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FOR THE ASSIMILATION OF SPARSE DATA INTO
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and National Center for Atmospheric Research, Boulder, CO

1. INTRODUCTION

A new family of ensemble filters, called predictor-
corrector filters, is introduced. The predictor-
corrector filters use a proposal ensemble (obtained
by some method, called the predictor) with
assignment of importance weights to recover the
correct statistic of the posterior (the corrector).
The proposal ensemble comes from an arbitrary
unknown distribution, and it only needs to have
a good coverage of the support of the posterior.
The ratio of the prior and the proposal densities
for calculating the importance weights is obtained
by density estimation. Predictor by the ensemble
Kalman formulas and corrector by nonparametric
density estimation based on the distance in Sobolev
spaces are considered. Numerical experiments
show that the new predictor-corrector filters combine
the advantages of ensemble Kalman filters and
particle filters for highly nonlinear systems, and that
they are suitable for high dimensional states which
are discretizations of smooth functions.

We also propose another class, called morphing
ensemble filters, which combine ensemble Kalman
filters with the ideas of morphing and registration
from image processing. In the morphing ensemble
filters, the ensemble members are represented by
the composition of one fixed template function with
a morphing function, and by adding a residual
function. The ensemble Kalman formulas operate
on the transformed state consisting of the morphing
function and the residual function. This results in
filters suitable for problems with sharp thin moving
interfaces, such as in wildfire modeling.

The research reported here has been motivated
by data assimilation into wildfire models (Mandel
et al. 2005, 2006; Douglas et al. 2006). Wildfire
modeling presents a challenge to data assimilation
because of non-gaussian probability distributions
centered around the burning and not burning states,
and because of movements of thin reaction fronts
with sharp interfaces. Standard EnKF approach
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(Evensen 2003) fails because it is limited to making
linear combinations of states, which results in
nonphysical states. This can be ameliorated by
regularization (Johns and Mandel 2005), but large
ensembles are required and the method does not
work reliably when large updates of the state are
required due to model errors or infrequent data
(Mandel et al. 2006).

The work presented here will be useful in wildfire
modeling as well as in data assimilation for other
problems with strongly non-gaussian distributions
and moving sharp interfaces and features, such as
hurricanes.

2. OVERVIEW OF THE STATE SPACE MODEL
AND BAYES THEOREM

Sequential statistical estimation techniques have
become known in meteorology and oceanography
as data assimilation (Bennett 1992, p. 67). The
discrete time state-space model is an application
of the bayesian update problem. The state of
the model is an approximation of the probability
distribution of the system state w, usually written in
terms of its density p (u). The probability distribution
is advanced in time until an analysis time, when new
data is incorporated into the probability distribution
by an application of Bayes theorem,

1)

Here and below, oc means proportional, p; (u) is the
probability density before the update, called the prior
or the forecast density, the conditional probability
density p(d|u) is the data likelihood, and p,(u) is
the posterior or the analysis density. The model is
then advanced until the next analysis time. The data
likelihood is the probability that the measurement
value is d if the true state of the system is u. The data
likelihood is found from the data error distribution &,
which is assumed to be known (every measurement
must be accompanied by an error estimate), and
from an observation function h, by

d—h(u) ~e.

Pa(u) = p (uld) o p (dlu) py (u) .

()

The value h (u) of the observation function would be
the value of the measurements if the system state «



and the measurements d were exact.

3. PREDICTOR-CORRECTOR FILTERS
3.1. Particle Filters

We first review Particle Filters (PFs) following
(Doucet et al. 2001, Ch. 1). PFs approximate
the state by a weighted ensemble in the sense of
Monte Carlo quadrature as follows. Suppose the
probability distribution p of the state has density
pu(u) with respect to some underlying measure v on
the state space U, (uy)I_, is a sample from another
distribution 7, called the proposal distribution, with
density p, with respect to v, and f is a real function
on U integrable with respect to x. Then

