
* Corresponding author address: Giovanni Raimondo,  
Polytechnic of Turin, Dept. of Electronics, C.so Duca 
Degli Abruzzi, 24, Torino (Italy), e-mail: giovanni.Raimondo@polito.it 

A MACHINE LEARNING TOOL TO FORECAST PM10 LEVEL 
 
 

Giovanni Raimondo*, Alfonso Montuori, Walter Moniaci, Eros Pasero and Esben Almkvist 
Polytechnic of Turin, Italy and Earth Science Centre of Gothenburg, Sweden 

 
 
 
ABSTRACT 

The research activity described in this paper 
concerns the study of the phenomena responsible 
for the urban and suburban air pollution. The 
analysis carries on the work already developed by 
the NeMeFo (Neural Meteo Forecasting) research 
project for meteorological data short-term 
forecasting, Pasero (2004). The study analyzed the 
air-pollution principal causes and identified the best 
subset of features (meteorological data and air 
pollutants concentrations) for each air pollutant in 
order to predict its medium-term concentration (in 
particular for the PM10). The selection of the best 
subset of features was implemented by means of a 
backward selection algorithm which is based on the 
information theory notion of relative entropy. The 
final aim of the research is the implementation of a 
prognostic tool able to reduce the risk for the air 
pollutants concentrations to be above the alarm 
thresholds fixed by the law. The implementation of 
this tool will be carried out using the most wide-
spread statistical data-learning techniques (Artificial 
Neural Networks, ANN, and Support Vector 
Machines, SVM). 

1.  INTRODUCTION 
The respect of the European laws 

concerning urban and suburban air pollution 
requires the analysis and implementation of 
automatic operating procedures in order to prevent 
the risk for the principal air pollutants to be above 
the alarm thresholds. The aim of the analysis is the 
medium-term forecasting of the air-pollutants mean 
and maximum values by means of meteorological 
actual and forecasted data. Critical air pollution 
events frequently occur where the geographical and 
meteorological conditions do not permit an easy 
circulation of air and a large part of the population 
moves frequently between distant places of a city. 
These events require drastic measures such as the 
closing of the schools and factories and the 
restriction of vehicular traffic. The forecasting of 
such phenomena with up to two days in advance 
would allow to take more efficient countermeasures 
to safeguard citizens health. 

In all the cases in which we can assume 
that the air pollutants emission and dispersion 
processes are stationary, it is possible to solve this 
problem by means of statistical learning algorithms 
that do not require the use of an explicit prediction 
model.  The definition of a prognostic dispersion  

 

model is necessary when the stationarity conditions  
are not verified. It may happen for example when it  
is needed to forecast the air-pollutant concentration 
variation due to a large variation of the emission of  
a source or to the presence of a new source, or 
when it is needed to evaluate a prediction in an 
area where there are not measurement points. 

The Artificial Neural Networks (ANN) and 
the Support Vector Machines (SVM) have been 
often used as a prognostic tool for air pollution, 
Benvenuto (2000), Perez (2000),  Božnar (2004). In 
particular SVMs are a recent statistical learning 
technique, based on the computational learning 
theory, which implements a simple idea and can be 
considered as a method to minimize the structural 
risk, Vapnik (1995). Even if we refer to these 
approaches as black-box methods, in as much as 
they are not based on an explicit model, they have 
generalization capabilities that make possibile their 
application to not-stationary situations. 

 In particular, the combination of the 
predictions of a set of models to improve the final 
prediction represents an important research topic, 
known in the literature as stacking. A general 
formalism that describes such a technique can be 
found in Wolpert (1992). This approach consists in 
iterating a procedure that combines measurements 
data and data which are obtained by means of 
prediction algorithms, in order to use them all as the 
input to a new prediction algorithm. This technique 
was used in Canu (2001), where the prediction of 
the ozone maximum concentration with 24 hours in 
advance, for the urban area of Lyon (France), was 
implemented by means of a set of not linear models 
identified by different SVMs. The choice of the 
proper model was based on the meteorological 
conditions (geopotential label). The forecasting of 
ozone mean concentration for a specific day was 
carried out, for each model, taking as input 
variables the maximum ozone concentration and 
the maximum value of the air temperature observed 
in the previous day together with the maximum 
forecasted value of the air temperature for that 
specific day.  

