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Famine early warning in Africa presents unique challenges and rewards. Hydrologic 
extremes must be tracked and anticipated over complex and changing climate regimes. 
The successful anticipation and interpretation of hydrologic shocks can initiate effective 
government response, saving lives and softening the impacts of droughts and floods. 
While both monitoring and forecast technologies continue to advance, discontinuities 
between monitoring and forecast systems inhibit effective decision making. Monitoring 
systems typically rely on high resolution satellite remote-sensed normalized difference 
vegetation index (NDVI) and rainfall imagery. Forecast systems provide information on a 
variety of scales and formats. Non-meteorologists are often unable or unwilling to 
connect the dots between these disparate sources of information. To mitigate these 
problem researchers at UCSB's Climate Hazard Group, NASA GIMMS and 
USGS/EROS are implementing a NASA-funded integrated decision support system that 
combines the monitoring of precipitation and NDVI with statistical one-to-three month 
forecasts. We present the monitoring/forecast system, assess its accuracy, and 
demonstrate its application in food insecure sub-Saharan Africa. 
 
1.   Introduction 
 
In southern and eastern Africa, coping effectively with climate extremes is similar in cost 
and impact to war.  On half acre farms with hand tools and poor soil the world’s poorest 
families struggle to eke out an existence each year.  They often fail. Eight hundred 
million Africans face dramatic food shortages each year1.  Hunger and poverty drive a 
cycle of deprivation accounting for more than half of all child deaths. The causes of 
hunger are legion:  rapid rural population growth, poor agricultural practices, limited 
market access, crop subsidies in Europe and the U.S., poor governance and drought. 
Meteorology can help reduce the societal and environmental costs of hydrologic extremes 
by providing adequate early warning. The 1997/98 season, associated with a very strong 
El Niño and positive Indian Ocean Dipole Event (Saji et al., 1999) resulted in substantial 
drought and crop damage across southern Africa. Extremely warm northwest Indian 
Ocean sea surface temperatures (SSTs) contributed to dramatic flooding over the Greater 
Horn of Africa (GHA2). These extreme moisture conditions in turn contributed to an 
outbreak of Rift Valley Fever, a mosquito-borne disease affecting cattle. This outbreak 
resulted in a moratorium on cattle exports, decimating agro-pastoral communities. As we 
write this extended abstract, in October of 2006, the climate conditions are similar. In this 
                                                 
1 Food and Agriculture Organization, ‘Food Insecurity in the World’, 2005. 
2 Tanzania, Rwanda, Burundi, Kenya, Uganda, Ethiopia, Djibouti, Somalia and Eritrea. 



context of likely climatic extremes, this short paper sketches the science behind our work 
for the USAID funded Famine Early Warning System Network (FEWS NET). The crux 
of this work is the monitoring and forecasting of hydrologic extremes. Hydrologic early 
warning (HEW) combines hydro-climatology (A) with socioeconomic analysis (B) to 
provide effective advance notice of potential crises associated with drought, flood or 
disease (Figure 1). An appropriate policy/governance framework (C) can then allow for 
effective early action, potentially saving thousands of lives and millions of dollars. 
Effective hydro-climatology, in turn, requires accurate, up-to-date rainfall climatologies, 
easy-to-understand representations to decision makers and timely forecasts. 
 
For eastern and southern Africa we have developed and implemented three solutions to 
address each of these three problems. The Improved Rainfall Estimation (IRE) technique 
combines topographically-enhanced grids of average rainfall with time-varying rainfall 
gauge and satellite estimates. This work is the latest (superior we believe) installment in 
our ongoing research into rainfall estimation in data sparse, topographically complex 
terrain (Funk et al., 2003; Funk and Michaelsen, 2004). These rainfall accumulations can 
then be fit with gamma distribution parameters (Husak et al., 2006) and expressed as 
standardized precipitation indices (SPI, McKee, 1993). Maps of SPI values typically 
range between -3 and 3. They retain their distribution characteristics across space and 
time. This characteristic facilitates their application as a decision making tool. These 
maps are most useful in advance of hydro-climatic shocks. To this end the third 
component of this article presents our matched filter regression based short-lag forecast 
system. This uses monthly fields of NCEP-NCAR reanalysis data (Kalnay et al., 1996) as 
the basis of statistical SPI forecasts. Pacific and Indian Ocean SSTs, Indian Ocean SSTs, 
and 200 and 500 hPa zonal and meridional winds over eastern and southern Africa are 
used as inputs. This statistical framework was used successfully to predict the poor late 
season rains in southern Africa during the 2002/03 El Niño (Funk et al., 2003; Magadzire 
et al., 2006), as well as the switch to positive rainfall anomalies during 2003/04. This 
work extends the application to gridded SPI values across all of eastern and southern 
Africa (ESEA, 0-55°E, 20°N-40°S).  
 
