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1. Introduction 
1

The atmospheric humidity is directly related 
with cloud coverage and precipitation processes, 
and with latent heat release. Therefore, accuracy 
of the initial humidity field is a necessary condition 
to improve the forecast of the other meteorological 
fields, especially in the cloudy and precipitating 
regions. Since water vapor is an active absorption 
gases in the infrared frequency, the amount of 
water vapor in the atmosphere determines the 
magnitude of radiances measured by some bands 
of satellites. The assimilation of radiances, related 
to both temperature and humidity through the 
radiative transfer model, requires accurate 
humidity information. Because of the important 
role the humidity plays in the hydrological cycle 
and the atmospheric circulation, the humidity data 
assimilation is an important topic. 

In spite of the important role the humidity field 
plays in NWP and climate studies, the current 
humidity observation assimilation methods are 
behind of the other mass field, such as 
temperature, and wind assimilation in several 
aspects. First, in the current variational 
assimilation system, the background constraint is 
uni-variate in specific humidity analysis (e.g. 
ECMWF). The specific humidity is not fully 
coupled with the other dynamical variables. 
Second, the background error-variances are not 
cycled but are given through an empirical 
relationship with T and q of the background state 
(Rabier et al. 1998).   

The difficulty in humidity data assimilation is 
related with the special characteristics of humidity 
field. The humidity has large variability in both 
space and time. The large variability in small 
spatial scales makes the interpolation of the 
humidity information difficult, which requires subtle 
treatment. The temporal variation requires the 
time changing error statistics. However, the 
current operational data assimilation schemes, 
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which are variational data assimilation schemes 
(e.g. NCEP, ECMWF), assume constant 
background error covariance. Furthermore, the 
humidity field is a variable that has the least 
Gaussian error distribution among the other 
dynamical variables, while Gaussian error 
distribution is an assumption of most data 
assimilation schemes. Further complicating the 
problem is the poor quality of the humidity 
observations and the large model error related 
with the parameterization process.   

In contrast with variational methods, 
ensemble Kalman filter estimates and uses the 
time-changing background error statistics, which 
are estimated from ensembles (Anderson, 2001, 
Whitaker and Hamill, 2002, Bishop et al., 2001, 
Tippett et al., 2003). Furthermore, ensemble 
Kalman filter automatically estimates the 
covariance statistics between different variables. 
The multivariate analysis in which the mismatch 
between background and observed humidity 
implies an accompanying adjustment of the other 
dynamical fields, especially the vertical velocity, 
creates the consistent initial condition between 
humidity field and the other dynamical fields. The 
forecast initialized with such initial condition 
should have less spin-up, which seriously affects 
the short-term forecasts. These characteristics are 
inherent to ensemble Kalman filter, while 
variational methods have to do extra work to 
reduce spin-up. Because of these characteristics, 
multivariate humidity data assimilation should be 
tested with ensemble Kalman filter. Ensemble 
Kalman filter has been proven to be a more 
accurate data assimilation scheme than 3D-Var 
(Whitaker et al., 2006, Liu et al., 2006), and 
comparable with 4D-Var with the assimilation of 
temperature, winds, and pressure fields 
(Houtekamer, et al., 2006, pers. communication). 
However, there are no specific studies about 
humidity data assimilation with ensemble Kalman 
filter. In this study, we will use Local Ensemble 
Transform Kalman Filter (LETKF, Hunt et al., 
2006), which is very efficient and accurate.  

This paper is organized as follows. Section 2 
will give a brief review of the model we use. 
Section 3 briefly describes the 3D-Var developed 

 



by Miyoshi (2005) on the SPEEDY model, and the 
local ensemble transform Kalman filter. Section 4 
includes preliminary results, and results and 
discussions will be in section 5.  

 
2. SPEEDY model 
 

The SPEEDY model (Molteni 2003) is a 
recently developed atmospheric general 
circulation model (AGCM) with simplified physical 
parameterization schemes that are 
computationally efficient, but that maintain the 
basic characteristics of a state-of-the-art AGCM 
with complex physics. It has triangular truncation 
T30 with 7 sigma levels. The dynamical variables 
include zonal and meridional wind components, 
temperature, specific humidity, and surface 
pressure.  
 