The first step for the implementation of a 
prognostic neural network or SVM is the selection of 
the best subset of features that are going to be 
used as the input to the forecasting tool. The 
potential benefits of the features selection process 
are many: facilitating data visualization and 
understanding, reducing the measurement and 
storage requirements, reducing training and 



 

utilization times, defying the curse of dimensionality 
to improve prediction or classification performance. 
It is important to highlight that the selection of the 
best subset of features useful for the design of a 
good predictor is not equivalent to the problem of 
ranking all the potentially relevant features. In fact 
the problem of features ranking is sub-optimum with 
respect to features selection especially if some 
features are redundant or unnecessary. On the 
contrary a subset of variables useful for the 
prediction can count out a certain number of 
relevant features because they are redundant, 
Guyon (2003). 

Depending on the way the searching phase 
is combined with the classification, there are three 
main classes of feature selection algorithms: filters, 
wrappers and embedded. A filter is defined as a 
feature selection algorithm using a performance 
metric based entirely on the training data, without 
reference to the prediction algorithm for which the 
features are to be selected. Wrapper algorithms 
include the prediction algorithm in the performance 
metric. The name is derived from the notion that the 
feature selection algorithm is inextricable from the 
end prediction system, and is wrapped around it. 
Finally, embedded methods, perform the selection 
of the features during the training procedure and 
they are specific of the particular learning algorithm. 

In this work the method used for features 
selection is a filter. More precisely a selection 
algorithm with backward eliminations was used.  
The criterion used to eliminate the features is based 
on the notion of relative entropy (also known as the 
Kullback-Leibler divergence), inferred by the 
information theory.  

The analysis, that is described in the 
following, was performed on the hourly data of the 
principal air pollutants (SO2, NO, NO2, NOx, CO, O3, 
PM10) and meteorological parameters (air 
temperature, relative humidity, wind velocity and 
direction, atmospheric pressure, solar radiation and 
rain) measured by a station located in the urban 
area of the city of Goteborg (Sweden). All the 
measurements data are relative to the time period 
01/04÷10/05 (Goteborgs Stad Miljo, 
http://www.miljo.goteborg.se/luftnet/). A brief 
introduction to the problem of air pollutants and the 
reasons why such pollutants are dangerous for 
human health,  precedes the description of the data 
analysis method. 

2. AIR POLLUTANTS 
One of the biggest problems of urban areas 

is air pollution. Air pollution arises from the adverse 
effects on the environment of a variety of 
contaminants emitted into the atmosphere by 
natural and man-made processes. Due to heavy 
vehicular traffic and to the presence of possible 
industrial areas, pollutants can often be found at 
concentrations higher than the alarm levels fixed by 
the law in the air of a city urban area. The prediction 

of an episode of critical pollution is therefore of 
fundamental importance for the safeguard of 
citizens’ health. A list of the principal air pollutants 
and their main characteristics follows (Air Quality 
Archivehttp://www.airquality.co.uk/archive/what_cau
ses.php). 

