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1. INTRODUCTION1

 
The Local Ensemble Transform Kalman Filter 

(LETKF) (Hunt et al. 2006) is an efficient data 
assimilation scheme of the square root ensemble 
Kalman filter family. It has been implemented to 
assimilate simulated observations in the NCEP 
GFS model (Szunyogh et al. 2005), and in the 
NASA fvGCM model (Liu et al. 2006). The results 
from LETKF are much better than those from 
3DVAR in a perfect model scenario. With real 
data, LETKF has been shown to be superior to the 
operational NCEP SSI (operational 3DVAR) by 
Szunyogh et al 2006 when applied on the NCEP 
GFS model at T62L28 resolution, and verified 
against the NCEP T254/L64 analysis using all 
available operational observations. Unlike other 
square-root schemes that solve the Kalman filter 
equations in observation space (Anderson 2001, 
Bishop et al. 2001, Whitaker et al. 2004), LETKF 
solves the equations locally in model space.  In 
this way, LETKF can utilize parallel computation 
and is more efficient when assimilating satellite 
observations, the number of which can be much 
larger than the number of degrees of freedom in 
the model. 
    The Atmospheric Infrared Sounder (AIRS) 
was lunched on EOS Aqua in 2002. Some positive 
impacts on global analysis and forecast have been 
found in 3DVAR (Marshall et al. 2006, Chahine et 
al. 2006). Since the LETKF analysis was shown to 
be better than 3DVAR analysis when using all 
operational observations except radiances, we 
now assess the impact of adding AIRS retrievals. 
    In this study we use the same system as 
Szunyogh et al (2006) assimilating real non-
radiance observations on the NCEP GFS, and add 
AIRS temperature retrievals provided by Chris 
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Barnet. The 4-dimension version of LETKF (Hunt 
et al. 2004), assimilates the retrievals at their right 
time. The analyses and forecasts are compared 
with those from Szunyogh et al (2006), which do 
not assimilate AIRS data.  
   
2. 3D- and 4D-LETKF 

 
LETKF is an ensemble square-root filter in 

which the observations are assimilated to update 
only the ensemble mean (shown in equation (1)) 
while the ensemble perturbations are updated by 
transforming the forecast perturbations through a 
transform matrix (equation (2)) introduced by 
Bishop et al (2001). The details of the 3D-LETKF 
scheme can be found in Hunt et al (2006).  
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which has dimension K by K, much smaller than 
both the dimension of the model and the number 
of observations. Thus, the LETKF performs the 
matrix inverse in the space spanned by the 



forecast ensemble members, which greatly 
reduces the computational cost.  
    The mean analysis state generated by this 
3D-LETKF is the linear combination of the 
background ensemble states which best fits the 
available observations at analysis time (Hunt et 
al., 2006). 4D-LETKF modifies LETKF by seeking 
the linear combination of the ensemble trajectories 
that best fits the observations made within the 
assimilation window between analysis times (Hunt 
et al., 2004).  Specifically, 4D-LETKF solves the 
following analysis equations: 
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where the subscript l refers to the corresponding 
model state at time   , and n is the 
current analysis time (Harlim and Hunt, 2006). In 
this way, 4D-LETKF can assimilate observations 
at the correct time.  

l ∈ 1,2,K,n{ }

      
3. OBSERVATIONS    
 
    We assimilate two observational data sets in 
this study. The first set contains all operationally 
available data except radiances, the same set 
used by Szunyogh et al (2006). The second 
observation set is like the first set but augmented 
by the 3x3 degree resolution AIRS temperature 
retrievals, NESDIS.  
    The AIRS retrieval algorithm is a v5 emulation 
system, based on the operational version 4 
(Susskind et al 2003, Susskind et al 2006) but 
headed toward version 5 (Chris Barnet, personal 
communication). The quality control flag 
resembles v4 qual_temp_mid=0 flag, but is 
applied to the whole column. In order to assimilate 
the AIRS temperature retrievals, we have to 
estimate their error statistics, but it is very difficult 
to estimate the error correlations among retrievals 
at different latitude and longitude locations. To 
simplify the problem, we ignore the error 
correlations but increase the error standard 
deviations to compensate for the reduced 
magnitude of the observation error covariance 
matrix.  
 
