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1. INTRODUCTION

Coccidioidomycosis is a systemic infection caused by in-
halation of airborne spores of Coccidioides immitis, a soil-
dwelling fungus found in the southwestern United States,
parts of Mexico (Maddy and Coccozza, 1964), and Cen-
tral and South America (Centers for Disease Control and
Prevention, 1994). C. immitis thrives in moist soils, is
spread by wind events, and therefore has many environ-
mental risk factors. Epidemiologic studies in the 1930’s
(Deresinski , 1980; Larwood , 2000) linked coccidioidomy-
cosis to the regional disease known as San Joaquin
Fever, also known as valley fever. Risk management and
cost-effectiveness studies show that a vaccine for valley
fever is plausible and should be administered to new-
borns in highly endemic counties including Kern in Cali-
fornia and Pima in Arizona (Galgiani , 1999; Barnato et al.,
2001). These and earlier studies (Centers for Disease
Control and Prevention, 1994, 1996) recommend intensi-
fying efforts to better characterize climate risk factors for
acquiring infection. This study explores climate-related
risk factors for valley fever in Kern County and quantifies
their level of significance.

Early studies of environmental causes of valley fever
(Smith et al., 1946; Maddy , 1957; Hugenholtz, 1957)
elucidated a lifecycle that accounts for many observed
features of C. immitis blooms and subsequent coccid-
ioidomycosis incidence. Pappagianis (1988) synthesized
the climatological aspects of this lifecycle gathered from
those and following studies. C. immitis thrives in the soil
(“blooms”) during wet periods lasting several weeks. In-
fections tend to occur in the dry season when soils are
most mobile. Incidence often increases after a heavy wet
season following a prolonged dry spell.

In the most quantitative analysis of climate controls
on valley fever incidence to date, Kolivras and Comrie
(2003) found that antecedent precipitation and temper-
ature are moderate climate risk factors for valley fever
in Pima County (which includes Tucson), Arizona, USA.
They developed a multivariate model to predict valley
fever incidence in Arizona in a given month based on cli-
mate conditions and anomalies in the antecedent 3.5 yr.
Moreover, Kolivras and Comrie’s statistical model uses
and predicts a metric called the transformed incidence
anomaly. This is the monthly incidence anomaly relative
to the annual (rather than climatological, or climatologi-
cal monthly) mean. The maximum transformed incidence
anomalies they reported in Pima County are about 10%,
and their statistical model predicts up to half of some
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anomalies.
The transformed incidence is insensitive to uniform

increases in monthly incidence which result in an abso-
lute annual increase (e.g., an epidemic) but which do not
change the relative contribution of each month to the an-
nual incidence. By contrast, the 1991–1995 epidemic in
Kern County increased interannual and intra-annual vari-
ations in incidence by about 1000% (ten-fold). This ap-
pears to be the largest well-documented valley fever epi-
demic on record.

Previous studies identify no clear cause for the
1991–1995 epidemic (Centers for Disease Control and
Prevention, 1994; Jinadu, 1995; Kirkland and Fierer ,
1996). The most likely climate factor contributing to the
epidemic was the increased rainfall that ended a five year
drought in California in March, 1991 (Jinadu, 1995; Kirk-
land and Fierer , 1996). The following two winters were
twice as wet as normal (Jinadu, 1995). Possible exacer-
bating demographic factors were an increased immuno-
suppressed population, and less prior exposure (which
develops immunity) in the general population (Kirkland
and Fierer , 1996; Centers for Disease Control and Pre-
vention, 1996).

We analyze the links between climate and C. immi-
tis epidemiology using the Jan. 1980 to Dec. 2002 record
(23 years) of monthly statistics from Kern County, Califor-
nia. Our objectives are twofold: First, we explore climate-
related risk factors for valley fever in Kern County and
quantify their level of significance. In the second portion
of our study we contrast our results from Kern County
to results from a similar study in Pima County, Arizona
(Kolivras and Comrie, 2003) which experiences a signif-
icantly different climate. This comparison shows us the
extent to which valley fever predictability depends on lo-
cal climate, and how that may differ with climate regime.