 

2.1 Sulphur Dioxide (SO2) 

 
Sulphur dioxide is an acidic gas which 

combines with water vapour in the atmosphere to 
produce acid rain. Both wet and dry deposition have 
been implicated in the damage and destruction of 
vegetation and in the degradation of soils, building 
materials and watercourses. SO2 in ambient air can 
also affect human health, particularly in those 
suffering from asthma and chronic lung diseases.  
The principal source of this gas is power stations 
burning fossil fuels which contain sulphur. Major 
SO2 problems now only tend to occur in cities in 
which coal is still widely used for domestic heating, 
in industry and in power stations. As many power 
stations are now located away from urban areas, 
SO2 emissions may affect air quality in both rural 
and urban areas. The last 40 years have seen a 
decline in coal burning (domestic, industrial and in 
power generation) As a result, ambient 
concentrations of this pollutant in the most 
developed countries have decreased steadily over 
this period. Even moderate concentrations may 
result in a fall in lung function in asthmatics. 
Tightness in the chest and coughing occur at high 
levels, and lung function of asthmatics may be 
impaired to the extent that medical help is required. 
Sulphur dioxide pollution is considered more 
harmful when particulate and other pollution 
concentrations are high. 

 

2.2 Nitrogen Oxides (NO and NO2) 

 
Nitrogen oxides are formed during high 

temperature combustion processes from the 
oxidation of nitrogen in the air or fuel. The principal 
source of nitrogen oxides - nitric oxide (NO) and 
nitrogen dioxide (NO2), collectively known as NOx - 
is road traffic, which is responsible for 
approximately half the emissions in Europe. NO and 
NO2 concentrations are therefore greatest in urban 
areas where traffic is heaviest. Other important 
sources are power stations, heating plants and 
industrial processes.  Nitrogen dioxide can irritate 
the lungs and lower resistance to respiratory 
infections such as influenza. Continued or frequent 
exposure to concentrations that are typically much 
higher than those normally found in the ambient air 
may cause increased incidence of acute respiratory 
illness in children. 
 



 

2.3 Carbon Monoxide (CO) 

 
Carbon monoxide (CO) is a toxic gas which 

is emitted into the atmosphere as a result of 
combustion processes, and is also formed by the 
oxidation of hydrocarbons and other organic 
compounds. In European urban areas, CO is 
produced almost entirely (90%) from road traffic 
emissions. It survives in the atmosphere for a 
period of approximately one month but is eventually 
oxidised to carbon dioxide(CO2). This gas prevents 
the normal transport of oxygen by the blood. This 
can lead to a significant reduction in the supply of 
oxygen to the heart, particularly in people suffering 
from heart disease. 
 
2.4 Ozone (O3) 
 

Ground-level ozone (O3), unlike other 
pollutants mentioned , is not emitted directly into the 
atmosphere, but is a secondary pollutant produced 
by reaction between nitrogen dioxide (NO2), 
hydrocarbons and sunlight. Ozone levels are not as 
high in urban areas (where high levels of NO are 
emitted from vehicles) as in rural areas. Sunlight 
provides the energy to initiate ozone formation; 
consequently, high levels of ozone are generally 
observed during hot, still sunny, summertime 

weather. Ozone irritates the airways of the lungs, 
increasing the symptoms of those suffering from 
asthma and lung diseases. 

 

2.5 Particulate (PM10) 

 
Airborne particulate matter varies widely in 

its physical and chemical composition, source and 
particle size. PM10 particles (the fraction of 
particulates in air of very small size (<10 µm)) are of 
major current concern, as they are small enough to 
penetrate deep into the lungs and so potentially 
pose significant health risks. Larger particles 
meanwhile, are not readily inhaled, and are 
removed relatively efficiently from the air by 
sedimentation. The principal source of airborne 
PM10 matter in European cities is road traffic 
emissions, particularly from diesel vehicles.  Fine 
particles can be carried deep into the lungs where 
they can cause inflammation and a worsening of the 
condition of people with heart and lung diseases. In 
addition, they may carry surface-absorbed 
carcinogenic compounds into the lungs. 
In the following table the primary and secondary 
sources of air pollution are shown for each 
pollutant, ARPA Piemonte (2004-2005). The limit 
values fixed by the law are reported in Appendix 1.

