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A problem common to meteorological and 

climatological datasets is how to address missing data. 
The majority of multivariate analysis techniques require 
that all variables be represented for each observation; 
hence, some action is required in the presence of 
missing data. In cases where the individual observations 
are thought not important, deletion of every observation 
missing one or more pieces of data (complete case 
deletion) is common. As the amount of missing data 
increases, tacit deletion can lead to bias in the first two 
statistical moments of the remaining data as population 
estimators and inaccuracies in subsequent analyses.  
What is desired is a principled method that uses 
information available in the remaining data to predict the 
missing values. Such techniques include substituting 
nearby data, interpolation techniques and linear 
regression using nearby sites as predictors.   One class 
of technique that uses the information available in an 
iterative manner is known as multiple imputation.  

In this work, different types of machine learning 
techniques, such as support vector machines (SVMs) 
and artificial neural networks (ANNs) are tested against 
standard imputation methods (e.g., multiple regression), 
simple regression, mean substitution, and casewise 
deletion. All methods are used to predict the known 
values of climatological data which have been altered to 
produce missing data. These data sets are on the order 
of 400 variables (data station sites) and a large number 
of observations. Both precipitation and air temperature 
data are used to provide a range of inherent spatial 
coherence seen by analysts.   

The MSE of the prediction and the MAE of the 
variance are presented to assess the efficacy of each 
technique. Results indicate that the non-iterative 
methods, such as casewise deletion and mean 
substitution, lead to the largest errors and iterative 
imputation has considerably lower errors.  Within the 
iterative techniques, SVMs are most promising in 
reducing error.  
 
 
1. INTRODUCTION 

 
How to address missing data in meteorological and 

climatological datasets is an issue most researchers 
face.  The decisions made can have a profound impact 
on subsequent analyses (e.g., Kidson and Trenberth, 
1988 and Duffy et al. 2001 summarize the importance of 

this issue). The majority of multivariate analysis 
techniques require that all variables be represented for 
each observation; hence, some action is required in the 
presence of missing data. Additionally, proxy-based 
reconstruction methods are sensitive to the technique 
used to relate the data that are present to those that are 
missing (Rutherford et al., 2005; Mann et al., 2005).  

In cases where the individual observations are 
thought not important, deletion of every observation 
missing one or more pieces of data (complete case 
deletion) is common. As the amount of missing data 
increases, tacit deletion can lead to bias in the first two 
statistical moments of the remaining data and 
inaccuracies in subsequent analyses. In datasets, 
where extreme values are of importance, extremes in 
wind speed and rainfall may be associated with 
meteorological conditions that lead to instrument failure 
and loss of data.  Significantly, it is those extreme 
values that are of interest.  If the data are deemed 
important to preserve, some method of imputing the 
missing values may be used.  

Historically, the statistical mean has been used 
most often as it was thought to minimize perturbations. 
Despite that, the use of the mean injects the same value 
into every instance of missing data and has been shown 
to create artificially low variation (Roth et al., 2005). 
What is desired is a principled method that uses 
information available in the remaining data to predict the 
missing values. Such techniques include substituting 
nearby data, interpolation techniques and linear 
regression using nearby sites as predictors.   One class 
of technique that uses the information available in an 
iterative manner is known as multiple imputation.  

The results from any technique used to estimate 
missing data depend, to a large extent, on the patterns 
of interrelated data (the degree of oversampling) and 
the manner in which the data are missing. The 
mechanism responsible for missing data should be 
assessed as random or systematic. In many cases, a 
few consecutive missing observations can be estimated 
with little error; however, if a large amount of data is 
missing, the results would be different. Motivated by 
such design questions, the present analysis seeks to 
examine how a number of techniques used to estimate 
missing data perform when various types and amounts 
of missing data exist.  

In this work, different types of machine learning 
techniques, such as support vector machines (SVMs) 
and artificial neural networks (ANNs) are tested against 
standard imputation methods (e.g., multiple regression). 
All methods are used to predict the known values of 
climatological data which have been altered to produce 
missing data. These data sets are on the order of 400 
variables (data station sites) and a large number of 
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observations. Both precipitation and air temperature 
data are used to provide a range of inherent spatial 
coherence seen by analysts as the former is known to 
have a small correlation scale whereas the latter has a 
much larger spatial scale).  