2. DESIGN

2.1 Monthly Regression Analyses

Climate variables in Kern County are from the Solar and
Meteorological Surface Observational Network Dataset
(SAMSON, available from National Climatic Data Center,
Asheville, North Carolina) for 1961–1990. We use NOAA
Hourly United States Weather Observations (HUSWO)
for 1990–1995, NOAA Integrated Surface Hourly Obser-
vations (ISHO) for 1995–2000, and NWS Hanford Fore-
cast station website for daily data in 2001–2002. All four
datasets come from measurements taken at Bakersfield
airport. Hourly and daily weather data are averaged to
obtain monthly means.

Valley fever incidence statistics for Kern County were
obtained from the California Department of Health Ser-
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vices (CDHS). Monthly incidence reports are available
from 1980–2002, while annual incidence data pre-date
1980. Kern County is the national center for serologic
testing for valley fever. The high awareness in Kern
County leads to better reporting.

We base our analysis on the climatological monthly
anomalies of incidence and climate data. The very
strong annual cycles of the (raw) time series we con-
sidered dominate the physical picture—correlation anal-
ysis of these time series only shows this effect, and noth-
ing else. We therefore removed the annual cycle from
all data. The resulting time series are strongly autocor-
related (e.g., a particularly warm July likely follows an
unusually hot June). Analysis based on these time se-
ries results in artificially strong correlations between inci-
dence and meteorological parameters, while teaching us
nothing about incidence anomalies in general, and epi-
demics in particular. We therefore removed those auto-
correlations by applying an autoregression procedure of
sufficiently high order (Chatfield , 2004). Finally, we per-
formed lag correlation analyses only after correcting for
annual cycles and time-series autocorrelations.

2.2 Epidemiology

We are most interested in identifying climate and soil-
related anomalies in C. immitis in order to assess the
susceptibility of endemic regions to increased incidence
of valley fever given accurate predictions of seasonal-to-
interannual climate anomalies. Seasonal-to-interannual
climate predictability has improved in recent years as tele-
connections between climate modes (e.g., ENSO) and
regional climate become better understood and repre-
sented in models (e.g., Glantz et al., 1991). Unfortu-
nately, data abundance of C. immitis in soil are unavail-
able. At this time the best proxy available is case inci-
dence, even though many steps separate growth of C. im-
mitis in soil from case incidence (Kolivras and Comrie,
2003).

The absolute incidence N0 [# yr−1] of valley fever in
Kern County from 1960–2002 and the incidence per unit
population N [# yr−1 (100,000)−1] are nearly identical in
shape (Figure 1). We always use N rather than N0 for sta-
tistical comparisons. During this period the Latino popula-
tion fraction increased about 7% per decade since 1970
to about 35% now. This demographic trend is not de-
tectable in the incidence statistics, suggesting that Lati-
nos are as susceptible as the original demographic.

The inter-annual variability (one standard devia-
tion) in annual valley fever incidence from 1960–2002
is 102 yr−1 (100,000)−1, 120% of the mean incidence
of 85 yr−1 (100,000)−1. The interannual variability from
1991–2002 is 164 yr−1 (100,000)−1, significantly greater
than 23 yr−1 (100,000)−1 for the period 1960–1990. In-
cidence N in 2001 and 2002 was higher than any previ-
ously recorded level except the epidemic of 1991–1995
(Jinadu, 1995).

The intra-annual variability is shown for 1980–2002,
when monthly incidence data were available. The frac-
tional intra-annual variability σ̄ is the standard deviation
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Fig. 1: Annual incidence N [# yr−1 (100,000)−1] (solid
line) and total number of reported cases N0 [# yr−1]
(dashed line) of valley fever in Kern County from 1960–
2002. Bars show two standard deviations of each year’s
monthly incidence statistics projected to annual rates.

of annual incidence rates computed from monthly rates
multiplied by twelve. Despite large interannual changes in
N, the mean σ̄ is close to 122 yr−1 (100,000)−1. Thus the
monthly incidence is within 244 yr−1 (100,000)−1 of the
annual mean incidence in 10–11 months in most years.