 
 

Air Pollutant Primary Sources Secondary Sources 
Sulphur Dioxide (SO2) Fixed combustions with solid or liquid fuel Vehicular Traffic (diesel vehicles) 
Carbon Monoxide (CO) Vehicular Traffic (petrol vehicles) Vehicular Traffic (diesel vehicles); Fixed combustions with 

solid, liquid fuel or burner gas 
Carbon Dioxide (CO2) Vehicular Traffic (petrol vehicles) Vehicular Traffic (diesel vehicles); Fixed combustions with 

solid, liquid fuel or burner gas 
Nitrogen Oxide (NO) Vehicular Traffic (petrol and diesel vehicles) Fixed combustions with solid, liquid fuel or burner gas 

Nitrogen Dioxide (NO2) Vehicular Traffic (petrol and diesel vehicles) Fixed combustions with solid, liquid fuel or burner gas 
Particulate (PM10) Vehicular Traffic (diesel vehicles); Fixed 

combustions with solid or liquid fuel. 
Industrial emissions. 

Table 1: Primary and Secondary sources of the principal air pollutants. 

 

 
3. FEATURES SELECTION ALGORITHM 
 

The first step of the analysis was the 
selection of the most useful features for the 
prediction of each of the targets relative to the air-
pollutants concentrations. For each air pollutant the 
target was chosen to be the mean value over 24 
hours, measured every 4 hours (corresponding to 4 
daily intervals a day).  The complete set of features 
on which was made the selection, for each of the 
available parameters (air pollutants, air 
temperature, relative humidity, atmospheric 
pressure, solar radiation, rain, wind speed and 
direction), consisted of the maximum and minimum 
values and the daily averages of the previous three 
days to which the measurement hour and the 
reference to the week day were added. Thus the 
initial set of features, for each air-pollutant, included 

130 features. From this analysis an apposite set of 
data was excluded; such set was used as the test 
set. 

The Koller-Sahami algorithm, Koller 1996, 
was used to select an optimal subset of features 
from the set of features described in section III. In 
the following the formalism of the authors to 
describe the theoretical framework of the algorithm 
will be used. Let F=(F1, F2,..., FN) be the set of 
structural features and let Q=(Q1, Q2,..., QM) be the 
set of the chosen target. For each assignment of 
values f =( f1, f2,..., fN) to F we have a probability 
distribution P(Q | F = f) on the different possible 
classes, Q. We want to select an optimal subset G 
of F which fully determines the appropriate 
classification. We can use a probability distribution 
to model the classification function. More precisely, 
for each assignment of values g=(g1, g2,..., gP) to G 



 

we have a probability distribution P(Q | G = g) on 
the different possible classes, Q. Given an instance 
f=(f1, f2,..., fN) of F, let fG be the projection of f onto 
the variables in G. The goal of the Koller-Sahami 
algorithm is to select G so that the probability 
distribution P(Q | F = f) is as close as possible to the 
probability distribution P(Q | G = fG). To select G the 
algorithm uses a backward elimination procedure, 
where at each state the feature Fi which has the 
best Markov blanket approximation Mi is eliminated, 
Pearl (1988). Formally, we say that a subset Mi of F 
which does not contain Fi is a Markov blanket for Fi 
if Fi  is conditionally independent of F - Mi - {Fi} given 
Mi .  If Mi is a Markov blanket of Fi then it is also the 
case that the classes in Q are conditionally 
independent of the feature Fi given Mi. The mean 
value of the relative entropy between the 
distributions P(Q | Mi=fMi, Fi= fi) and P(Q | Mi=fMi) is 
used to understand how close Mi is to being a 
Markov blanket for Fi: 
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The computational complexity of this algorithm is 
exponential only in the size of the Markov blanket, 
which is small. For the above reason we could 
quickly estimate the probability distributions P(Q | 
Mi=fMi, Fi= fi) and P(Q | Mi=fMi) for each assignment 
of values fMi and fi to Mi and Fi. The estimate of the 
probability density was made by using the Parzen 
method, Parzen (1962), Costa (2003). 