/fpdu - /fpip,,dy:/f&dw
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with error O(N~'/2) in mean square, if
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In this sense, the weighted ensemble (uy, wk)fgvzl ,
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represents the probability distribution p, and we will
write

(uk’a wk) ~ Pu-

Now suppose p; is the forecast density and we
are given a sample (uf) from some probability
distribution 7 with density p., called proposal
density. Then, from (3) and (1), the analysis
density p, is represented by the weighted ensemble

(uf, wi) ~ pa,

a p(l(ua) _ a pf (ua)
Wy X pﬂ(ug) = p(dlu}) . (u%) (4)

While the data likelihood p (d|u) can be readily
evaluated from (2), the ratio of the forecast and the
proposal densities is in general not available, except
in the particular case when the forecast is given as a
weighted ensemble (u/,w/) ~ p; and the proposal
analysis ensemble is taken the same as forecast
ensemble, (uf) = (uﬁ); then the analysis weights
are simply

wy p(d|u£)w,’:

This is the Sequential Importance Sampling (SIS)
method.

The problem with SIS is that only members where
the weights w{ are large contribute to the accuracy
of the representation. Because the regions where
analysis density p, is large and where the forecast
density p; is large in general differ, most of the
analysis weights degenerate to numerical zeros
and the effective size of the ensemble decreases.
Therefore, the SIS update is followed by resampling
to construct an analysis ensemble with all weights
equal. In the SIR method (the bootstrap filter)
(Gordon and Smith 1993), a new ensemble member
u¢ is obtained by selecting «/ with probability w¢.
This results in an ensemble with repeated members
and all weights equal. Stochastic advance in time
(Markov chain) is then relied upon to spread the
ensemble again. In (Kim et al. 2003; Xiong and
Navon 2005; Xiong et al. 2006), the resampling is
done by first estimating the density p,, and then
generating the new ensemble by random sampling
from the estimated density. In (van Leeuwen 2003),
the use of Cauchy distribution, which has thicker tails
that the normal distribution, is suggested to alleviate
the degeneracy problem.

3.2. Density Ratio Estimation

When a large change of state is required in the
analysis step, SIS with a modestly sized ensemble
fails, because it has few or no ensemble members
where the posterior is concentrated. But it is possible
to get proposal ensembles that can be expected to
cover the posterior better by other means, such as
the EnKF (Sec. 3.3 below). The EnKF is able
to make large changes of the state in the analysis
step because it relies on linear algebra to create the
analysis ensemble by a least squares fit in the span
of the forecast ensemble.

So, given an arbitrary proposal ensemble, we
replace the ratio of the densities in (4) by the
nonparametric estimate

f
pp(ug)  2etfjul —ug], <n Wk
Pr(W})  Xpffus—ug| <n 1/Nx’

0 kllg=>

where N, is the number of members of the proposal
ensemble, » > 0 is a bandwidth parameter, and
|-l ;7 is & suitable norm. This estimate uses only the
concept of distance and it is inherently dimension
independent. We propose to choose the bandwith
h = h(u$) so that it is the distance to the | N./?|-th
nearest u§ in the [|-||,; norm.

It remains to choose the norm ||-|| ;. In the scalar
case, the norm |||, is simply the absolute value.

(5)




We are particularly interested in the case when
the ensemble consists of (discrete representations
of) smooth functions. In that case, the norm
|I-|| 7 is related to the probability distribution of the
ensemble as follows. A well-known way (Ruan
and McLaughlin 1998; Evensen 1994) to construct
smooth random functions for the initial ensemble
is from an orthonormal basis {¢,} of U and
coefficients A\,, >0, >, A, < 00, by

U= CaPns Cn=Andn, dn~N(0,1). (6)

n

Possible choices of {¢,} include a Fourier basis,
such as sine or cosine functions, or bred vectors
(Kalnay 2003). In any case, with increasing n, the
basis functions ¢, are more oscillatory, and they
contribute less to the sum since \,, — 0. Because of
the fast rate of decay of the coefficients )\, the sum
(6) defines random smooth functions. The function «
defined by (6) is a random variable with values in the
state space U distributed according to a gaussian
measure on U and )\,, are the eigenvalues of the
covariance. The gaussian measure is associated
with the so-called Cameron-Martin space (Bogachev
1998; Kuo 1975)