2.3 Climatology

Coccidioidomycosis incidence N̄ [# mo−1 (100,000)−1] in
Kern County and the climate risk factors that may be
associated with it show pronounced annual cycles (Fig-
ure 2). Monthly valley fever incidence since 1980 shows
a strong annual cycle superimposed on a relatively uni-
form background rate of order 5 mo−1 (100,000)−1. Expo-
sures due to non-environmental causes, e.g., construc-
tion, excavations, are expected to contribute to the back-
ground incidence (Maddy , 1957; Kolivras et al., 2001).
Incidence increases from 4.7 mo−1 (100,000)−1 during
spring months (Apr–Jun) to 17 mo−1 (100,000)−1 during
fall (Oct.–Dec.), when 60% of all cases are reported. One
should keep in mind that the minimum time from exposure
to incidence is about two weeks, and that many cases
progress unreported for months, until victims’ conditions
are serious enough to require medical care (Pappagia-
nis and Einstein, 1978). On average, it takes about five
weeks from infection to reporting (T. R. Larwood, personal
communication, 2003).

The most variable climate characteristic in Kern
County is rainfall. The climatological mean precipitation
P̄ from 1961–2002 is 15.8 ± 23.1 cm yr−1. C. immi-
tis prevalence decreases in climates with precipitation
rates P̄ < 10 cm yr−1 and P̄ > 50 cm yr−1 (Kolivras
et al., 2001). Thus Kern County receives enough pre-
cipitation for growth of C. immitis in average and moist
years. Incidence in California peaks from Oct.–Jan., the
end of the dry season, as noted in previous studies (e.g.,
Smith et al., 1946; Pappagianis, 1988). Precipitation from
the cold northwesterly frontal systems peaks in late win-
ter, and seems to reduce further incidence, perhaps by
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Fig. 2: Annual cycle of coccidioidomycosis incidence
and potential climate risk factors from 1980–2002. Shown
are monthly mean (a) incidence N̄ [# mo−1 (100,000)−1]
(b) precipitation P̄ [mm mo−1], (c) wind speed Ū [m s−1],
(d) surface temperature T̄s [K], (e) surface pressure
p̄s [mb]. Bars span two standard deviations of the inter-
annual variability computed separately for each month.
Standard deviations computed using 1980–2002 data for
incidence, 1961–2002 for climate variables.

dampening soil and suppressing Aeolian erosion.
The climatological mean wind speed Ū in Kern

County from 1961–2002 is 3.0±0.6 m s−1. Instantaneous
wind speed U (not shown) from Kern County exceeds the
6–15 m s−1 at 10 m height required for soil deflation many
times each month. Seasonal winds peak in May–July, the
beginning of the dry season. The seasonal coincidence
of peak winds with drying soil in Kern County seems to
favor Aeolian distribution of arthoroconidia, and thus in-
fection, in summer.

3. RESULTS

3.1 Monthly Climatology

Similar to previous studies in other regions (Hugenholtz,
1957; Kolivras and Comrie, 2003), we examined corre-
lations between annual cycles of valley fever incidence,
precipitation, winds, and temperature (cf. Figure 2). Fig-
ure 3 shows the unranked (Pearson) linear correla-
tion coefficient r between the autoregression-corrected
climatological monthly valley fever anomaly N∗ and
the (autoregression-corrected) climatological monthly
anomalies of four potential climate risk factors: precipi-
tation P∗, wind speed U∗, surface temperature T ∗

s , and
surface pressure p∗s . The results are qualitatively similar
if ranked (Spearman) correlations rs are used instead.

