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1. INTRODUCTION

Gridded geoscience model and sensor datasets present
an interesting set of challenges for researchers and the
data portals that serve them (Foster et al., 2002). Many
geoscience disciplines have transitioned or are transition-
ing from data-poor and simulation-poor to data-rich and
simulation-rich (NRC, 2001). A software ecosystem has
evolved to help researchers exploit this transition with
fast data discovery, aggregation, analysis, and dissemi-
nation techniques (e.g., Domenico et al., 2002; Cornillon
et al., 2003). In this ecosystem are the netCDF Operators
(NCO)—software for manipulation and analysis of grid-
ded geoscience data stored in the self-describing netCDF
format. NCO is used in several niches in geoscience data
analysis workflow (Woolf et al., 2003), because its func-
tionality is independent of and complementary to data dis-
covery, aggregation, and dissemination.

The netCDF Operators have evolved over the past
decade to serve research the needs of individual re-
searchers and data-centers for fast, flexible tools to help
manage netCDF-format datasets. The NCO User’s Guide
(Zender , 2006a) fully documents NCO’s functionality and
calling conventions. Zender (2006b) describes NCO’s
design philosophy, primary features, relation to other geo-
science data analysis software, and future plans. Zen-
der and Mangalam (2006) describe the core NCO arith-
metic algorithms and their theoretical and measured scal-
ing with dataset size and structure. Current research pro-
vides NCO with advanced parallel computing techniques
at two distinct levels. At the low level, all NCO arith-
metic operators are parallelized to throughput on shared
memory and distributed memory clusters (Zender et al.
2007, manuscript in preparation). High level analysis
scripts of multiple NCO commands benefit from out new
dependency-analysis engine which automatically detects
and parallelizes basic blocks, returning intermediate files
only as needed (Wang et al., 2006, manuscript in prepa-
ration). This extended abstract summarizes novel fea-
tures in NCO’s design, arithmetic algorithms, and low-
and high-level parallelization.

2. DESIGN

Traditional scientific data processing works with an intra-
file paradigm where users open one or a few files to read
and manipulate one or a few variables at a time. The
intra-file paradigm works well in cases where all the perti-
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nent data reside in a few files, and the processing of each
variable is unique and requires hand-coding. In large
geoscience applications data storage requirements may
dictate that relevant data be spread over multiple files.
Level one satellite data, for example, are often stored in
a file-per-day or file-per-orbit format. Data produced by
geophysical time-stepping models is usually output ev-
ery time-step or as a series of time-averages. Climate
models usually archive data once per simulated day or
month in multi-year or multi-century simulations. NCO
supports an inter-file paradigm for situations where the
intra-file paradigm is unwieldy.

NCO abides by five guidelines that have proven their
value when processing large numbers of geophysical
datasets:

1. Files behave as an elemental data unit. Unless
specifically requested otherwise, NCO applies the
same operation to all variables (or attributes) in a
file. Manipulating (e.g., adding, subtracting) entire
geophysical states as represented by the collection
of variables in a file is as easy as manipulating a sin-
gle variable in a traditional data analysis language.
When the “process all variables” paradigm is com-
bined with UNIX command-line globbing of multi-
ple files, NCO effectively subsumes two problematic
loops (loops over files and over variables) of large
scale data-processing into one command.

2. Files processed sequentially are usually homoge-
neous. NCO assumes the structure of each file (i.e.,
the fields present and their dimensions) are identical
to the structure of the first file in the sequence. NCO
allows the record dimension (usually time) length
and number of variables to change between files, but
not the ranks of variables.

3. An audit trail that tracks data provenance and pro-
cessing history is desirable for both the data ana-
lyst and their colleagues who receive the processed
data. For analysis involving multi-file sequences, the
metadata in the first file, along with a list of the other
files, adequately preserves the processing history.
By convention, NCO keeps this information in the
history attribute (Rew et al., 2005).