3. Implementation of 3D-VAR and LETKF on 
SPEEDY model 
 
3.1 Description of 3D-Var Miyoshi (2005) in 
SPEEDY model 
 

Miyoshi (2005) followed the 3D-Var 
formulation of Barker et al., (2004). He considers 
the error standard deviation, spatial error 
correlation for each variable, and inter-variable 
correlation based on the geostrophic balance. 
These statistics were computed using the NMC 
method (Parrish and Derber, 1992). The humidity 
analysis is univariate. 

 
3.2 Brief description of LETKF scheme 
 

LETKF (Hunt, 2005, Hunt et al, 2006) is an 
ensemble square-root filter in which the 
observations are assimilated simultaneously to 
update only the ensemble mean, as shown by 
(3.2.1), while the ensemble perturbations are 
updated by transforming the forecast 
perturbations through a transform matrix term 

2/1]~)1[( aPk −  in (3.2.2), introduced by Bishop et 
al (2001). The basic formulas used in the LETKF 
are given by  
                                                                            (3.2.1)                                                                 

                                                  
                                                                    
                                                                    (3.2.2)             
Here xa ( bx  ) is the analysis (forecast) ensemble 
mean, and ( ) are the analysis (forecast) 
ensemble perturbation matrices, whose columns 
are the difference of ensemble member and 
ensemble mean. The transform matrix 

aX bX

2/1]~)1[( ak P−  is the square-root of the matrix 
( ) ak P~1− where , the analysis error 
covariance  in ensemble space is given by 

aP~
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        The dimension of aP~  is k*k, where k is the 
ensemble size, a number much smaller than the 
dimension of the model state. In this study, we 
use 20 ensemble members. Thus, the LETKF 
performs the analysis in the space spanned by the 
forecast ensembles, which greatly reduces the 
computational cost. Furthermore, since the 
analysis is computed independently at each grid 
point, the LETKF computations can be performed 
in parallel. 
 
4. Experimental design 
 

In these perfect model simulations, the 
observations are obtained from the “truth”, which 
is a long time integration of the model, by adding 
Gaussian random errors. The standard deviation 
of the random error is 1 m/s for both zonal wind 
and meridional wind. It is 1hPa for surface 
pressure, 1K for temperature. The specific 
humidity observation has Gaussian observation 
errors with 0.1g/Kg standard deviation. The 
observations are uniformly distributed, with the 
observation available every 2 by 2 grid points.  
Overall, the observation coverage is 25% of the 
grid points. The initial condition is the truth at the 
06Z01Jan, 2003 plus random errors with triple 
observation error standard deviation. 

In order to test the effectiveness of the 
specific humidity observation assimilation with 
LETKF, we designed four types of experiments. 
We name the first experiment as noq experiment 
in which the specific humidity is not assimilated at 
all: the final “analysis” of the specific humidity is 
copied from background. This is the approach 
used so far in most EnKF experiments (e.g., 
Szunyogh et al, 2005, Whitaker et al, 2006). The 
second one is named as uniq experiment, in 
which the specific humidity is updated by itself, 
and not affected by the other variables (u, v, T and 
ps), which is the way it is done operationally in 
most centers. The third one is the passiveq 
experiment in which the specific humidity is 
updated by the other variables (winds, 
temperature, and surface pressure), but the other 
variables are not updated by the specific humidity, 
which is a conservative multivariate approach 
allowing for the possibility that the humidity errors 
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are correlated with, for example, wind errors due 
to advection, but the use of these correlations may 
be not robust enough to improve the wind 
analysis. The fourth one is the experiment with 
fully coupled variables (full-var), in which all the 
dynamical variables are included in one vector. 
Table 1 summarizes the characteristics of these 
four experiments. Since the inter-variable 
correlation between specific humidity and other 
variables is not considered in the background 
error covariance used in current 3D-Var we 
cannot carry out the full-var and passiveq 
experiments with 3D-Var. For 3D-Var we only 
carried out the noq and uniq experiments. In the 
next section, we will discuss the interactive impact 
between the humidity and the other variables 
during analysis by comparing the RMS errors from 
each experiment. We will also discuss the 
different characteristics of LETKF and 3D-Var by 
comparing the impact of specific humidity 
observations assimilation on the other dynamical 
variables. 