In particular this method was applied to the 
selection of the best subset of features useful for 
the prediction of the average daily concentration of 
PM10 in the city of Goteborg. In fact from the data it 
was observed that this concentration was often 
above the limit value for the safeguard of human 
health (50 µg/m3). The best subset of 16 features 
turned out to be the following: 

- Average concentration of PM10 in the 
previous day. 

- Maximum hourly value of the ozone 
concentration one, two and three days in 
advance.  

- Maximum hourly value of the air 
temperature one, two and three days in 
advance. 

- Maximum hourly value of the solar radiation 
one, two and three days in advance. 

- Minimum hourly value of  SO2 one and two 
days in advance. 

- Average concentration of the relative 
humidity in the previous day. 

- Maximum and minimum hourly value of the 
relative humidity in the previous day. 

- Average value of the air temperature three 
days in advance. 

The results can be explained considering 
that PM10 is partly primary, directly emitted in the 
atmosphere, and partly secondary, that is produced 
by chemical/physical transformations that involve 
different substances as  SOx, NOx, COVs, NH3 at 
specific meteoriological conditions, Quaderno 
Tecnico Arpa (2002). 

4. FORECASTING WHEN PM10 LEVEL IS 
ABOVE THE LIMIT VALUE FOR THE 
PROTECTION OF HUMAN HEALTH. 
 

A set of feed-forward neural networks with 
the same topology was used. Each network had 
three layers with 1 neuron in the output layer and a 
certain number of neurons in the hidden layer 
(varying in a range between 3 and 20). The 
hyperbolic tangent function was used as transfer 
function. 

The back-propagation rule, Werbos (1974) 
was used to adjust the weights of each network and 
the Levenberg-Marquardt algorithm, Marquardt 
(1963), to proceed smoothly between the extremes 
of the inverse-Hessian method and the steepest 
descent method. The Matlab Neural Network 
Toolbox, Demuth (2005), was used to implement 
the neural networks’set. 

An SVM with an � -insensitive loss function, 
Vapnik (1995), was also used. The Gaussian 
function was used as kernel function of the SVM. 
The principal parameters of the SVM were the 
regularized constant C determining the trade-off 
between the training error and model flatness, the 
width value �  of the Gaussian kernel, and the width 
�  of the tube around the solution. The SVM 
performance was optimized choosing the proper 
values for such parameters. An active set method, 
Fletcher (1987), was used as optimization algorithm 
for the training of the SVM. The SVM was 
implemented using the “SVM and Kernel Methods 
Matlab Toolbox”, Canu (2005). 

 
The neural networks were trained on a 

representative subset of the data used for the 
features selection algorithm.  A subset of the first 
two years of data was used: a measurement 
sample every three samples after leaving out one 
sample every five of the original data. In this way 
the computational time of the adopted machine-
learning algorithms was reduced while obtaining a 
subset of data as representative as that used for the 
features selection. In fact such a subset included a 
sufficient number of all the 4 daily intervals in which 
the measurement data were divided by our 
analysis. The test set consisted of the data not used 
for the features selection algorithm. Since the 
number of the training samples above the maximum 
threshold for the PM10 concentration was much 
lower than the number of samples under such 
threshold, the training of the networks was 



 

performed weighting more the kind of samples 
present a fewer number of times. 

As we can see from Picture 1 and Picture 2 
the ANN performance, both for the samples under 
the threshold and for the samples above the 
threshold, increased when the number of input 
features increased. More precisely the performance 
increased meaningfully from 2 to 8 input features 
and tended to flatten when the size of the input 
vector was greater than 8. 

The best subset of 8 features was the 
following: 

- Average concentration of PM10 in the 
previous day. 

- Maximum hourly value of the ozone 
concentration one, two and three days in 
advance.  

- Maximum hourly value of the air 
temperature in the previous day. 