The confidence statistic p is only better than 1%
once, for correlation between precipitation anomaly
eight months antecedent. The confidence statis-
tic p is better than 5% once for wind speed anomaly
(19 months antecedent), once more for precipitation
anomaly (21 months antecedent), twice for surface pres-
sure anomaly (discussed below), and never for surface
temperature anomaly. Table 1 summarizes these results.
It shows, in decreasing order of significance, all statisti-
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Fig. 3: Lag correlation coefficient r between climatolog-
ical monthly valley fever anomaly N∗ and climatological
monthly anomalies of four potential climate risk factors:
precipitation P∗, wind speed U∗, surface temperature T∗s ,
and surface pressure p∗s . Plusses (+) and squares (�) in-
dicate confidence statistics p better than 5% and 1%, re-
spectively.

cally significant confidence statistics p < 0.05 between
valley fever anomalies and climate anomalies in Figure 3.
All associated lag-correlation coefficients r and rs are
< 0.20. Hence our central result is that climate anomalies
do not provide a robust method for predicting incidence in
Kern County, based on 23 years of monthly data.

3.2 Epidemic Years

During the 1991–1995 epidemic, annual incidence N in-
creased five-to-tenfold, from 50 to 500 yr−1 (100,000)−1

(cf. Figure 1). In non-epidemic years, 65% of cases
are reported between November and January. The epi-
demic amplified this strong late-fall early-winter seasonal-
ity. During the 1991–1995 epidemic, 59% of the anoma-
lous (actual minus expected) cases were reported in
Nov.–Jan. This dramatic seasonal increase appears in
the annualized monthly variability in N (Figure 1). Inci-
dence reports for 2001–2002 also show a significant in-
crease above the long term background level. Thus un-
derstanding factors contributing to epidemic outbreaks is
of current concern in California.

In order to help distinguish climatic from demo-
graphic causes of the 1991–1995 epidemic, we divide
the data into pre-epidemic, epidemic, and post-epidemic
time-series and analyze them separately. Table 2 de-
scribes the six subset time periods that we extract and
analyze separately from the full time-series. We exam-
ine these subset time-series for significant changes in
the correlations between precipitation and wind speed
anomalies with valley fever incidence.

Figure 4 shows the linear correlation coefficient r be-
tween the monthly valley fever incidence anomaly N∗ and
the precipitation anomaly P∗ for the seven different pe-
riods enumerated in Table 2. (Series A, containing all
available monthly data, also appears in Figure 3). The
trends and phasing generally agree among the subset



Table 1: Significant Correlations with Climate Anoma-
liesa

Anomaly # mo.b r c rs
d pe

Precipitation P∗ 8 0.19 0.11 0.0020
Precipitation P∗ 21 −0.14 −0.13 0.028
Wind Speed U∗ 19 0.15 0.074 0.018
Sfc. Pressure
p∗s

8 −0.15 −0.08 0.018

Sfc. Pressure
p∗s

21 0.14 0.16 0.028

aSample size M = 264 for P∗, U∗, and T ∗
s ; M = 240

for p∗s .
bNumber of months by which monthly climate anomaly

x∗ leads monthly valley fever anomaly N∗ for this correla-
tion

cPearson correlation coefficient
dRanked (Spearman) correlation coefficient
eConfidence statistic (probability that incidence and

climate factor are uncorrelated)

time-series. The highly significant correlation (p < 0.01)
of wet anomalies with incidence anomalies eight months
later appears in the entire 23 yr record (Series A) and
from 1980–1995 (Series C). Examination of monthly time-
series (not shown) reveals that winter (February–March)
rains influence incidence the following winter (December–
January), a pattern noted previously (Smith et al., 1946;
Hugenholtz, 1957; Pappagianis, 1988; Jinadu, 1995; Ko-
livras and Comrie, 2003).