V= {U : HU”%/ < oo}

where

2

i =l S e, @
Similarly as above, functions uv € V are smooth
because of the fast rate of decay of the coefficients
A, for large n. It is well known that solutions of
partial differential equations are naturally in spaces
with the norms of the form (7). For example, the
solution of the Laplace equation in 1D, " = f in
(0,7), with f € L?(0,7) and boundary conditions
u(0) = u(w) = 0 is in the Sobolev space H* (0, ),
for s < 2. The space H® (0, ) is equipped with the
norm (7) with ¢, () = (1/2)sinnz, x € (0,7), and
An = 1/ (14 n?), so the condition 3> A, < oo is
satisfied if s > 1/2.

We choose the norm ||-|| ; as some norm which is
not stronger than the norm ||-||,,, such as

2
fullfy =

n

2

, U= § CnPp;
n

Cn

Kn

(8)

with x,, > \,,.
We now derive the density ratio estimate (5),
which will provide a heuristic motivation for the above

choice of the bandwidth and the norm. Mathematical
investigation of the convergence of the estimate (5)
is an open problem. If (uk)k]\’:1 is a sample from a
probability distribution y, which has density f,, with
respect to the measure v and f,, is continuous at x,

then
~ |{/<J LU € BH (J),h)}‘
Nv (By (z,h))

fu (@) (9)

where

By (z,h)={uec H:|lu—z|, <h}  (10)

is the ball with center 2 and radius h in the norm
Il ;- Dividing the estimates (9) for the forecast
and the proposal densities gives the density ratio
estimate (5). Lebesgue measure does not exist in
infinitely dimensional spaces, so one has to choose
the underlying measure v as a gaussian measure.
Computing the measure of the ball is in general not
possible, but, fortunately, the measure of the ball
cancels.

The main assumptions behind deriving the density
estimate was that the forecast and the proposal
densities with respect to the measure v exist and
are finite, and that the measure of the ball (10)
is positive. This is by far not automatic in infinite
dimension, and restricts the choice of the norm ||-|| ;.
By the Hajek-Feldman theorem, every two Gaussian
measures on an infinitely dimensional space are
either equivalent or mutually singular, and if they
are equivalent, they have the same Cameron-Martin
space (Bogachev 1998). Therefore, considering the
case when p; and p, are densities of gaussian
measures equivalent to the measure the initial
ensemble was sampled from, the measure v needs
to be chosen equivalent to that measure. The
requirement that the norm ||-|| ; is not stronger than
the norm of the Cameron-Martin space is then given
by the requirement that the measure of the ball (10)
is positive.

The choice of the bandwidth h is motivated
by known convergence results for the density
estimate (9). In finite dimension, Loftsgaarden and
Quesenberry (1965) have shown that the density
estimate (9) converges in probability when h is
chosen as the distance to the k(N)-th nearest
sample point to y, and

) ) kE(N)
1 N) = | — =0. 11
W RN = oo, T T =00 (4D
Dabo-Niang (2004) proved that for probability

distributions on a Banach space, the estimate (9)
converges in mean square when

lim h=0,

yim lim Nv(Bg(z,h)) = +o0, (12)

N —+o0



and some other technical conditions are satisfied.
It would be interesting to establish which choice of
the bandwidth i implies (12) and thus convergence
of the density estimate in the infinitely dimensional
case.

3.3. Weighted EnKF

We first state for reference the Ensemble Kalman
Filter (EnKF) following Burgers et al. (1998). If the
forecast distribution and the data error distributions
are gaussian, and the observation function is linear,
then the analysis distribution can be computed by
linear algebra. This is the famous Kalman filter
(Kalman 1960). However, the Kalman filter involves
manipulating and advancing the covariance matrix,
which is prohibitively expensive for large problems.
In the EnKF, the forecast density p; is assumed to
be gaussian and it is represented by the forecast
ensemble with all weights equal. The data likelihood
p(d|u) is also assumed to be gaussian, d — Hu ~
N (0, R). The members of the analysis ensemble are
then obtained from
u¢ = ul + K(dy — Hul), (13)

where d; is a randomly perturbed data vector
sampled from N (d, R), and

K=Q;H" (HQ;H" + R) ™" (14)
is the Kalman gain matrix, with @ ; being the sample
covariance of (u]).