- Maximum hourly value of the solar radiation 
one, two and three days in advance. 

 
Selecting as input to the ANN such set of 8 

features, the best results could be obtained with a 
neural network having 18 neurons in the hidden 
layer. In table 2 are displayed the results obtained 
with 5115 samples of days under the threshold and 
61 samples of days above the threshold. It can be 
noted that the probability to have a false alarm is 
really low (0.82%) while the capability to forecast 
when the concentrations are above the threshold is 
about 80%.  
 

 

Samples Correct 
Forecasting 

Incorrect 
Forecasting 

Below the threshold 5073 42 
Above the threshold 48 13 

Table 2: Neural network performance.

 

 

Picture 1: Performance of the ANN as a function 
of the number of    input Features (samples 

below the threshold). 

 

Picture 2: Performance of the ANN as a function 
of the number of input Features (samples above 

the threshold). 

Different assignment for SVM parameters � , 
�  and C, were tried in order to find the optimum 
configuration with the highest performance. As we 
can see from Picture 3, when �  and C were kept 
constant (� =0.001 and C=1000), the SVM 
performances referring to samples above the 
threshold, for a high number of input features, 
depended on �  and reached a maximum when � =1, 
corresponding to an optimum trade-off between 

SVM generalization capability (large values of � ) 
and model accuracy with respect to the training 
data (small values of � ). The value of �  
corresponding to this trade-off decreased to 0.1 for 
lower values of the input vector size (Picture 3) and 
for samples below the threshold (Picture 4), 
reflecting the fact that the generalization capability 
was less important when the training set was more 
representative



 

Picture 3:�Performances of the SVM as a function 
of �  (� =0.001 and C=1000), samples above the 

threshold. 

Picture 4: Performances of the SVM as a function 
of �  (� =0.001 and C=1000), samples below the 

threshold. 

 
When �   and C were kept constant (Picture 

5: � =1 and C=1000; Picture 6: � =0.1 and C=1000), 
the best performances were achieved when  �  was 
close to 0 and the allowed training error was 
minimized. From this observation, by abductive 
reasoning we could conclude that the input noise 
level was low. In accordance with such a behavior 
the performance of the network improved when the 

parameter C increased from 1 to 1000 (see Picture 
7). Since the results tended to flatten for values of C 
greater than 1000, the parameter C was set equal 
to 1000. 

 

 

Picture 5: Performances of the SVM as a function 
of �  (� =1 and C=1000), samples above the 

threshold. 

�

Picture 6: Performances of the SVM as a function 
of �  (� =0.1 and C=1000), samples above the 

threshold. 
 
 



 

 

Picture 7: Performances of the SVM as a 
function of C  (� =0.001 and � =1), samples 

above the threshold. 

 

The best performance of the SVM 
corresponding to � =0.001, �  =0.1 and 

C=1000 was achieved using as input 
features the best subset of 8 features 
previously defined. The probability to have 
a false alarm was really low (0.13%) while 
the capability to forecast when the 
concentrations were above the threshold 
was about 80%. The best performance of 
the SVM corresponding to � =0.001, �  =1 
and C=1000 was achieved using as input 
features the best subset of 11 features. In 
this case the probability to have a false 
alarm was higher than in the previous one 
(0.96%) but the capability to forecast when 
the concentrations were above the 
threshold was nearly 90%. In Table 3 it is 
shown a comparison of the performances of 
the SVM(� =0.001, C=1000 and �  equal to 
0.1 and 1) and the ANN (18 neurons in the 
hidden layer) as a function of the number of 
input features. 