Since the epidemic, from 1996–2002 (Series E),
precipitation anomalies occur 11 mos before incidence
anomalies with r = 0.30 (p = 0.0059). Incidence during
the 1991–1995 epidemic (Series F) shows no highly sig-
nificant features. We note that the correlation required for
a given confidence level is much greater for Series F due
to its short length (60 months). The significant negative
correlation with precipitation 11 mos prior may be a false
positive since this would be inconsistent with Series E
and with what is known presently of the lifecycle of coc-
cidioidomycosis. On the other hand, Zender and Kwon
(2005) show that dry anomalies in the previous rainy sea-
son are highly significantly associated with increased soil
dispersion nine months later in many of Earth’s dustiest
regions. Hence increased incidence two months follow-
ing increased dispersal is a plausible alternative expla-
nation of the Series F behavior. Considered altogether,
the indications of a significant connection between rain-
fall and incidence changes in epidemic years are unclear
and somewhat contradictory.

Figure 5 shows the linear correlation coefficient r be-
tween the valley fever incidence anomaly N∗ and the wind
speed anomaly U∗ for periods in Table 2. Most of the
statistically significant relationships of wind speed to inci-
dence anomalies occur since the epidemic, from 1996–
2002 (Series E). During this period, wind speed anoma-
lies occur 5 mos before incidence anomalies with a corre-
lation r = 0.32 (p < 0.01). However, the significant cor-

Table 2: Time Series Analyzed Separately

Description Start End # mo.a

A Entire 23 year record 1980 2002 276
B Until epidemic start 1980 1990 132
C Until epidemic end 1980 1995 192
D Epidemic omitted 1980 2002 216
E Epidemic end to record

end
1996 2002 84

F Epidemic only 1991 1995 60
G Epidemic start to record

end
1991 2002 144

aNumber of months in period
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Fig. 4: Lag correlation coefficient r between valley fever
incidence anomaly and precipitation anomaly P∗ for peri-
ods in Table 2. Plusses (+) and squares (�) indicate con-
fidence statistics p better than 5% and 1%, respectively.

relations rapidly alternate from positive to negative dur-
ing the first six months before incidence. Thus inter-
preting the significant wind speed anomalies as causally
related to valley fever is problematic. Since 1991 (Se-
ries G) incidence anomalies occur eight months after op-
posite wind speed anomalies with r = 0.42 (p < 0.01).
This feature may be a cross-correlation artifact. As dis-
cussed above, winter rainfall anomalies dominate inci-
dence anomalies with an eight month lag from 1980–
2002 (Figure 4). Winds are slowest in winter (Figure 2c)
and so may (coincidentally) anti-correlate with 1991–
2002 monthly incidence anomalies, but not with the entire
incidence dataset (Series A).

3.3 GARMA Analyses of Weekly Incidence

The standard correlation techniques described in Sec-
tion 2.1 are useful to identify correlations in anomalies of
incidence and climate. The Generalized Auto Regressive
Moving Average (GARMA) technique (Benjamin et al.,
2003) can test more sophisticated hypotheses with fewer
assumptions. We use the GARMA technique to analyze
the weekly incidence and weekly weather records from
1995–2003 (Talamantes et al., 2006).

Three GARMA models are constructed:. The first
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Fig. 5: As in Figure 4, but for lag correlation coefficient
r between valley fever incidence anomaly and wind speed
anomaly U∗.

uses previous weather and incidence data to predict sub-
sequent incidence. The second uses only previously in-
cidence data to predict subsequent incidence. The third
uses only previously weather data to predict subsequent
incidence. Differences in skill between the first and sec-
ond models indicate the the power of previous weather to
explain subsequent incidence.

3.4 GARMA Results

Using a sum of squares of errors (SSE) technique to
quantify the model performance shows that prior inci-
dence, precipitation, wind speed, and temperature (N, P,
U, and Ts) accurately predict subsequent N for the time
period 1996–2003 (Figure 6a). This formulation, called
the full model incorporates 24 pieces of prior and current
incidence and current environmetal data to predict sub-
sequent incidence. Inclusion of prior environmental data
does not improve accuracy.

SSE shows that the predictive accuracy does not de-
grade significantly when environmental data are removed
from the mix of information used to predict incidence.
Moreover, using a technique called Akaike Information
Criterion (AIC) search, we reduced the prior incidence
data required to four points representing the incidence
one, two, four, and twenty-six weeks prior to the prediction
(Figure 6b). This result, called the final model is parsimo-
nious because it requires many fewer data than the full
model, at little or no cost in predictive skill.

