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Abstract

In this paper, we describe our approach to addressing the problem of cre-
ating good probabilistic forecasts when the entity to be forecast can move and
morph. We formulate the tornado prediction problem to be one of estimating
the probability of an event at a particular spatial location within a given time
window. The technique involves clustering Doppler radar-derived fields such
as low-level shear and reflectivity to form candidate regions. Assuming station-
arity, the spatial probability distribution of this region T minutes ahead is esti-
mated and combined with the probability that the candidate region becomes
tornadic T minutes later. Using these two probabilities and the variability of the

motion estimates, a spatio-temporal probability field is derived.

The neural network training required to correctly estimate the probabilities
has not yet been developed. Therefore, this paper illustrates the underlying
idea using fuzzy logic, storm half-life and motion variability.

1. Motivation

A principled probabilistic prediction can
enable users of the information to cali-
brate their risk and can aid decision mak-
ing beyond what simple binary approaches
yield (Murphy 1977). Techniques to cre-
ate good probabilistic forecasts are well
understood, but only in situations where
the predictive model is a direct input-
output relationship. If the threats in con-
sideration move and change shape, as
with short-term weather forecasts, the well-
understood techniques can not be used di-
rectly. For forecasts in earth-centered do-
mains to be useful, the forecasts have to be

clearly demarcated in space and time. This
paper presents a data mining approach to
address the problem of creating principled
probabilistic forecasts when the entity to be
forecast can move and change shape.

2. Method

For fast moving threats, no principled ap-
proach to estimating probability fields ex-
ists. This is because the input features at
a point in space and time affect the threat
potential at a different point N minutes later.
Thus, a simple input/output mapping is in-
sufficient because which location will be af-
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fected, and when it will be affected needs
to be known. Yet, in practical situations,
the time and location that will be affected
is not known with certainty. Consequently,
it is necessary to assume a spatial proba-
bility distribution associated with the loca-
tions that will be affected at a given time in-
stant. Once this second probability is intro-
duced, prior work on principled probability
estimates is no longer applicable. A new
formulation is needed in the development
of a spatiotemporal framework to estimate
the probability of occurrence of moving or
spreading threats to account for the dynam-
ics of spatial probability field of area at risk
over time.

One can develop the spatiotemporal for-
mulation first by identifying threat “precur-
sors” and computing their features. Each of
the features signals a probability distribution
of threats in space and time. Threat proba-
bilities can be combined from multiple fea-
tures and dynamics among these features
to estimate the probability of a threat oc-
curring at a particular location within a spe-
cific time window. One factor that needs
to be considered is that even if the spa-
tial and temporal distribution of the locations
that will be affected by a particular feature is
estimated, whether the feature will lead to
the threat still needs to be estimated. This,
of course, is a problem that has been thor-
oughly addressed in the literature on data
mining algorithms.

If motion estimates of a moving poten-
tial threat are available, the variability of the
motion estimates themselves can be used
to gauge the probability distribution of the
motion estimates.

The probabilty of a tornado,
P(Tornadolv),,r, at a particular location
(xy) T minutes into the future, given the
set of current measurements (v) taken from
a variety of radar fields, can be estimated
using these steps:

1. Find P(Tornado|v)—r through tradi-
tional data mining methods. Create
a training set of radar measurements,
associate each cluster of measure-
ments with 0 or 1 depending on a
whether a tornado was observed with
that storm 7" minutes into the future.
Then train a neural network to provide
P(Tornadol|v);—r at every point zy of
radar domain.

2. Estimate movement using a technique
such as (Lakshmanan et al. 2003).
Find the temporal variability of that
movement and assume that the tem-
poral variability and the spatial vari-
ability are identical. Using this vari-
ability, form the set of points im-
pacted by every point zy and asso-
ciate that point with the probability that
xy moves to that location.

3. Compute P(Tornadol|v),,r by numer-
ical integration of the probability dis-
tribution corresponding to motion vec-
tors that impact zy will yield a tornado
at this location based on where the
threats are currently present.

4. At every point zy of radar domain,
the probability is the maximum of
P(Tornado|v),,, where t ranges from
OtoT.

3. Demonstration

We are currently in the process of creating
the training data set in order to be able to
estimate the probability using sound data-
driven principles. In the mean time however,
the proof of our concept shown in Figure 1
was created by approximating the probabili-
ties using fuzzy logic (i.e. with nothing more
than an educated guess).
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Figure 1: Some of the input vectors v that are to be used to train the neural network and
(last two figures), the output tornado possibility at a single time and over a time period of
30 minutes.



It should be noted that the last two im-
ages in Figure 1 are the result of educated
guesses, not of neural network training. The
tornado possiblity was obtained by comput-
ing a fuzzy average of fuzzy membership
functions derived from the magnitudes of
azimuthal shear, distance to 45 dBZ and
divergence. The shear was computed fol-
lowing the linear least squares derivatives
(LLSD) approach of Smith (2002).

The tornado probability over a time pe-
riod was derived by simply assuming a
storm half-life of 40 minutes, i.e. that the
probability at a time 40 minutes later would
be half the probability that it was now.

These assumptions will be made unnec-
essary once the required probabilities are
estimated from historical data sets.
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