 

 

SVM (� =0.001, C=1000 and 
�  = 0.1) 

SVM (� =0.001, C=1000 and 
�  = 1) ANN (18 hidden neurons) 

Samples 
Correct 

Forecasting 
Incorrect 

Forecasting 
Correct 

Forecasting 
Incorrect 

Forecasting 
Correct 

Forecasting 
Incorrect 

Forecasting 
Below the 
threshold 

5107 8 5038 77 5073 42 8 input 
features Above the 

threshold 48 13 49 12 48 13 

Below the 
threshold 5111 4 5066 49 5070 45 11input 

features Above the 
threshold 42 19 54 7 49 12 

 
Table 3: ANN and SVM performances as a function of the number of 

input features. 
 

5. FUTURE ACTIVITIES 
The training of the ANN and SVM will be 

improved with stacking techniques using as inputs 
the measurements and forecasted values of the 
selected features. Since for some pollutants the 
meteorological conditions are very important in the 
generation process, different neural networks will be 
trained for each different geopotential condition, 
Benichou (1995). The analysis will be completed 
extending the forecasting capability of the machine 
learning algorithm to areas where there are not 
measurement points, by means of the optimization 
of a multi-source gaussian dispersion model. Finally 
it could be interesting to carry out the same kind of 
analysis described in this paper for PM10 also for 
the other air-pollutants.  
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Appendix 1  
European legislation on the air pollutants 
limit values and alarm thresholds (Italian 
law references).  
 
Carbon Monoxide (law references: D.M. 
2.04.2002 N. 60) 

� Limit value for the protection of human 

health:  The maximum daily average over 8 

hours calculated every hour and based on 

the previous eight hours should not be 

above 10 mg/m3.  

Nitrogen Dioxide (law references: D.M. 
2.04.2002 N. 60) 

� Hourly limit value for the protection of 

human health: the hourly average of the 

NO2 concentrations should not be above 

200 µg/m3 for more than 18 time per civil 

year.  

� Annual limit value for the protection of 

human health: The annual average of the 

NO2 concentrations should not be above 

40µg/m3. 

� Alarm threshold: 

The alarm threshold is reached when the 

hourly mean concentrations are above 400 

µg/m3 for 3 consecutive hours. 

Sulphur Dioxide (Law references: D.M. 
2.04.2002 N. 60) 

� Hourly limit value for the protection of 

human health: 

the hourly mean value of the SO2 

concentrations should not be above  350 

µg/m3 for more than 24 times per civil year. 

� Daily limit value for the protection of 

human health: 

the daily mean value of the SO2 

concentrations should not be above 125 

µg/m3 for more than 3 times per civil year.  

� Alarm threshold for Sulphur Dioxide: 

the alarm threshold is reached when the 

mean hourly concentrations are above 500 

µg/m3 for 3 consecutive hours. 

 
Particulate (PM10) (Law references: D.M. 
2.04.2002 N. 60) 

� Daily limit value for the protection of 

human health: the daily mean value of the 

PM10 should not be above  50 µg/m3 for 

more than 35 times per civil year. 

� Annual limit value for the protection of 

human health: 

the annual mean value of the PM10 

concentrations should not be above 40 

µg/m3. 

Benzene (law references: D.M. 2.04.2002 N. 
60) 

� Annual limit value for the protection of 

human health: the annual mean value of the 

benzene concentrations should not be 

above 10 µg/m3. 

Ozone (law references: D.L.vo n.183 

21.05.2004) 

� Threshold for the protection of human 

health (120 µg/m3) as the mean value over 

8 hours calculated every hour and based on 

the previous 8 hours (D.L.vo n.183 

21.05.2004), maximum value of the mean 

values calculated over 8 hours.  

� Threshold for the protection of human 

health (120 µg/m3) as the maximum daily 

mean value over 8 hours calculated every 

hour and based on the previous eight hours 

(D.L.vo n.183 21.05.2004), number of times 

the 8 hours averages are above the limit 

value during the monitoring day.  

� Information threshold (180 µg/m3) 

(D.L.vo n.183 21.05.2004) 

� Alarm threshold (240 µg/m3) (D.L.vo 

n.183 21.05.2004) 