This paper provides a brief introduction, methodological description, evaluation and 
discussion of each component. We conclude with a presentation of the 2006/07 
November-December-January (NDJ) forecast, based on October 2006 data. 
 
 
1.a The Improved Rainfall Estimation (IRE) Technique 
 
The IRE technique combines traditional rainfall interpolation approaches with satellite-
based precipitation surfaces. The approach has two objectives: i) make consistent (low-
bias) estimates, ii) accurately. Similar to ‘smart interpolation’ approaches (Willmott and 
Matsura, 1995) commonly used to produce gridded fields (New et al. 1999, 2000), the 
IRE procedure is assisted by a long term mean field. In addition to the means, however, 
the IRE also incorporates satellite rainfall estimates. The recent decline in readily 
available high quality gauge data makes the use of satellite data critical, especially in 
many climatically and environmentally important areas of the developing world. While 
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our research has explored methods for using gravity wave based diagnostic models to 
improve satellite rainfall estimates (Funk and Michaelsen, 2004) and climatological 
rainfall time series (Funk et al., 2003), further analysis suggests that much of the 
complexities associated with orographic precipitation modeling at monthly and seasonal 
scales can be absorbed within sophisticated, topographically enhanced mean precipitation 
grids.  These background fields can be used to remove the systematic bias commonly 
found in satellite precipitation fields. This procedure can also be used to introduce local 
variations into coarse precipitation surfaces. The unbiased satellite estimates, in turn, can 
in turn be combined with station data in a geostatistical framework. 
 
1.b Standardized Precipitation Indices (SPI)  
  
The Standardized Precipitation Index (SPI) is a method of presenting rainfall as a 
normalized variable (McKee, 1993).  As a normalized variable, the SPI reports the 
probability of a rainfall event occurring, and therefore the practical significance of 
realizing a rainfall  observation.  This can represent an improvement over traditional 
methods such as percent-of-normal - which can inflate the significance of small 
anomalies during the dry season - and difference-from-normal - which does not reflect 
the typical variability in rainfall.  The SPI can be created for any accumulation interval, 
allowing the SPI to be scaled to capture events of various duration, recognizing that 
short-term anomalies may be very different from long-term ones. 
 
1.c Matched Filter Regression (MFR) short-lag forecasts 
 
Recent advances in climate forecasting have demonstrated that statistical downscaling of 
global numerical weather prediction model fields can anticipate anomalous precipitation.  
Much of this research relies on the use of canonical correlation analysis to translate 
global climate model fields (i.e. 850 hPa winds) into target estimates. Much of this 
research relies on the use of canonical correlation analysis to translate global climate 
model fields (i.e. 850 hPa winds) into target estimates. CHG research has produced a 
similar statistical approach (matched filter regression, MFR) that focuses on a single 
predicted time-series (rather than a field, as in CCA). In remote sensing applications, 
matched filters can be used to quantify a weak signal against a noisy background (Funk et 
al., 1999). In climate applications matched filters are used to pre-scale multivariate 
predictors before applying traditional eigen-based analysis techniques. MFR has been 
used to successfully to anticipate a poor 2002/03 growing season in Southern Africa 
(Funk et al. 2003a) and the return to normal rainfall in the latter half Southern Africa’s 
rainy season in 2003/04 (Funk et al. 2003c).  
 
2. Data 
 
Three data sources were combined to produce satellite enhanced mean fields: long term 
(1996-2005) long term monthly means derived from the Climate Prediction Center 
African Rainfall Climatology (ARC, Xie et al., 2002), USGS Hydro 1K (Gesch et al., 
1999) slopes and elevation data resampled to the ARC 0.1° grid, and FAO climate 
normals. We demonstrate the method with two sets of satellite rainfall estimates, the 27 
year Global Precipitation Climatology Project (GPCP, Huffman et al., 1995, 1997, Adler 
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et al., 2003) and the 10 year ARC over Africa. Time-series of station data were obtained 
by combining data from the Global Historical Climate Network (Peterson and Vose, 
1997), FAO (2001) with data obtained from the Ethiopian Meteorological Service and 
Famine Early Warning System Network (FEWS NET) archives. Monthly data was used 
in all instances. 