 
Experiment 

Name 
Observed 
variable 

Dynamical 
variables 

Updated 
variables 

noq u, v, T, Ps u, v T, Ps u, v, T, Ps 

u, v, T, Ps u, v, T, Ps u, v, T, Ps uniq 

q q q 

u, v, T, Ps u, v, T, Ps u, v, T, Ps passiveq 

u, v, T, q, 
Ps 

u, v, T, q, 
Ps 

q 

Full-var u, v, T, q, 
Ps 

u, v, T, q, 
Ps 

u, v, T, q, 
Ps 

Table 1 Four types of experiments carried out by 
LETKF.  Dynamical variables represent the variables 
included in the background vector. The updated 
variables are the final analysis variables. 
 
5. Results 
 
5.1 The accuracy of humidity analysis 
 

Without the assimilation of specific humidity 
(noq experiment), the accuracy of specific 
humidity is comparable in both 3D-Var and 
LETKF, since in both schemes the specific 
humidity is copied from background. With the 
assimilation of specific humidity observations 
(uniq experiment), the specific humidity analysis 
is improved in both 3D-Var and LETKF (Fig. 1). 

The improvement is much more significant in 
LETKF than that of 3D-Var due to the higher 
accuracy of LETKF assimilation. With the same 
observations, LETKF can extract more information 
than 3D-Var (Liu et al, 2006). 

The accuracy of specific humidity analysis is 
further slightly improved in the full-var experiment 
with LETKF scheme (Fig. 1b). The improvement in 
the passiveq experiment is due to the positive 
impact from the observations of the other 
variables. The specific humidity can extract useful 
information from the other variables because of 
the accurate estimation of the covariance between 
specific humidity and the other variables. The 
improvement in the full-var is from the analysis 
accuracy of the other variables, which in turn 
create more accurate specific humidity analysis. 
Contrary to 3D-Var, the LETKF analysis errors are 
still decreasing after one month integration. 

 

 

a 

b 

Fig. 1 500hPa specific humidity (kg/kg) RMS error 
evolved with time for 3D-Var (top panel) and LETKF 
(bottom panel). The red line is the result of noq 
experiment, the black line is the result of uniq 
experiment, the blue line is from passiveq, and the 
green line is for full-var experiment. 

 



 
5.2 The impact of specific humidity 
observations on other variables 
 

Though specific humidity analysis is improved 
from the assimilation of specific humidity 
observations (Fig. 1a) in 3D-Var, the other 
variables, such as zonal wind (Fig. 2a), meridional 
wind and temperature (not shown) are only 
marginally improved.  

In contrast to 3D-Var, the assimilation of 
specific humidity observations in LETKF improves 
substantially the analysis of other variables as well 
(Fig. 2b). Compared with noq experiment, the 
zonal wind analysis is greatly improved in the 
uniq experiment.. Since the accuracy of specific 
humidity in passiveq experiment is better than 
that of uniq experiment, the analysis of zonal wind 
is also further improved due to the positive impact 
of specific humidity analysis during forecast. The 
specific humidity can improve the analysis of other 
variables not only through forecast, but also 
through analysis, as the results of full-var 
experiment show. The accuracy of zonal wind 
analysis is best in the full-var experiment, in 
which the specific humidity observations affect the 
analysis of other variables through the covariance 
between specific humidity and the other variables.   

a 

b 

Fig.2 500hPa zonal wind (m/s) RMS error evolved with 
time for 3D-Var (top panel) and LETKF (bottom panel). 
The red line is the result of noq experiment, the black 
line is the result of uniq experiment, the blue line is 
from passiveq, and the green line is for full-var 
experiment. 
 
 5.3 The mechanism behind the improvement 
due to specific humidity data assimilation 
 

In this section, we will try to isolate the factors 
influencing the analysis results by comparing the 
RMS error structure difference between different 
experiments. 