Finally, we tested the efficacy of using only environ-
mental factors to determine subsequent incidence. The
result, called the environmental model, lacks predictive
skill relative to the incidence-only final model (Figure 6c).
Since environmental variables do not significantly im-
prove the full model, and incidence alone suffices to hind-
cast the eight year weekly record, we find that weekly
weather has little or no explanatory power for incidence
variations. Talamantes et al. (2006) give full details of the
procedure and results.

Fig. 6: Reported weekly valley fever incidence (cases per
100,000 population) in Kern County, California (solid lines)
for the period Jan. 1996 to Dec. 2003, and three mod-
els (colored dashed lines). Models using GARMA tech-
nique (a) Full model, (b) final model, and (c) environmen-
tal model. 1995 is missing because the model requires at
least one year of data to start predicting future values. (Ta-
lamantes et al., 2006)

3.5 Conclusions

We tested monthly and weekly precipitation, wind speed,
and temperature anomalies as potential predictors for val-
ley fever incidence anomalies in Kern County from 1980–
2003. The only climate indicator with highly significant
correlations with incidence during this period is the pre-
cipitation anomaly. Precipitation anomalies eight months
antecedent to reporting explain only up to 4% of monthly
variability in subsequent valley fever incidence.

The GARMA models allow us to predict valley fever
incidence N(t), given the incidence history for earlier
times. When the time series corresponding to N, U,
T , and P are all accounted for, the fit to the observed
incidence of valley fever is very good as measured by
the SSE. When only the previous incidence history is in-
cluded in the model, however, the SSE does not increase
by much (the fit is still very good). When we include only
the U, T , and P histories in the model, the predicted inci-
dence values are significantly worse, again, as measured
by the SSE. Our main conclusion is therefore that the de-
pendence of incidence rate fluctuations on weather pa-
rameters in Kern County is rather weak. Evidently, Kern
has the right environment for C. immitis to thrive, but given
that the fungus is well-established, and that this causes a
certain seasonally-dependent incidence background, the
fluctuations about that background tend to exhibit only
a weak dependence on weather events. This result is
entirely consistent with Zender and Talamantes (2006),
who found only a weak linear (lag) correlation between
monthly-mean climate and valley fever incidence.

We surmise that the reasons behind the interannual
fluctuations in valley fever incidence in Kern County (i.e.,
the 1991–1995 epidemic, and the 2001–present surge)
are biological and/or anthropogenic in nature, perhaps
soil excavation. Weather and climate fluctuations, at least
on the weekly and monthly scales investigated in Tala-
mantes et al. (2006) and Zender and Talamantes (2006),
are too small to explain more than 5% of incidence fluctu-



ations. This is especially clear with temperature; and it is
most likely true for precipitation, which exhibits the largest
fluctuations of the weather variables investigated.

None of the potential climate indicators of incidence
that we tested are highly significantly correlated with the
1991–1995 epidemic. Other potential univariate climate
indicators of incidence (e.g., accumulated seven-month
precipitation, wind gustiness) and multi-variate climate in-
dicators (e.g., drought index) may show more predictive
skill than those we tested (e.g., Komatsu et al., 2003).
Seasonal climate predictors of valley fever in Kern County
are similar to, but much weaker than those in Arizona,
where previous studies find precipitation explains up to
75% of incidence. Causes for the discrepancy between
climate associations with valley fever in California and Ari-
zona require further study.

Incidence reports for 2001–2003 in Kern County
show a significant increase above the long term back-
ground level unprecedented except for the 1991–1995
epidemic. Reliable predictors of incidence will be ex-
tremely valuable whether or not current incidence rates
continue to rise. Higher resolution temporal and spatial
monitoring of soil conditions in Kern County may improve
our understanding of climatic antecedents of valley fever
epidemics.
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