We now generalize EnKF to weighted ensembles.
This makes it possible to use EnKF as the predictor
in a predictor-corrector filter, operating on weighted
ensembles. Fortunately, all that needs to be done
is to use as @y = (g;) the weighted sample
covariance,

N _ _
i = Dk=1 w;f(Ufk - “{)(“;k - “f)
1] N
L= 3o (w])?
with @/ being the forecast mean. The weights do not
change, wf = w].

For an efficient parallel implementation of EnKF,
see Mandel (2006).

3.4. Numerical Results

To get an idea of why are predictor-corrector
filters beneficial, we will consider some situations
where standard filtering techniques are unsuitable.
Such conditions are frequently encountered when
considering nonlinear problems, or when it is
technically unfeasible to use a sufficiently large
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Figure 1: Prior and likelihood distributions

ensemble to approximate the distributions. We will
use predictor by weighted EnKF, and the resulting
predictor-corrector filter will be called EnKF-SIS.

3.4.1. Bimodal Prior The first such situation we will
consider is that of a bimodal prior. We construct a
bimodal prior by first sampling from N (0,5). These
samples are then weighted by the function
—5(—1.5—x;)>

wi(x;) = e 157" 4

€
representing the sum of two gaussian distributions
with mean +1.5 and variance 0.1. The result-
ing weighted ensemble can then be considered a
weighted sample from the prior probability distribu-
tion function shown in Fig 1. The data likelihood is
gaussian, with mean shifted slightly to the right.
Each filter (EnKF, SIS, and EnKF-SIS) was applied
to this problem with an ensemble size of 100.
The density ratio estimate (5), was then applied
to the resulting posterior ensemble to obtain an
approximate posterior probability distribution. The
results for each method are given in Figs 2, 3, and 4.
Because the EnKF technique assumes that all
distributions are gaussian, it is no surprise that it
would fail to capture the non-gaussian features of
the posterior. Both SIS and EnKF-SIS were able to
represent the nature of the posterior reasonably well.

3.4.2. Filtering in High Dimension Typical results
for filtering in the space of functions on [0, 7] of the
form

d
U= Z ¢p sin (nx) (15)
n=1
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Figure 3: Posterior from SIS
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Figure 4: Posterior from EnKF-SIS

are in Figs. 5 and 6. In all panels, the horizontal
axis is the spatial coordinate = € [0, x]. The vertical
axis is the value of u. The level of shading on each
vertical line is the marginal density of « at a fixed
x, computed from a histogram with 50 bins. The
ensemble size was N = 100 and the dimension of
the state space was d = 500. The eigenvalues of the
covariance were chosen )\, = n~> to generate the
initial ensemble from (6), and x,, = n~2 for density
estimation.

Fig. 5 again shows that EnKF cannot handle
bimodal distribution. The prior was constructed by
assimilating the data likelihood

1/2 if u(r/4) and
u(3n/4) € (-2,—1)U(1,2)
0 otherwise

p(dlu) =

into a large initial ensemble (size 50000) and
resampling to the obtain the forecast ensemble size
100 with a non-gaussian density. Then the data
likelihood
u(m/2) — 0.1 ~ N(0,1)

was assimilated to obtain the analysis ensemble.

Fig. 6 shows a failure of SIS. The prior ensemble
sampled from gaussian distribution with eigenvalues
of the covariance )\, = n=3 using (6) and (15), and
the data likelihood was

u(m/2) =7~ N(0,1).