 
 
3. Methods 
 
3.a IRE Methods 
 
The Improved rainfall estimation procedure has three distinct steps: i) the creation of 
satellite-enhanced long term mean fields, ii) the combination of the these fields with 
time-varying satellite fields to produced unbiased time-varying estimates, and the iii) 
fusion of these time-varying satellite estimates with regional near-real time station data. 
The objective is to use all available sources of data to produce the highest quality rainfall 
fields possible. 
 
3.a.i FCLIM long term average mean fields 
 
The spatial monthly mean field modeling used moving window matched filter regression 
Funk and Michaelsen, 2004) to produce an 0.1° ‘first guess’ field. Three spatially explicit 
predictands were used: ARC mean precipitation ( a ), ARC mean precipitation times 
slope ( sa ea sa ea), and ARC mean precipitation time elevation ( ). The and terms 
represent slope and elevation driven orographic enhancement, which is assumed to be 
locally linearly related to the ARC mean a . Exploratory data analysis confirmed this 
hypothesis, although systematic relationships between slope, elevation and ARC means 
varied substantially as a function of latitude, and to a lesser degree, longitude. Thus local 
matched filter regressions were carried out using a moving 7° (~700 km) window fit to a 
set of 6965 FAO climate normals (2001). This produced 12 monthly 0.1° grids of average 
rainfall. Block kriging was then used to interpolate the 6965 at-station anomalies to the 
same grid. The MFR estimates and kriged anomalies were combined yielding 12 monthly 
FEWS NET climatology fields (FCLIM).  Panel A of Figure 2 shows the long-term 
(1950-1980) annual FCLIM totals for sub-Saharan Africa, together with the locations of 
the FAOCLIM 2.0 station normals.  
 
3.a.ii Producing unbiased rainfall estimates 
 
This step uses FCLIM means to reduce the bias within satellite estimates, and in the case 
of the GPCP, introduce higher resolution information. Unbiased rainfall estimates ( ) 
can be produced by multiplying the observed satellite rainfall estimates ( ), expressed as 
a ratio of the satellite estimate long term mean (

u
s

s ) by the corresponding monthly FLIM 
field ( f ). 
 

fssu 1))(( −++= εε                                                              [eq. 1] 
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Epsilon is a suitably small value (typically ~ 10-20 mm) chosen such that the satellite 
rainfall, expressed as a ratio, converges to 1.0 as s → 0.   
 
3.a.iii Merging additional station data 
 
In the real world, satellite rainfall estimates are often calibrated with less-than-ideal 
station observation datasets. Many stations, for example, are not integrated within the 
electronic geo-telecommunication network. Global or regional estimates often lack the 
fairly dense networks available at national scales.  Since there are often additional 
stations available in not-far-from real time, it makes sense to merge stations with a 
background unbiased rainfall estimates. While many choices of algorithm are available, 
simplicity is often required in an operational environment. To this end we have developed 
a simple double-IDW (inverse distance weighting) correction tool. This tool merges 
stations and a rainfall estimate grid in two consecutive passes. In the first pass ratios 
between stations and satellite grids are calculated and interpolated. In the second pass the 
ratios are multiplied against the RFE and the arithmetic at-stations differences 
interpolated. This second pass handles instances when the UBRF is 0.  The interpolated 
anomalies are limited by a weighting function based on the distance from the nearest 
neighbor. This weighting function forces the ratio and arithmetic difference fields to zero 
and one (respectively) as the distance from a location approaches a user-defined threshold 
(7° in this case). This simple approach incorporates some of the benefits of kriging, but 
without substantial user intervention. 
 
3.b SPI Methods 
 
The SPI compares observations against distribution parameters derived from 
historical rainfall.  The observations may be station data, satellite-based estimates or 
modeled output.  Distribution parameters are derived by fitting gamma distribution 
parameters to historical data (Husak, 2006).  The SPI is created by calculating the 
cumulative probability of the observation derived from the cumulative distribution 
function described by the historical distribution parameters.  This cumulative probability 
is then converted to a normalized variable. Observations should be derived in a fashion 
similar to the historical values such that a comparison of the two will result in meaningful 
SPI results.  Any bias or variability difference will lead to shifts in SPI values or values 
which are more/less extreme than would be expected.  The SPI is created by calculating 
the cumulative probability of the observation derived from the cumulative distribution 
function described by the historical distribution parameters. This cumulative probability 
is then converted to a normalized variable typically ranging from -3 to 3. 
 