4. There is value in maintaining the distinctions and
associations between dimensions, coordinates, and
variables during data analysis. Unless otherwise
specified, NCO automatically attaches coordinate
data (i.e., dimension values) to variables it transfers.

5. Tools should treat data as generically as possible,
and impose no software limitations on data dimen-
sionality, size, type, or ordering.
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Table 1: Operator Summary

Command Name (primary functionality) Type1 MFO2 Par.3

ncap/ncap2 Arithmetic Processor (algebra, derived fields) A
ncatted Attribute Editor (change attributes) M

ncbo Binary Operator (subtraction, addition . . . ) A X

ncea Ensemble Averager (means, min/max, . . . ) A X X

ncecat Ensemble Concatenator (join files) M X X

ncflint File Interpolator A X

ncks Kitchen Sink (sub-set, hyperslab, . . . ) M
ncpdq Pack Data, Permute Dimensions A/M X

ncra Record Averager (means, min/max, . . . ) A X X

ncrcat Record Concatenator (join time-series) M X X

ncrename Renamer (rename any metadata) M
ncwa Weighted Averager (average, mask,

integrate, . . . )
A X

NCO partially fulfills the netCDF designers’ original
vision for a follow-on set of generic data operators (Rew
and Davis, 1990). Presently NCO includes twelve utilities
built from a common library (Table 1). Operator names
are acronyms for their functionality, prefixed with “nc” to
indicate their relationship to netCDF. The twelve opera-
tors typically read netCDF files as input, perform some
manipulations, then write netCDF files as output. In this
sense the operators are filters, or middleware. The NCO
User’s Guide (Zender , 2006a) fully documents the func-
tionality and calling conventions for all operators.

The primary purpose of the arithmetic operators is
to alter existing or create new data. The other opera-
tors, called metadata operators, manipulate metadata or
re-arrange (but do not alter) data. The arithmetic opera-
tors can be quite computationally intensive, in contrast to
the metadata operators which are mostly I/O-dominated.
The amount of data processed varies strongly by operator
type. The multi-file operators (MFOs) are the most data-
intensive. Often they are applied to entire data-streams.

3. ALGORITHMS

Improving data statistics and reducing noise by averag-
ing are important analysis techniques because they help
reveal fundamental patterns. Many other useful opera-
tions share with averaging the property that the result is
of lesser rank (has fewer dimensions or axes) than the in-
put. First we illustrate a typical arithmetic-intensive NCO
averaging operation, then we describe the flexible, high
performance algorithm which carries it out.

1Operator type: “A” and “M” indicate arithmetic and
metadata operators, respectively.

2Multi-file Operators—Operators which process an ar-
bitrarily large number (N > 2) of input files.

3Operator parallelism. These operators exploit shared
memory parallelism (SMP) on OpenMP-compliant plat-
forms, and distributed parallelism with MPI.

3.1 Averaging

The netCDF weighted averager ncwa implements a useful
set of such rank-reduction operations with optional masks
and weights, e.g.,

ncwa 1986.nc 1986_txyz.nc

ncwa -a x,y -w area -B "ocean == 1" \

1986.nc 1986_ocean_avg.nc

ncwa -a x,y -w area -d lat,-30.,30. \

1986.nc 1986_tropics_avg.nc

ncwa -y min -B "land == 1" \

1986.nc 1986_land_min.nc

The first command averages all variables to scalars. The
second command determines ocean-wide averages by
averaging all variables along their x and y axes, weight-
ing each datum by the value of the corresponding ele-
ment of area, and including only data whose correspond-
ing ocean flag is true. Such masks are a convenient way
of identifying irregular regions (like ocean basins). Rect-
angular regions are easily specified using hyperslabs, as
in the third example. The fourth command determines the
minimum of all variables over land.