Many research studies have investigated multiple 
imputation (e.g., Rubin, 1988; Wayman, 2003). Rubin 
(1988) showed the remarkable improvements when 
using multiple imputation rather than single imputation. 
Wayman (2003) discussed some missing data issues 
and explained the basic process of multiple imputation. 
Variations of regression forms of imputation techniques 
have been applied to climate data (e.g., EM algorithm, 
Schneider, 2001) with promising results.  We implement 
imputation techniques herein with the newest learning 
methods, such as ANN and SVR.  These are compared 
to older techniques to document improvement over 
older techniques.   

The data used in the analyses are described in 
Section 2.  A brief overview of the methodology and 
experiments is provided in Sections 3 and 4.  The 
results are summarized in Section 5 and conclusions 
presented in Section 6. 
 
2. DATA SETS 
 

There are two data sets used in this study based on 
the Lamb/Richman climate datasets (Richman and 
Lamb, 1985). The first data set is the monthly 
precipitation data set, where the values are reported in 
units of inches (to the hundredth of an inch). This data 
set consists of 528 monthly observations (1949 – 1992) 
with 400 variables or stations.  Precipitation data are 
included to test how well the techniques work on data 
with a small spatial scale.  The second data set is 
monthly average temperature measured in degrees 
Celsius. This data set consists of 528 observations with 
400 variables and is included to assess the techniques 
for data with a large spatial scale.  Since the spatial 
scale of the temperature covariation is much larger than 
the station spacing, analysis of these data should 
provide insight into situations that are similar to 
superobing, where data thinning techniques are 
desirable.  Each data set is altered to produce missing 
data by randomly removing three different percentages 
(5%, 10%, and 20%) of the observations.  Since the 
data removed are known and retained for comparison to 
the estimated values, information of the error in 
prediction and the changes in the variance structure are 
calculated.  
 
3. METHODOLOGY 
 

The support vector machines (SVMs) and artificial 
neural networks (ANNs) are machine learning 
algorithms used in this paper to predict missing data. 
Several standard methods such as casewise deletion, 
mean substitution, simple linear regression, and 
stepwise multiple regression, are employed for 
comparison. The SVM algorithm was initially developed 
by Vapnik and has become a favored method in 
machine learning (Boser et al., 1992). The version of 

SVMs for regression called support vector regression 
(SVR) is used in this study. Trafalis et al. (2003) applied 
SVR for prediction of rainfall from WSR-88D Radar and 
showed that SVR is better, in terms of generalization 
error, than traditional regression.  

The SVR formulation by Vapnik (1998) can be 
described as follows. Given a training set ( ){ }l 1, =iii yx of 

l  observations, our objective is to construct a function 
for approximating expected values y: bf +⋅= xwx)(  
where w is the weight vector and b is a bias. Vapnik 
(1998) proposed the linear ε-insensitive loss function in 
the support vector regression (SVR) formulation (Fig. 1). 
The linear ε-insensitive loss function is defined by: 
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The SVR formulation can be represented as follows 
(Vapnik, 1998): 
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where w is the weight vector, b is a bias, C is a user-
specified parameter, and ii ξξ ′,  are slack variables 
representing the deviations from the constraints of the ε-
tube. 

 
Figure 1. The ε-insensitive loss function. 

 
 The SVR formulation in Eq. 2 can be solved in the 
dual formulation using Lagrange multipliers ii αα ′,  

where: ( )∑
=
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loss function, the dual formulation becomes (Vapnik, 
1998): 
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 In the case of nonlinear problems (Fig. 2), given a 
function )(: xx φφ → which maps x  from the input 
space into a higher dimensional feature space, the inner 
product ji xx ⋅  in Eq. 3 can be replaced by a kernel 

function ),( jik xx . The following kernel functions are 
used in this study: 

1. Linear: ( ) jijik xxxx ⋅=, . 

2. Polynomial: ( ) =jik xx , ( )pji 1+⋅ xx , p is the 

degree of polynomial. 
3. Radial basis function (RBF): ( ) =jik xx ,  

⎟
⎠
⎞

⎜
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⎛ −−

2
exp ji xxγ , γ is the parameter that 

controls the width of RBF. 
 

 
Figure 2. Nonlinear regression problem. 

 
 
The type of ANNs used herein is feedforward ANNs 

(Fig. 3). The network consists of a set of information-
processing units called neurons that constitute an input 
layer, one or more hidden layers, and an output layer of 
computational nodes (Haykin, 1999). The formulation of 
feedforward ANNs is well explained by Haykin (1999). 

 

Output 
layer 

Hidden 
layer Input 

layer  
Figure 3. A feedforward neural network with one hidden 

layer and one output layer. 