3.c MFR Methods 
 
In general, we can arrange n temporal observations of m heterogeneous reanalysis or 
numerical weather prediction variables in a m x n matrix defining our climate state, X. 
We can then transform each row x of X so that it has a mean of zero and an expected 
standard deviation equal to its correlation (rx,w) with our desired time series (v):  
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( ) 1
, [1.. ],i v i nir σ −

∈∀′ = −x xx x x                                               [2] 
 
Applying this transform to all the rows of X gives us a transformed matrix of weighted 
anomalies, X’. The matched filter estimates of v may then be easily calculated via 
regression with the first few principal components of X’. 

( )1PC ′=m X                                                             [3] 

                                                      [4] ]..1[,ˆ nibv T
o ∈∀+= mb

 
 
MFR is computationally fast. This application applied an independent model to moving 
0.5° windows across the ESEA region. Pacific Ocean SSTs (30°N-30°S, 130°E-80°W), 
Indian Ocean SSTs and precipitation (30°N-40°S, 30-120°E), and 200 and 500 hPa zonal 
and meridional winds over Africa (30°N-40°S, 0-90°E) were used as predictors. 
 
4. Validation 
 
4.a IRE Validation 
 
The at-station accuracy of  the FCLIM monthly long term mean were evaluated 
numerically by comparing the regression estimates at each of the 6965 points to the 
modeled value for each month. The error statistics were promising, with a coefficient of 
determination of 0.9, a mean bias error of 0.06 mm month-1, and mean absolute error of 
18 mm month-1. Figure 2, panel A shows the mean annual FCLIM precipitation and FAO 
climate normal locations for sub-Saharan Africa.  
 
Three regional evaluations of the IRE methodology have been carried out for difficult 
modeling regions: Bhutan, Ethiopia, and western Kenya. These test sites were chosen 
because they represent dramatic rainfall estimation regimes for which independent station 
data sets were obtained through international collaboration. The validation studies 
correspond to a range of ancillary station data densities corresponding to no additional 
station data (Bhutan), modest additional station data resources (1 station per 10,000 km2) 
and dense station coverage (1 station per 1,800 km2). 
 
For Bhutan, a very mountainous country (area~47,000 km2) in Southwest Asia (Figure 
2.B), 20 stations were averaged each month from May of 2001 through December of 
2003. These values are shown as blue triangles in Figure 2.C. Situated on the southern 
slopes of the Himalayas; rainfall is very heavy during the summer monsoon season, 
reaching values of greater than 500 mm month-1.  Bhutan does not report on the Global 
Telecommunication System, and the NOAA Climate Prediction Center RFE values 
exhibit substantial bias (red columns in Figure 2.C). Unbiased RFE values derived using 
matched filter grids of monthly long term means are shown with blue columns. The 
UBRF adjustment (eq. 1) reduces the systematic bias to 4 mm month-1, reduced the mean 
absolute error by 65% and resulted in a coefficient of determination (including the 
seasonal cycle) of 0.92. Note that the additional station data has not been included, since 
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the objective of this case study was to demonstrate the effectiveness of unbiasing using 
only long-term mean fields. 
 
A more detailed cross-validation analysis for Ethiopia examined the at-station accuracies 
of the full IRE process. This validation calculated at-station statistics based on 11 years 
(1995-2005) of CPC ARC data and 120 National Meteorological Agency (NMA) station 
observations. For each month during the two main rainy seasons (Belg and Meher, 
March-September) a 10% random sample of stations was withheld and the full IRE 
estimation procedure (UBRF blended with stations) executed. For each of the 77 months 
(11 years x 7 months) the corresponding 0.1° pixel rainfall estimates were then extracted 
from the ARC and IRE grids and compared to the excluded stations.  
 