4. EXPERIMENTAL SETUP 
 

    Using 4D-LETKF, we assimilate the first 
observation data set in January 2004 with the 
NECP GFS model (control run).  We verify the 
analysis and forecasts against the NCEP 
T254/L64 analysis that uses all available 
operational observations. Then, we assimilate the 
second observation data set including the AIRS 
temperature retrievals for the same time period 
(AIRS run). We assess the AIRS impact by 
comparing the results from the AIRS run with the 
control run.  
 
5. RESULTS 
 
5.1 Experiment with vertically constant AIRS 
error standard deviation  
  
     The v4 AIRS retrievals have produced 1km 
tropospheric layer mean temperatures with an 
RMS error of 1K, in general (Susskind et al. 2006). 
As mentioned in section 3, we ignore the retrievals 
correlation and therefore have to increase the 
error standard deviation. For the first test, we 
assume the error standard deviation of 
temperature retrievals used in the observation 
error covariance matrix is 2K at all levels, doubling 
the estimated error of about 1K.  
 

 
 
Fig.1. Time series of the global averaged analysis RMS 
error for 500hPa temperature field in January 2004, for 
the control run (black, assimilating all the NCEP 
operational non-radiance data) and the AIRS run (blue, 
adding AIRS temperature retrievals). The red ovals 
indicate days in which AIRS retrievals were missing. 
 
     Fig.1 shows the global averaged 500hPa 
temperature analysis RMS difference from the 
NCEP T254/L64 analysis for the control run 
(black) and the AIRS run (blue). There is a 
consistent reduction of errors when assimilating 
AIRS retrievals. It is remarkable that on some 



days, such as Jan 3rd, 13th and 27th, when the 
AIRS retrievals were missing, the AIRS run has 
almost the same RMS error as the control run. 
This further proves the significant positive impact 
of AIRS on the analysis. As expected, the AIRS 
data improved the analysis significantly more over 
the Southern Hemisphere. The improvement is 
about 30%. The results for the Northern 
Hemisphere show a smaller but still consistently 
positive impact in the analysis accuracy (Fig 2). 
 

 
 
Fig. 2. As for Fig.1, except for the Southern Hemisphere 
(upper panel) and the Northern Hemisphere (bottom 
panel), separately. 
 

Though only AIRS temperature retrievals 
were assimilated, the improvements are also seen 
in other variables. The temperature information 
benefits other variables through the evolving 
dynamical cross correlation between the observed 
variable and the others estimated by the LETKF. 
This is seen in Fig. 3 with an improved AIRS 
analysis for the 500hPa zonal wind field.  

 Fig.4 shows the AIRS impact at other levels. 
In general, the analysis of the AIRS run is more 

accurate than that of control run for most of the 
tropospheric levels. However, a negative impact is 
observed in high levels. Since the NCEP T254/L64 
analysis has errors of its own, this may be partly 
due to lower accuracy at these levels. The 
degradation of positive impact in the near-surface 
levels suggests that the retrievals are less 
accurate near the surface.  

   

 
 
Fig.3. As for Fig.1, except for the zonal wind field. 
 

 
Fig.4. Time-longitude averaged vertical cross-section of 
the RMS error of the AIRS run minus the RMS error of 
the control run for temperature field, averaged over the 
last 10 days in January 2004.  
 
     We have shown a significant beneficial 
impact of AIRS retrievals on the analysis, at least 
compared with the higher resolution operational 
NCEP analysis. We now test their impact on 
forecast skill. Fig. 5 is the global averaged 500hPa 
temperature RMS error for 48-hour forecasts for 



the control run and the AIRS run. It demonstrates 
that 48-hour forecasts consistently show a positive 
impact from the assimilation of AIRS temperature 
retrievals. This improvement is also seen at other 
levels and for the other variables (not shown). 
 
 

 
 Fig 5. As for Fig.1, except for the 48-hours forecast 
and only showing the last 10 days. 
 