 
The multiple imputation scheme used in this study 

can be described as follows: 
 
Step 1. Given a data set of multiple observations 

(rows) and variables (columns). Identify which 
rows and columns that have missing data. 

Step 2. Separate the observations that do not contain 
any missing data (set 1) with the ones that 
have missing data (set 2). 

Step 3. Iteration 1. For each column in set 2 that has 
missing data, construct regression functions 
using set 1. The dependent or response 
variable is the column that has missing data 
and the independent or predictor variables are 
the other columns. Predict the missing data for 
each column in set 2 using those regression 
functions. Therefore, we have created values 
(imputes) to be substituted the missing data in 
set 2. 

Step 4. Iteration 2. Merge the imputed set from 
previous step with set 1. For each column in 
set 2 that has missing data, construct again 
regression functions using this merged set. 
Predict the missing data for each column in set 
2 using the regression functions from previous. 
Therefore, we have created again values 
(imputes) to be substituted the missing data in 
set 2. 

Step 5. Iteration 3. The same as Iteration 2. 
 
Several iterations can be applied to construct 

imputed data sets. Our experiments show that 3 
iterations should be adequate to substitute missing data. 
In this study, we apply SVR, ANNs, and stepwise-
regression to construct the regression functions for 
multiple imputation methods. For single imputation 
methods, we perform mean substitution and simple 
linear regression. 

In order to measure performance of our methods, 
we use the mean squared error (MSE) to show the 
difference between the original data set and the imputed 
data set. For N observations, the MSE is the average 
squared error between the predictions y and the target 
outputs t, 
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The analysis on the difference of variance between 

the original data set and the imputed data set is 
performed. At this point, we add another standard 
method namely casewise or listwise deletion where the 
observations or rows that contain missing data are 
removed or not included in the data analysis. We cannot 
use the MSE to measure the performance of casewise 
deletion because there is not any imputation to replace 
missing data. The difference of variance between the 
original data set and the imputed data set is measured 
using the mean absolute error (MAE). For N 
observations, the MAE is the average absolute error 
between the variance of variables in the original data set 
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T and the variance of variables in the imputed data set 
P, 

∑
=

−=
N

j
jj PT

N
MAE

1

1       (5) 

 
 
4. EXPERIMENTS 
 

For each data set, we create randomly 10 different 
seed data sets for 5%, 10%, and 20% of the 
observations that have missing data. Then we applied 
the multiple imputation methodology as described in 
Section 3 to predict missing data where SVR, ANNs, 
and stepwise-regression are used to construct the 
regression functions. In addition, stepwise-regression is 
combined with ANNs as a regressor to examine the 
potential gained by predictor thinning. Using stepwise 
regression reduces the number of variables as 
predictors and these reduced set of variables are used 
to construct a regression function using ANNs. For 
multiple iteration experiments, 5 iterations are applied 
for each method. Additionally, these data sets are used 
for single imputation methods using mean substitution 
and simple linear regression to substitute missing data. 

The experiments are performed in the Matlab® 
environment. The SVM experiments use LIBSVM 
toolbox (Chang and Lin, 2001) whereas the ANN, 
simple linear and stepwise regression experiments 
utilize the neural network and statistics toolboxes, 
respectively. 

 
5. RESULTS 
 

Tables 1-3 and Figures 4-6 show the results for 
each method with three different percentages of the 
observations that have missing data for the precipitation 
data set. The average MSE from 10 different randomly 
seeded data sets is reported. For SVR experiments, the 
different combinations of kernel functions (linear, 
polynomial, radial basis function) and penalty cost (C) 
values are applied to determine the parameters that 
give the lowest MSE. After experimentation, the SVR 
parameters used the radial basis function kernel and ε-
insensitive loss function with γ = 0.000006, C = 100, and 
ε = 0.3. For ANNs, we train several feed-forward neural 
networks with different number of hidden nodes with the 
tangent-sigmoid activation function for the hidden layer 
and a linear activation function for the output layer. The 
scaled conjugate gradient backpropagation network is 
used for the training function. Training stopped when 50 
epochs is reached. Based on this testing, the neural 
network that gives the lowest MSE has 4 hidden nodes. 
For stepwise regression, the maximum p-value that a 
predictor can be added to the model is 0.05 whereas the 
minimum p-value that a predictor should be removed 
from the model is 0.10. The number of predictor 
variables used in stepwise regression for the 
precipitation data set is between 13 and 85. For the 
method that combines stepwise regression and ANNs, 
the best neural network has 5 hidden nodes and training 
stopped when 40 epochs is reached. For mean 

substitution, the missing data in a variable are replaced 
with the mean of the same monthly observations are 
used for that variable. This monthly stratification 
accounts for cyclostationarity by preventing inclusion of 
data into the mean from months where the temperature 
or precipitation might be much different from the month 
with missing data.  Simple linear regression uses only 
one independent variable that has the highest 
correlation with the response variable to predict missing 
data. There is no iteration used for simple regression.  
By doing so, the simple regression acts similar to using 
the nearest station to the missing data as a proxy. 