Table 1 summarizes the at-station and pooled (regional) accuracy values. At a 
monthly/at-station scale the mean absolute error is high (42 mm) when compared to the 
long term mean average monthly rainfall of 112 mm month-1. The IRE bias is low (~6 
mm month-1), however, and averaging in space reduces this value to 18 mm month-1 at 
the monthly time scale and 8 mm month-1 over a season. At-station monthly, regional 
monthly, and regional seasonal R2 values are reasonably high (0.62, 0.8 and 0.82 
respectively). The relative error values (MAE divided by temporal standard deviation) 
suggest useful signal to noise ratios;  0.43, 0.34 and 0.36 for the corresponding at-station 
monthly, regional monthly, and regional seasonal space-time scales. Figure 3 shows time-
series of the averages of the excluded stations and the associated IRE pixel estimates. The 
fidelity is reassuring. Figure 4 shows the monthly bias and R2 values of ARC and IRE 
estimates. ARC accuracy degrades later in the season, underestimating rainfall amounts 
and tracking poorly with observations, perhaps due to limitations associated with the cold 
cloud duration threshold. 
 
A third detailed validation study was performed for a test site in Western Kenya (34.15°-
35.55°E, 1°S-1°N).  This site has been used in two previous evaluations: our accuracy 
assessment for the Collaborative Historical African Rainfall Model (CHARM, Funk et 
al., 2003) and a comparison between the CPC and NCAR-NCEP reanalysis fields (Funk 
and Verdin, 2003). A dense gauge network of 73 daily observations from 1961-1998 was 
interpolated to an 0.1° grid using inverse distance weighting. These 0.1° daily grids were 
accumulated to monthly totals and compared to the full IRE process driven by GPCP 
data.  
 
Though coarse in resolution (2.5°) the GPCP data has the strong advantage of a 
climatological period of record (1979-2006, 28 years). The GPCP values were translated 
into ratios of the long term GPCP means and resampled using a cubic convolution to an 
0.1° grid. These 0.1° ratios were multiplied against the corresponding FCLIM means, 
producing unbiased rainfall values. These UBRF fields were then merged with 19 
stations drawn from the Global Historical Climate Network (Peterson and Vose, 1997). 
 
The downscaled GPCP-based IRE fields recreate the long term mean structure of the 
region with a great deal of fidelity (Figure 5). The spatial R2 of these fields is about 0.65 
(Table 2) – which is impressive considering that the spatial footprint of the GPCP is 
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greater than the study site. The IRE values show no bias, and excellent temporal 
accuracies at the regional/seasonal scales (R2~0.87). Even at the 0.1° monthly scale the 
mean absolute error (39 mm) is only 20% of the monthly mean of 175 mm, and about 
54% of the monthly temporal standard deviation. This accuracy level (½ a standard 
deviation) is sufficient to capture extreme hydrologic variations. The monthly regional 
IRE averages track very well with high density gauge estimates (Figure 6). 
 
 
4.b MFR forecast validation 
 
Two metrics of forecast accuracy are examined here: forecast standard errors and 
regional comparisons for forecast and observed NDJ SPI values averaged over eastern 
southern Africa3 4 and northeastern portions of the GHA . Figure 7 shows the standard 
error values for OND, NDJ, and JFM. In November, a substantial basis for prediction 
exists, arising from persistent patterns in the Indian-Pacific SSTs and tropical 
circulations. Standard errors are typically less than ~0.6 SPI. This suggests a sufficient 
level of precision to capture the general magnitude and sign of climate anomalies several 
months in advance. Figure 8 shows average SPI time series for the eastern southern 
Africa and north-eastern Greater Horn regions. At this coarse regional scale agreement is 
fairly high. For eastern southern Africa non-El Niño droughts (1991/92, 1993/94) are 
captured well, as are the 2002/03 dry anomalies. The impacts of 1997/98 event are not 
over-estimated because the model responds more strongly to local conditions in the 
Indian Ocean.  While the over all R2 of the Greater Horn model is higher (0.76 vs. 071) 
more of this accuracy accrues from capturing the exceptional 1997/98 event, while 
modest wet seasons, such as 1992/93 are not captured effectively. In general, this region 
of Africa has more variance associated with persistent (~6 year) excursions. The forecasts 
represent this component quite well.  
  
5. Application to the 2005/06 season for Kenya and Zimbabwe 
 
The gray boxes in Figure 8 represent graphically the NDJ projections for the 2006/07 
based on October 2006 reanalysis fields. The forecast for eastern southern Africa is -0.8 
SPI ± 0.6, with a 68% chance of the observed SPI falling between -0.2 to -1.4 SPI.  This 
suggests that below normal rainfall is quite likely. Given the current state (modest El 
Niño, positive Indian Ocean Dipole event, cold southwestern mid-latitude Indian Ocean) 
this forecast seems quite plausible. Visual inspection of the individual climate variables 
used to make our 2002/03 forecast5 supports a pessimistic outlook for Southern Africa. 
The Greater Horn, on the other hand, will likely receive unseasonable heavy rains. The 
gray boxes in Figure 8 also show the forecast range for the eastern Greater Horn:  +0.5 
SPI ± 0.5, with a 68% chance of the observed SPI falling between 0 and 1.0 SPI.   Figure 
9 shows the spatial/seasonal distribution of OND, NDJ and DJF forecasts.  
 