We observe that while EnKF and EnKF-SIS create
ensembles that are attracted to the point (7/2,7),
SIS cannot reach so far because there are no such
members in this relatively small ensemble of size

100.
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Figure 5: EnKF does not recognize a non-gaussian

orior Figure 6: SIS cannot make a large update.
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Figure 7: Deterministic potential curve

3.4.3. Filtering for a Stochastic ODE The results
given above describe how each filtering technique
applies to certain carefully designed synthetic
distributions. It remains to be seen how these filters
work when applied to an actual model. We have
implemented a stochastic differential equation as
used by Kim et al. (2003),

d
—u:4u—4u3—|—m7,

pm (16)

where 7(t) is a stochastic variable representing
white noise, namely independent samples from a
gaussian distribution with zero mean and covariance
E[n(t)n)] = é(t—t'). The parameter « controls the
magnitude of the stochastic term.

The deterministic part of this differential equation
is of the form du/dt = —f’ (u), where the potential
f(u) = —2u? + u*, cf, Fig 7. The equilibria are
given by f’ (u) = 0; there are two stable equilibria
at v = 41 and an unstable equilibrium at v =
0. The stochastic term of the differential equation
makes it possible for the state to flip from one stable
equilibrium point to another; however, a sufficiently
small x insures that such an event (Fig 8) is rare.

The equation (16) is a simple model problem
related to fire simulation, cf., (22) below, which adds
spatial diffusion; the two equilibria in (16) are related
to the burning and not burning states.

A suitable test for an ensemble filter will be
determining if it can properly track the model as it
transitions from one stable fixed point to the other.
From the previous results, it is clear that EnKF will
not be capable of describing the bimodal nature
of the distributions involved so it will not perform
well when tracking the transition. When the initial
ensemble is centered around one stable point, it

time

Figure 8: A solution of (16) switching between stable
points

t] 1 2 3 4 5 6
ull2 13 -01 -06 -14 -1.2

Table 1: Data used in assimilation into (16)

is unlikely that some ensemble members would be
close to the other stable point, so SIS will be even
slower in tracking the transition (Kim et al. 2003).

The solution » of (16) is a random variable
dependent on time, with density p(t,u). The
evolution of the density in time is given by the Fokker-
Planck equation (Miller et al. 1999),

" 2
g]; = %[4u(u2 —Dp] + %%

To obtain the exact (also called optimal) solution
to the bayesian filtering problem, up to a numerical
truncation error, we have advanced the probability
density of u between the bayesian updates by
solving the Fokker-Planck equation (17) numerically
on a uniform mesh from v = —3 to v = 3 with
the step Au = 0.01, using the MATLAB function
pdepe. At the analysis time, we have multiplied the
probability density of u by the data likelihood as in
(1) and then scaled so that again [ pdu = 1, using
numerical quadrature by the trapezoidal rule.

The data points (Table 1) were taken from one
solution of this model, called a reference solution,
which exhibits a switch at time ¢ ~ 1.3. The
data error distribution was normal with the variance
taken to be 0.1 at each point. To advance the
ensemble members and the reference solution, we
have solved (16) by the explicit Euler method with a

random perturbation from N (0, (At)"/?) added to the

(17)
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Figure 9: Ensemble filters mean and optimal filter
mean for (16)

right hand side in every step (Higham 2001). The
simulation was run for each method with ensemble
size 100, and assimilations performed for each data
point.

Examining the results in Fig. 9, it is clear that
EnKF-SIS was able to approximate the optimal
solution better than either SIS or EnKF alone. EnKF
provided the smoothest approximation; however, it is
unable to track the data quickly as it switches. SIS
suffers from a lot of noise as only a small number
of ensemble members contribute to the posterior.
In addition, SIS provides even worse tracking of
the data than EnKF. The hybrid EnKF-SIS method
provides the best tracking in this case, but it exhibits
some noise in the solution, because the proposal
and forecast distributions are far apart. This noise
is similar to that seen with SIS, but less severe.

