios characterized by increased 
anthropogenic external forcings. 

Of course, this paper reveals the need of 
improving the treatment of some critical points and 
opens perspectives of further work, too. For example, 
as cited above, the NN performance is not very good 
in the results described in sections 4 and 5. This can 
be due to the limited length of the record containing 
input-target pairs for training and validation, to the 
very preliminary structure of the input patterns 
themselves and to the simple architecture and training 
rules of the NNs used in this study. 

Thus, possible developments of this work 
concern the building of an extended data set by 
prolonged Runge-Kutta integrations, the insertion of 
different inputs (for instance a truncated time series of 
delayed data) and the application of other NN 
architectures (such as recurrent NNs) and training 
rules. 

In short, even if the present paper represents a 
quite preliminary attempt at exploring the role of NN 
modeling in studies about predictability, it shows that 
a new road for assessing and forecasting 
predictability is possible in a simple dynamical 
system; I think that an application to more realistic 
and complex models may be envisaged as well. 
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