The record averager ncra swiftly reduces an arbitrary
number of datasets along their record dimension (usually
the time axis). The output is the time-mean of (usually)
spatially varying data,

ncra 1986_*.nc ~/1986.nc

ncra -n 274,3,1 1986_060.nc ~/1986_0311.nc

ncra -y min 1986_*.nc ~/1986.nc

The first command time-averages all datasets beginning
with “1986 ”. The second command specifies the input
files using a shorthand convention for 274 files whose last
three digits before the suffix increase by 1 each from the
template filename. If the three digits represent day-of-
year, then the output is the the March-November aver-
age. With the same assumption, the last command finds
stores the annual minimum daily values for 1986.



Table 2: File Geometries

Satellite GCM
Max. Rank R 2 4
Variables 84 1285

Time — 8
Level — 32
Latitude 2160 128
Longitude 4320 256
Mean6 D̄ 3055 55
Elements [N] 75× 106 285× 106

Total Size [MB] 299 1143

As can be seen from these examples, the “aver-
agers” (ncwa, ncra, ncea) are misnamed because they
perform many non-linear operations as well, e.g., total,
minimum, maximum, root-mean-square. A more accu-
rate but less familiar name would be “reducers”, since
their fundamental purpose is to reduce a dataset’s rank.

3.2 Optimizations

NCO is designed for gridded geophysical data that obey

N � D � R > 1 (1)

where N is the size (number of elements) of a variable,
D is the length of a dimension (e.g., spatial or temporal),
and R is the rank (number of dimensions) in the variable.
In our experience, this assumption applies to most grid-
ded data generated or stored on high performance com-
puters. The exact size N of a rank R variable is

N ≡
k=R

∏
k=1

Dk (2)

Arithmetic requires maximum predictable numbers F of
floating point operations and I of integer operations. Zen-
der and Mangalam (2006) analyze the costs of perform-
ing arithmetic (e.g., averaging) datasets with different
ranks ranging from unstructured (i.e., R = 1) to structure
typical of time-varying geoscience datasets (i.e., R = 4).

Many steps contribute significantly to the elapsed
time required to complete a relatively simple arithmetic
procedure such as averaging. These include I/O, byte-
swapping, broadcasting (e.g., conforming scalars to
multi-dimensional variables), collection (e.g., accessing
discontinuous hyperslabs in memory), and weighting.
In some geoscience disciplines, weighting data (e.g.,
by grid-cell area) prior to averaging is ubiquitous. We
tested NCO on datasets representative of typical Satellite
and Intergovernmental Panel on Climate Change (IPCC)
GCM simulations (e.g., Cubasch and Meehl , 2001). Ta-
ble 2 summarizes the geometries in the Satellite and
GCM datasets tested. The Satellite and GCM datasets

Fig. 1: Observed (solid) and predicted (dashed) elapsed
time to perform weighted and non-weighted averages on
N element GCM-geometry (R = 4) and unstructured (R =
1) datasets. Grey areas indicate prediction range for rank
R = 2–5 datasets. Horizontal axis scaled to units of N0 =
36× 106 elements.

are examples of ranks R = 2 and 4 geometries, respec-
tively.

Interestingly, weighted averaging takes about about
three times longer than non-weighted averaging when no
optimizations are applied (Figure 1).

NCO’s optimized arithmetic algorithms take advan-
tage of run-time opportunities including data storage or-
der (i.e., dataset shape), and isomorphisms between
current and previous operations which allow re-use of
cached intermediate variables. The most rapidly varying
(MRV) algorithm is a storage-order optimization that NCO
applies to input hyperslabs stored in the same order re-
quired to average it. The weight re-use (WRU) algorithm
eliminates all but the first broadcast of averaging weights
for a set of identically shaped variables.

The MRV and WRU optimizations significantly
reduce the total integer operations required during

4All eight variables are rank R = 2.
5Eight variables are scalars (R = 0), eight variables

contain the time dimension only (R = 1), sixteen variables
contain only latitude and longitude (R = 2), sixty-four vari-
ables have time, latitude, and longitude (R = 3), thirty-two
variables have contain all four dimensions (R = 4).

6Mean dimension size (weighted by variable size and
number).