4. MORPHING ENSEMBLE FILTERS
4.1. Position Errors, Registration, and Morphing

Adjusting the simulation state is often more naturally
done by moving the position of a distinct feature,
such as a fireline or a vortex, rather than
employing an additive correction to the state. Also,
while the position of the feature may have error
distribution that is approximately gaussian, this is not
necessarily the case for the value of the state at a
given point. For this reason, alternative error models
including the position of features were considered
in the literature. Hoffman et al. (1995) proposed to
decompose the difference between two states into
a transformation of the space, a multiplication of

the amplitude, and an additive residual error. Such
decomposition is not unique, and an optimization
approach is needed to make it at least locally unique,
e.g., as in (21) below. Davis et al. (2006) evaluated
the difference by the location and characteristics
of features treated as objects. While an additive
approach to data assimilation can be successful if
the movement is not too drastic (Chen and Snyder
2006; Mandel et al. 2006), a number of works
emerged that achieve more efficient movement of
the features by using a spatial transformation as
the field to which additive corrections are made.
Alexander et al. (1998) proposed a transformation of
the space by a global low order polynomial mapping
to achieve alignment. Lawson and Hansen (2005)
proposed a two-step model to treat alignment and
additive errors separately. Ravela et al. (2006) used
an alignment preprocessing step to 3DVAR.

The concept of position error is closely related
to registration and morphing in image processing
(Brown 1992). Suppose two images are represented
as functions v and v, respectively, over a spatial
domain D. The registration problem is to find a
registration mapping 7' such that v becomes u after
a transformation of D by I + T, that is,

7(z) =u(x) —v(e+T(x)=0, z€D,

or, with o denoting composition of mappings,
Fr=u—vo(l+T)=0.
The function u can be represented in terms of v as
u=(w+r)o(l+1T) (18)
where

r=fo(I+T) '=uo(I+T) " —v,

assuming that (I +7) "' exists. We can avoid the
issue whether I + T maps D into D by extending
w and v beyond D. The representation (18) can
be then used to create images that are intermediate
between v and v,

uy= v+ Ar)o(I+\T),

0<A<1, (19)

cf., Fig. 10. Clearly, ug = v and u; = v.

4.2. Morphing EnKF Algorithm

The key observation is that (18) with fixed v allows
replacing linear combinations of states by linear
combinations of the morphing representations [T, r].
The overall scheme can be stated as follows.
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1. Choose one of the forecast ensemble members
and copy it to v, which will be called a template.

2. Represent all forecast ensemble members by
registration with the template as

uiz(v—i—r}i)o([—t—T,{),

using T} from the previous analysis cycle as the
initial values.

3. Apply the EnKF formulas (Sec. 3.3) to the
transformed forecast ensemble ([ka, ])k 1
writing the observation function also in terms
T and r. Replace the the multiplication of
observation matrix and vector of deviations by

H[Tlf - T£§ Ty — Tk] (20)

N
~ h([ Z Tf f
Obtain the transformed analysis ensemble
[T il

4. Construct the analysis ensemble by transform-
ing back,

up=@W4+ry)o(I+T§)

Since registration methods are iterative, starting
from a good approximation in step 2 above results
in a faster method. Therefore, the values of T;, and
r from the previous forecast are kept and used as
initial values.

It should be noted that the ensemble mean is not
suitable as a template: instead of average position
of the features of interest, the mean will have the
superposition of the features at different locations.

The treatment of a nonlinear observation function
as in (20) is known in ensemble filtering practice
(Chen and Snyder 2006). This approximation is
exact when the transformed observation function is
linear. However, when the observation function is
given in terms of values of w at a set of points
(station observations), the transformed observation
function will be far from being linear, and the
approximation may miss the significant features
completely. Therefore, it is preferable to transform
the data by registration first if possible, cf., (24)
below.