                                                 
3Eastern southern Africa SPI based on eastern Botswana, southern Zambia, Zimbabwe, Southern     
Mozambique and northeastern South Africa. 
4 Greater Horn SPI based on Kenya, Somalia and the southern half of Ethiopia. 
5 ftp://hollywood.geog.ucsb.edu/pub/SA06/EvolvingOctoberAtNov5.ppt 
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6. Discussion and Conclusion 
 
6.1 Discussion of the IRE validation studies 
 
The IRE validation studies were selected to represent a selection of estimation scenarios 
corresponding to no additional station data (Bhutan), modest additional station data 
resources (1 station per 10,000 km2) and dense station coverage (1 station per 1,800 km2). 
Even with no station data, the UBRF procedure can enhance the accuracy satellite rainfall 
estimates, especially in areas with poor GTS coverage and complex terrain. Incorporating 
the UBRF enhances substantially the ability to correctly model the seasonal cycle and 
absolute magnitude of rainfall. Examination of the monthly bias and R2 values for the 
Ethiopian case study (Figure 4) exhibit a similar seasonal dependence. Bias values are 
much lower and R2 values are much higher early in the season. It appears likely that cold 
cloud duration rainfall metrics may have seasonal-latitudinal dependencies that can be 
largely accounted for by the UBRF process. 
 
The seasonal-spatial UBRF correction may help explain the similar accuracy values 
obtained in the Ethiopian and Western Kenya accuracy assessments (Tables 1 and 2). A 
priori, one might expect the western Kenya accuracy statistics to be substantially higher 
than the Ethiopian results, given the much higher station density in the former study. At 
the regional scale the results are almost identical, bias ~0, relative error ~33%, and 
temporal R2 values of ~0.8. It is also worth noting that in both cases seasonal and 
monthly accuracy levels were similar, implying perhaps that bias removal can 
substantially enhance our estimation accuracy at monthly time steps. For the monthly at-
station and 0.1° scales similar results were again obtained with relative accuracies of ~½ 
a standard deviation. Given that the Ethiopia case corresponds to a typical national level 
monitoring capacity, it is quite encouraging that this level of accuracy can be obtained 
using modestly dense station data and the technically austere IRE techniques. 
 
6.2 Discussion of the MFR forecast results 
 
This study highlights the significance of the Indian Ocean SSTs and circulation features. 
While ENSO is a significant factor influencing African rainfall, many of these influences 
arise from lagged responses in the oceans and circulations surrounding the continent. 
Once the austral summer season has commenced, a fair level of climate persistence into 
the next few months supports statistical forecasts. The current climate state combines a 
modest El Niño with a modest positive dipole event. Past recent analogs to these events 
were 1982/83 and 1997/98 (Saji and Yamagata, 2003a). These combined events, referred 
to as ‘nido’ events (El Niño + IDO ~ nido) in Figure 8, were associated with extreme 
flooding in the Greater Horn (1997/98 not 1982/83) and drought in southern Africa 
(1982/83 not 1997/98). In general, the 1982/83 and 1997/98 events form reasonable 
brackets from about normal to very wet for the Greater Horn and about normal to very 
dry for Southern Africa. This is consistent with the MFR forecasts (Figures 8 & 9), 
although the forecasts results are more similar to 1982/83.  In general, drought in 
Southern Africa might be more predictable than extreme flooding in eastern Africa. New 
research has associated extreme wet/dry events in southern Africa with the temperature 
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gradient between the western tropical and western sub-tropical Indian Ocean 
(Washington and Preston, 2006). This gradient is strongly was strongly present in 
October of 1982, October of 1997 and October of 2006. Below normal rains in Southern 
Africa seem likely, and extreme wetness in the Greater Horn possible. 
 