Fig. 2: Observed (solid) and predicted (dashed) elapsed
times to perform a weighted average of an N element
GCM-geometry (R = 4) dataset with and without WRU and
MRV and both optimizations. Un-optimized curves same
as Figure 1.

weighted averaging

I1 ∝ N[34R + 8Rw+25 + W+(W + 11)N−1
A ] + B (3a)

I2 ∝ N[28R + 0 +23 + W+(W + 11)N−1
A ] + B (3b)

I3 ∝ N[ 6R + 8Rw+17 + W+(W + 11)N−1
A ] + B (3c)

I4 ∝ N[ 0 + 0 +15 + W+(W + 11)N−1
A ] + B (3d)

where I1 is the operation count required without optimiza-
tions, and I2, I3, and I4, include the WRU optimization,
MRV, and both optimizations, respectively. Here Rw is
the rank of the weight (e.g., gridcell area), W is the data
wordsize (i.e., four or eight-bytes), and NA and Nw are the
products of the sizes of the averaged and weight dimen-
sions, and B = (W + 2)Nw.

The MRV dimension optimization boosts perfor-
mance even more (Figure 2). The worst case times to
perform weighted averages occur when neither the WRU
nor the MRV optimizations apply or, equivalently, if the
averaging software implements “brute force” techniques
rather than the WRU and/or MRV optimizations.

The WRU optimization alone reduces the elapsed
time to average typical IPCC-style GCM datasets from
285 s to 200 s. This is a throughput increase of
about 40%. However, not all datasets are as amenable
to WRU as IPCC-style GCM-datasets. For instance, av-
eraging variables which alternated in shape rather than
averaging groups of identically shaped-variables (as we
did) could significantly degrade the WRU benefits.

The MRV optimization alone increases GCM dataset
averaging throughput by about 140%. Figure 2 shows
that MRV causes impressive gains when averaging over

all dimensions (i.e., RA = R, where RA is the rank of the
averaging space). In fact, MRV optimization is nearly as
effective for partial averages (RA < R, not shown). The
MRV improvement is distinct from and in addition to the
acceleration which hardware-based caching provides for
accessing contiguous non-strided datasets, such as MRV
averages.

The MRV and WRU optimizations are often appli-
cable in tandem. The MRV and WRU combination re-
duces the elapsed time to average the GCM dataset from
285 s to 30 s. This order-of-magnitude throughput in-
crease agrees well with the ratio I1/I4 (3) for typical GCM
datasets which have R = 4 and Rw = 1. The combina-
tion of MRV and WRU optimizations shifts the I/O time for
weighted averaging of the GCM dataset from < 10% to
about 50%.

4. SMP AND SPMD PARALLELIZATION

As indicated in Table 1, all arithmetic operators except
ncap support Shared Memory Parallelism (SMP) and dis-
tributed parallelism. These parallelisms are implemented
and controlled with standard OpenMP (OpenMP, 2005)
and Message-Passing Interface (MPI) (Snir et al., 1998)
techniques respectively. Currently the OpenMP and MPI
parallelism operate exclusively, and “hybrid” (OpenMP
threads within MPI processes) parallelism is not sup-
ported.

The arithmetic operators are parallelized (operate in-
dependently) over the loop of variables in the current file.
The operators automatically utilize SMP parallelism when
compiled with an OpenMP-compliant compiler. The SMP
parallelism increases operator throughput when the num-
ber of arithmetic operations per thread is large enough to
compensate for the cost of spawning the threads. The
operators will spawn pre-set optimal numbers of threads
which the user may override with the OMP NUM THREADS

environment variable (OpenMP, 2005) or with the -t

switch, e.g., ncwa -t 4 in.nc out.nc.
MPI versions of the parallelized arithmetic operators

begin with with mp (e.g., mpncbo). The variables in the
current file are distributed over the available MPI pro-
cesses. NCO takes advantage of the parallelism permit-
ted by the current netCDF3 library—multiple simultane-
ous file-reads and a single file-write at a time. Extending
and adding parallelism to NCO’s I/O is an area of current
research.