4.3. The Registration Algorithm

We have used the method by Gao and Sederberg
(1998) with some modifications. We determine 1" by
minimizing the objective function

Crllu —vo (I+T) [, + Cr[|Tll, + ColIVT]],. (21)

In our application, the domain D is a rectangle.
For simplicity of exposition, suppose that D =
[0,1] x [0,1]. The functions v and v are piecewise
bilinear functions, identified with their values on a
rectangular mesh, and T is given by its values on
the same mesh. The composition o is implemented
by bilinear interpolation. The ||-||; norm of a vector
is the sum of absolute values of its entries divided
by the number of the entries. The gradient VT is
computed by central differencing. The function v is
extended outside of D by a constant, equal to the
boundary condition.

The method proceeds by from coarser to finer grid.
Starting with 7 = 1, the domain D is discretized by
a (2° + 1) x (2° + 1) uniform grid. The mapping
T is stored as two (2° + 1) x (2 + 1) matrices T,
and T, so that for (z,y) on the grid, T' : (z,y
(Te(z,y), Ty(x,y)). To guarantee that I + 7' is one-
to-one, we will seek mappings such that x +T,.(x, yo)
and y + T,(zo,y) are strictly increasing for all xo,
Yo-

The values (z; + X, yr +Y) will be called vertex
position. The basic optimization approach to sweep
through all z; = j/2', y,, = k/2¢, j,k = 0,...,2¢
and, for each vertex j, k in turn, update the vertex
position X = T, (z;,yx), Y = T,(x;, yx) to the value
that minimizes a version of the objective function
(21), defined by the current mesh quantities, with the
vertex constrained to the local rectangle

)

i+ To(xj,ye) <z + X
< xjp1+ Te(zjt1, yn),

Y1+ Ty(zj,y6-1) <yp +Y
< Yr+1 + Ty(@5, Yr+1),

using the current values for all other vertices.

Because there may be many local minima within
this region, the objective function is first evaluated
on a uniform grid within the local rectangle. The
size of this grid depends on the mesh level, with
more positions tested at the coarsest grid because
the objective function will be more nonlinear over
larger distances. Once the objective function is
minimized on the local grid, the vertex position
is further refined using a standard library non-
linear optimization method (f mi nbnd in MATLAB).
We make up to 3 sweeps, depending on stopping
conditions such as if the relative improvement in the
objective function over the last iteration is small.

The values of T, are T, are then interpolated to a
mesh with half the step5|ze and the method repeats
with 4 incremented by 1, until the desired mesh size
is reached.

Because we are only interested in changes in the
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objective function when finding the values (X,Y)
above, only the terms in the objective function that
change are evaluated for efficiency. Also, because
we really interested minimizing the residual, if
the maximum value of the residual is below a
certain threshold within this region we can skip the
optimization on the current local rectangle.

In order to improve registration in the case when
the features of interest are smaller than the current
grid, we apply gaussian smoothing before the
optimization sweeps. This amounts to applying a
stencil to every element of the matrices v and v. This
stencil is a discretized two dimensional gaussian
distribution:

exp(—* /o — y? /).

The parameters « determines the amount of
smoothing along each coordinate axis and it is tuned
so that there is more smoothing in the coarser
grids. This allows for the mapping to track large
perturbations in the domain on coarser grids even
for a thin feature such as a fireline, while maintaining
small scale accuracy on finer grids.

The differences between the method described
here and the method by Gao and Sederberg (1998)
are: the refinement of each vertex position by
nonlinear optimization; the image smoothing on
coarse levels by convolution; the gradient term in the
objective function; and allowing the vertices to leave
the domain.

4.4. Numerical Results

A good application for the morphing ensemble
filter is when there is significant uncertainty in the
physical location in the data or in the system state,
such as caused by a firefront propagating with a
different speed than anticipated. Standard ensemble
filters do no represent this uncertainty accurately,
particularly when dealing with models that exhibit
large gradients, such as in fires or hurricanes. We
present here the results of applying the morphing
ensemble filter to a simple wildland fire model in the
form of the reaction-convection-diffusion equation,

%:V-(kVu)+7-Vu—C(u—ua)+Af(UaS)a
(22)

ds

= = —f(u,S), u>ug, (23)

where » and S are the state variables representing
temperature and fuel supply respectively. The
function, f, represents the rate of the reaction. The

u (K)

Y (m) 0 0

X (m)

Figure 11: The temperature profile used for the
comparison solution (to generate the ensemble).

ambient wind and temperature are given by v and
u, respectively. The constants are determined by
matching the solution to real fire data. See (Mandel
et al. 2006) for details.