6.3 Conclusion 
 
The world was unprepared when persistent multi-year drought struck Africa in the 1970s, 
and this drought was responsible for 100,000 deaths in the Sahel and 200,000 deaths in 
Ethiopia. Following drought in 1983-1985 saw deaths in Ethiopia estimated from 
400,000 to 1 million people. These large-scale famines shocked the world and pointed up 
the tragic lack of timely information. The past 20 years have seen a gradual accumulation 
of data, techniques modeling and remote sensing resources. Reasonable precipitation 
estimates and forecasts, using fairly simple statistical estimation procedures are now 
feasible. These procedures rely on locally systematic relationships between topography 
and larger scale precipitation patterns (IRE estimates) or local rainfall and synoptic 
circulation features (MFR forecasts). Both techniques benefit substantially from satellite-
based observation/assimilation systems: satellite rainfall estimates and reanalysis climate 
fields. By leveraging the information contained in these products, and integrating forecast 
and hydro-climatic monitoring tools, we can effectively anticipate at least the sign if not 
the magnitude of hydro-climatic shocks in eastern and southern Africa. 
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Tables 
 
Table 1. Ethiopian test site evaluation statistics. The March-September and Monthly rows 
report statistics for the seasonal March-September and individual monthly March-
September accumulations, respectively. The first and second columns report mean bias 
and mean absolute errors based on the average of all stations. The MAE STD-1 column 
provides a relative metric of uncertainty, with typical errors being about ~33% of the 
temporal standard deviation. The time R2 is calculated using 11 years of data (1995-
2005). The last three columns are similar to the regional metrics, but based on 
calculations using the individual station values. Seasonal at-station values were not 
available do to the random sampling associated with the cross-validation. 
  
 Regional Metrics At-station metrics 

 MBE MAE MAE 
STD-1 

Time MAE MAE 
STD-1 

Time IRE R2 R2 
Seasonal   6 8 0.36 0.82 --- --- ---
Monthly  6 18 0.34 0.80 42 0.43 0.62
 
 
 
Table 2. Kenya test site evaluation statistics. The MAM and Monthly rows report 
statistics for the seasonal March-May and individual March-April-May accumulations, 
respectively. The first column reports the R2 of the long term (1979-2005) averages at the 
294 (14 rows x 21 columns) 0.1° pixels. The second and third columns report mean bias 
and mean absolute errors based on the average of all 294 pixels. MAE and MBE are 
reported in mm month-1. The MAE STD-1 column provides a relative metric of 
uncertainty, with typical errors being about ~33% of the temporal standard deviation. The 
time R2 is calculated using 27 years of data (1979-2005). The last three columns are 
similar to the regional metrics, but based on calculations using the individual 0.1° values. 
 
 Regional Metrics At-pixel metrics 
 Spatial  

R2 
MBE 

 
MAE MAE 

STD-1 
Time MAE MAE 

STD-1 
Time 

R2 R2 
Seasonal 0.67 0.01 8 0.31 0.87 26 0.52 0.54
Monthly 0.64 0.00 14 0.37 0.75 39 0.54 0.49
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Figure 1. Hydrologic Early Warning Schema
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Figure 2. Panel A displays 
FCLIM annual means and 
FA0CLIM 2.0 station 
locations for sub-Saharan 
Africa. Panel B shows 
GTOPO030 elevation, east-
west and north-south slopes 
mapped to red green and 
blue shading. The red 
polygon identifies Bhutan. 
Panel C shows monthly 
mean RFE, UBRF and 
Observed rainfall for 
Bhutan. 
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Figure 3.  Ethiopian observed and cross-validated monthly averages.  Each observed 
datum is based on the average of a 10% sample of the NMA gauge network. The 
corresponding 0.1° IRE pixels were also averaged and plotted. The seven months of the 
main growing seasons (March-September) are shown. 
 

 
 
Figure 4. Monthly rainfall bias and R2 values for the Ethiopian test site. 
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Figure 5.  1979-2005 mean March-April-May rainfall over the western Kenya test site.  
 
 
 
 
 
 

 
 
Figure 6.  Monthly mean 1979-2005 high density gauge and improved rainfall estimates 
over the Kenya test site. 
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Figure 7. Standard errors associated with the OND, NDJ and DJF forecasts over the 
1979-2005 time period. 
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Figure 8. Regional observed and forecast NDJ SPI values. Light gray boxes display likely 
range of the 2006 forecast, based on October reanalysis data.  R2 of GHA without the 
1997-98 event is 0.55. 
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Figure 9. Maximum likelihood and ±1 standard error MFR forecasts for OND, NDJ and 
JFM. 
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