Fig. 3a shows zonal mean of time average 
specific humidity RMS error, which reveals that 
the specific humidity has large errors over the 
Tropics and lower levels. The error gradient is 
similar with the gradient of the true field. Where 
the magnitude of specific humidity is larger, the 
error is also larger. Another characteristic is that 
the specific humidity has relatively larger RMS 
error around 200hPa, where the jet stream lies 
(Fig. 4a) and the wind speed and gradient is 
larger. Since specific humidity acts like a tracer 

 



gas, it is affected by the wind speed, especially 
when the wind speed is very large. While we have 
not considered the wind effect in uniq experiment, 
the RMS error is relatively large over that region. 
The wind effect is considered in the passiveq 
experiment, so the specific humidity analysis is 
much more accurate in the passiveq experiment 
(Fig. 3b) compared with uniq experiment, 
especially at the level where the jet stream lies. In 
turn, the improvement of the specific humidity 
analysis improves the wind analysis by improving 
the wind forecast field, especially over the jet 
stream and the large wind speed region (Fig. 4c). 
Though temperature is also used to update the 
specific humidity analysis in the passiveq 
experiment, we believe that the impact from 
temperature is smaller than the wind because the 
correlation between specific humidity and 
temperature is very small (Dee and Da silva, 
2003). Compared with noq experiment, the 
specific humidity in the uniq experiment is 
improved everywhere (not shown), so does the 
wind field (Fig. 4b). The possible reason is that the 
introduction of the specific humidity observation 
into the analysis system in the uniq experiment 
makes the combination of the ensemble member 
more optimal. Therefore, it produces more 
accurate analysis for other variables compared 
with noq experiment. 

Compared with uniq experiment, the full-var 
experiment has large improvement not only over 
the place where the passiveq experiment shows 
improvement, but also the other regions, 
especially below 200hPa (Fig. 3c, Fig. 4d). 
Compared with passiveq experiment, the zonal 
wind analysis is better, which is due to the impact 
of specific humidity observation on the zonal wind 
analysis during data assimilation. The result 
reveals that the error covariance estimated from 
the ensembles represent the true covariance 
between specific humidity and zonal wind, which 
further support the possibility of improving the 
wind analysis field from specific humidity 
observations. In turn, the improvement of zonal 
wind improves the specific humidity field (Fig. 3c). 
 
 
 
 
 

 

a 

 

b 

 

c 

Fig. 3 a. Zonal average of the time mean specific 
humidity analysis error (shaded, Unit: 10-1g/kg) for uniq 
experiment; b. the zonal average of the time mean 
specific humidity RMS error difference (shaded, Unit: 
10-1g/kg) between passiveq experiment and uniq 
experiment; c, the RMS error difference (shaded, Unit: 
10-1g/kg) between full-var experiment and uniq 
experiment. The contour is the time average true 
specific humidity (Unit: 10-1g/kg) 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
a Fig. 4 a. Zonal average of the time mean zonal wind 

analysis error (shaded, Unit: m/s) for uniq experiment; 
b. the RMS error difference between uniq experiment 
and noq experiment. The contour is the time average 
true specific humidity (Unit: m/s); c. the RMS error 
difference (shaded, Unit: m/s) between passiveq 
experiment and uniq experiment; d, the RMS error 
difference (shaded, Unit: m/s) between full-var 
experiment and uniq experiment; The contour is the 
time average true specific humidity (Unit: m/s). 
 
6. Conclusions and discussion 
 

The humidity field is important in both weather 
forecast and climate studies. At the same time, 
the assimilation of humidity observations is a 
difficult problem that lags behind the other 
variables. In this paper, we discussed the 
possibility and results of specific humidity 
assimilation using LETKF scheme.  

Unlike 3D-Var, LETKF connect the specific 
humdity and the other variables automatically 
through the estimated covariance between 
specific humdity and other variables. Therefore, 
the specific humidity can be fully coupled with the 
other variables. The results show that the specific 
humidity observation not only has big impact on 
the assimilation of itself, it can also improve the 
analysis of other variables, especially the wind 
fields. At the same time, acting like tracer gases, 
specific humidity extract useful information from 
the other variables as well. 

Though we get very promising results here, 
we realize that the observation error distribution of 
the specific humidity is not very realistic, which is 
least Gaussian in reality. At the same time we also 
have to consider the effect of the model error. In 
the future, we plan to deal with the non-Gaussian 
observation error problem by using a new 
variable, pseudo-relative humidity (Dee and 
DaSilva, 2003), which has more Gaussian error 
distribution. We will try to estimate the parameter 
related with the precipitation process along with 
data assimilation to deal with model error.  
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