5.2 Experiment with vertically dependent AIRS 
error standard deviation 
 

In section 5.1, we showed promising analysis 
and forecast results in the upper and middle 
troposphere when assimilating AIRS retrievals, but 
the results were degraded near the surface. In 
section 5.1 we assumed a constant 2K retrieval 
error for the whole column. Though simple, this 
assumption is crude because in reality the AIRS 
temperature errors vary with height. It appears that 
2K is a reasonable assumption for retrievals in the 
upper-to-middle troposphere (given that we 
neglected horizontal error correlations), but the 
RMS profile shown in Fig 5 from Susskind et al. 
(2003) suggests that the errors are larger in the 
low troposphere and high stratosphere.  

We performed another preliminary experiment 
by using level-dependent AIRS temperature 
errors. We retain 2K errors in the upper and 
middle troposphere, but increase them to about 
2.4K at low troposphere and high stratosphere, 
and 2.6K near the surface, values roughly 
proportional to the RMS profile in Susskind et al 
(2003).  

Fig 6 shows 850hPa global averaged analysis 
error for the control run, the AIRS run with 2K error 
and the AIRS run with the level-dependent error. 
Although the result of the AIRS run with 2K error 
were better than the control run, the improvement 

was not as large as that at 500hPa (Fig 1). By 
increasing the errors to be 2.4 K~2.6 K at the low 
to surface levels, the result of assimilating AIRS 
temperature is further improved at 850hPa. This 
improvement is demonstrated further in the time-
longitude averaged RMS error difference between 
these runs (Fig 7). We find that some negative 
AIRS impact observed in Fig 4 are now neutral or 
positive impacts. The AIRS impact is positive 
almost everywhere below 400hPa. The negative 
impact at the high levels still appears, but its 
magnitude is reduced, although, again this error 
could be arising from the errors in the verification 
analysis.        

 
Fig.6. Time series of the global averaged analysis RMS 
error for 850hPa temperature field from the control run 
(black), the AIRS run assuming a 2K error at all levels 
(blue), and the AIRS run assuming a level-dependent 
error (red). 
    

 
 
Fig.7. As for Fig.4, except for assuming a level 
dependent retrieval error in the AIRS run.  
 



6. CONCLUSON, DISCUSSON AND FUTURE 
WORK 
 

The AIRS temperature retrievals have 
consistent positive impact on both analysis and 
forecast, found not only in the temperature field 
but also in the other variables. This positive impact 
is biggest in Southern Hemisphere but still 
significant in Northern Hemisphere.  

We have arbitrarily assumed either constant 
2K errors or increased the errors near the surface 
and in the upper levels. The results indicate that 
there is a significant impact from the assumed 
error levels. We have also neglected the 
correlation of retrieval errors from different 
locations. We are exploring the possibility to 
estimate the observation error covariance of the 
retrievals based on the covariances of analysis 
and observational increments (Desroziers et al. 
2005). This can be done online within the LETKF, 
and preliminary results with simpler models are 
encouraging (Kalnay et al. 2006). 

We are planning to assimilate AIRS retrievals 
generated by other algorithms with the 4D-LETKF. 
The MIT stochastic/neural network retrievals 
trained with ECMWF analyses, are apparently 
able to cloud clear AIRS radiances and produce 
retrievals with accuracy that does not degrade with 
cloud cover. William Blackwell has offered to 
provide us with these retrievals for January-
February 2004 to test their impact on analyses 
and forecasts, a more robust way to test whether 
these retrievals do indeed contain more 
information than the standard retrievals. 

In addition to the AIRS temperature retrievals, 
we will assimilate the humidity to see if the AIRS 
humidity product further benefits the analysis and 
forecasting (Liu et al. 2006). 

Finally, we plan to perform assimilation of 
radiances and compare with the retrievals and 
with the assimilation of cloud-cleared radiances 
obtained in the process of computing the 
retrievals. Clear radiances depend only on 
instrument errors, which are less correlated than 
the retrievals. The LETKF has an advantage for 
assimilating radiance observations because it 
does not require either the adjoint or the linear 
tangent models of the radiance transform model: it 
only needs differences between nonlinear 
integrations. Cloud-cleared radiances may have 
less correlated errors than the retrievals, but are 
much more abundant than the clear radiances 
currently used in operations. 
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