To prepare the forecast ensemble, we have
generated temperature profiles by raising a 25 m
x 25 m square above the ignition temperature and
advancing the solution by 500 s. Two such profiles
were generated, one with the ignition in the center
of the domain, as shown in Fig. 11, called the
comparison solution, and one with the ignition in
the lower right corner, called the reference solution
(Fig. 12).

We have used smooth random fields

d d
u(z,y) = Z Z AmnGm,n SID M7 sin nwy

n=1m=1

with d,, ., ~ N(0,1) and

-2
N
Aman =\ 1 =75~ | -

A forecast ensemble with 100 members was
generated first by adding a smooth random field to
each state variable of the comparison solution; the
temperature of k" ensemble member is given by
u, = ug + crug, where the scalar ¢y controls the
magnitude of this perturbation. Then the ensemble
was moved spatially in both = and y directions by,

Tk(x»y) = ak(l + Calliy (:v,y),y + ¢y, (x»y))

Here, ¢, and ¢, control the magnitude of the shift
in each coordinate, bilinear interpolation is used
to determine T' on off-grid points, and temperature
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Figure 12: Contours at 800K, indicating the location
of the fireline in the reference solution (the simulated
data). The reaction zone is between the two curves.

outside of the computational domain is assumed to
be at the ambient temperature. The given simulation
was run with the initialization parameters ¢ = 5 and
¢z = ¢y = 150.

The location of the perturbed firelines of all
100 ensemble members are shown in Fig. 13.
The ensemble mean location of the fireline is
located approximately 300 m away from that of
the data and are spread out over most of the
domain. This represents a high degree of prior
uncertainty in the location of the fire. The data
assimilation was performed with residual, mapping,
and gradient variances of 1 K, .01 m, and 10 K/m
respectively. The data was taken to be the reference
solution itself, and it was transformed to the
registration representation [7; r4]. Regularization by
penalization of the gradient of 7" was added to the
observation function as well; thus, the observation
equation was

T T
h({T}>: r = rj (24)
" vT 0

with data variances of .05 for 7', 1 for r, and 10 for
VT. The constants in the objective function of the
registration algorithm were Cr = .75, C,. = .07, and
Cy .01. The posterior ensemble, as shown in
Fig. 14, has far less variance in the mappings and
has shifted closer to the data.
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Figure 13: Contours at 800K, indicating the location
of the firelines of the ensemble before applying the
data assimilation.
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Figure 14: Contours at 800K, indicating the location
of the firelines of the ensemble after applying the
data assimilation.



5. CONCLUSION AND FUTURE

We have demonstrated the potential of predictor-
corrector and morphing ensemble filters to perform a
successful bayesian update in the presence of non-
gaussian distributions, large number of degrees of
freedom, large change of the state distribution, and
position errors.

For the predictor-corrector filters, open questions
include convergence of the filters when applied to
multiple updates over time, mathematical conver-
gence proofs for the density estimation and for the
bayesian update, and performance of the filters
when applied to systems with a large number of
different physical variables, as is common in atmo-
spheric models. We have also observed that on
spaces of smooth functions, the SIS method itself of-
ten works quite well already, as long as the updates
are not too large, even in high dimension. This ap-
pears due to the fact that the “effective dimension” of
a space of smooth functions is quite small, regard-
less of the number of grid points.

The open questions for morphing filters include
handling of sparse station observations, resulting
in strongly nonlinear observation function. One
possible path is to go back to the formulation of
the EnKF as least squares and using nonlinear
minimization. The registration algorithm can be also
formulated as a version of multilevel optimization
(Mandel 1984; Gelman and Mandel 1990).

Combination of predictor-corrector and morphing
filters would be also of interest.

These issues will be pursued elsewhere.
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