Compute-intensive operators (ncwa and ncpdq) ben-
efit most from threading. The greatest increases in
throughput due to threading occur on large dataset where
each thread performs millions or more floating point op-
erations. Otherwise, the system overhead of setting up
threads tends to outweigh the theoretical speed enhance-
ments due to SMP parallelism. SMP parallelism does not
currently scale well beyond four threads for these oper-
ators. Removing I/O bottlenecks is a high priority (see
below), as is parallelizing the next generation arithmetic
processor, ncap2.

http://www.openmp.org


5. SERVER-SIDE DATA REDUCTION

Low storage costs have driven an explosion in the avail-
ability of geoscience datasets, but their usage has been
hampered by the cost and time involved in network trans-
fer. To address this, we have implemented a server-
side computation engine that allows scripts of NCO com-
mands to be performed at the server. Our system, cur-
rently called SSDAP (Server-Side DAP) piggybacks on
the Data Access Protocol (DAP) (Cornillon et al., 2003) of
a customized OPeNDAP data handler (OPeNDAP, 2004).
NCO commands are sent through an interface extended
from DAP’s subsetting facility and processed by a server-
side execution engine. Resultant datasets may be re-
trieved in the same DAP request, or deferred for later re-
trieval.

Recognizing the wide use of scripting to perform data
reduction and analysis, SSDAP is capable of parsing
and executing most typical Bourne-shell scripts of NCO
commands with only light modifications. Because such
scripts typically perform massive reductions, a system
that merely transmits script results is capable of more
efficient use of network bandwidth. In addition to bene-
fits in data-computation locality, a server-side computa-
tion engine intersperses a layer between script submis-
sion and execution, allowing compiler techniques such as
dataflow analysis to be applied at the script-level. With
such techniques, the engine can parallelize execution of
independent NCO commands and better exploit server-
class hardware. Early tests confirm the potential for in-
creased computational performance. For one 14000+ line
script, execution time was reduced from 74 minutes for a
bare execution to 45 minutes for compilation and paral-
lel execution on the same dual-core, dual CPU machine.
The abstract by Wang et al. in this volume contains more
details.

Server-side computation should significantly lower
costs of data-intensive computation, increasing the prac-
ticality of desktop analysis of remote terascale datasets.
With a script-based interface, our implementation hopes
to enable access to server-side computation and script-
level parallelization for geoscientists.

6. STATUS AND FUTURE WORK

As an Open Source software project (Raymond , 1999),
NCO will continue to evolve to meet the needs of its au-
thors and most vocal users. We aim for NCO to com-
ply more completely with geoscience metadata standards
such as CF. Typically metadata standards are often eas-
ier to define than to implement. Whereas specific ap-
plications only need to implement the standard to suit
their own purposes, generic applications such as NCO
are destined to encounter unforeseen or difficult uses of
the standard. Priorities for future NCO support include
metadata conventions which define representation of re-
duced, staggered, and non-rectangular data grids (Gre-
gory , 2003).

The institutional support NCO currently receives al-
lows us to also tackle fundamental problems in distributed

geoscience data analysis. The current netCDF library re-
stricts file-writes to a single process at a time. Parallel
I/O offers potentially dramatic improvements in operator
throughput (Gropp et al., 1999). Exploiting this opportu-
nity by extending the NCO arithmetic parallelism, already
implemented, through to the I/O layer seems achievable
with current and near-future software libraries. Paral-
lel netCDF (pnetCDF) (Li et al., 2003) currently offers
an MPI-IO implementation of the netCDF3 format which
helps reduce I/O bottlenecks for datasets stored on par-
allel file systems. netCDF4 has an HDF5 back end (HDF;
http://hdf.ncsa.uiuc.edu). which supports MPI-IO (Rew
et al., 2006). We will analyze and inter-compare the per-
formance of the shared memory and distributed paral-
lelism on common arithmetic tasks in a future study.
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