For the precipitation data, with 5% missing data, 
some interesting results emerge (Table 1 and Fig. 4) in 
prediction of the missing values.  The most noteworthy 
finding is that the technique most commonly employed 
in the literature, mean substitution, results in an average 
error of 4.72 in2 for the missing value (2.17 inches / 
month).  Application of simple linear regression with a 
single predictor reduces the error considerably to 2.58 
in2 (1.61 in. /mo.).  Every iterated technique works 
considerably better.  Stepwise regression, ANN and the 
combination are nearly tied in their MSE.  A typical 
value for MSE is about 1.6 in2 (1.26 in./mo.).  The SVR 
performed best with a MSE of approximately 1.36 in2 
(1.17 in. /mo.).   

 
Table 1. The average MSE for six methods with 5% of the 
observations missing for the precipitation data set. 

Iteration SVR Stepwise 
Reg. ANN Stepwise 

Reg.&ANN
Mean 
Subst.

Simple 
Lin. Reg.

1 1.390 1.677 1.829 1.596
2 1.351 1.634 1.780 1.677
3 1.352 1.605 1.571 1.615 4.716 2.582
4 1.352 1.637 1.827 1.488
5 1.352 1.556 1.693 1.684  

 
As the percentage of missing data was set at 10 % 

(Table 2, Fig. 5), the size of the error for mean 
substitution grows, whereas that for simple regression 
remains essentially constant.  The iterative techniques 
begin to show more variation with ANN consistently the 
worst, though better than for simple regression.  The 
stepwise regression and the stepwise regression 
followed by ANN gave similar results.  As for the 
previous case, the SVM gave the lowest errors with an 
average mean square of 1.53 in2 (1.24 in. /mo.).    

 
Table 2. The average MSE for six methods with 10% of the 
observations missing for the precipitation data set. 
Iteration SVR Stepwise 

Reg. ANN Stepwise 
Reg.&ANN

Mean 
Subst.

Simple 
Lin. Reg.

1 1.559 2.205 2.384 2.059
2 1.524 1.897 2.160 1.939
3 1.524 1.949 2.219 1.969 4.975 2.508
4 1.524 1.925 2.167 2.066
5 1.524 1.965 2.120 1.905  

 
As the percentage of missing data was set at 20 % 

(Table 3, Fig. 6), the size of the error for mean 
substitution grows again, whereas that for simple 
regression grows at a slower rate.  The iterative 
techniques continue to show that ANN consistently the 



worst, though it continues to perform better than for 
simple regression.  The stepwise regression and the 
stepwise regression followed by ANN gave similar 
results.  As for the previous case, the SVM gave the 
lowest errors with an average mean square of 1.83 in2 
(1.35 in./mo.). 

 
Table 3. The average MSE for six methods with 20% of the 
observations missing for the precipitation data 
set.

Iteration SVR Stepwise 
Reg. ANN Stepwise 

Reg.&ANN
Mean 
Subst.

Simple 
Lin. Reg.

1 1.897 2.481 2.880 2.435
2 1.819 2.240 2.608 2.245
3 1.811 2.287 2.608 2.218 5.410 2.811
4 1.812 2.279 2.548 2.118
5 1.815 2.292 2.581 2.255  

 
As the number of iterations increases, the behavior 

of each of the imputation techniques can be compared.  
All of the iterative imputation methods have a lower 
MSE in the second iteration, compared to the first.  In 
many instances a third iteration leads to a small 
improvement over the second.  Beyond three iterations, 
the techniques show no systematic reduction in MSE. 
 
 

 
Figure 4. Average MSE for six methods for 5 iterations when 
5% of the observations have missing data for the precipitation 
data set. 
 
 

 
Figure 5. Average MSE for six methods for 5 iterations when 
10% of the observations have missing data for the precipitation 
data set. 
 
 

 
Figure 6. Average MSE for six methods for 5 iterations when 
20% of the observations have missing data for the precipitation 
data set. 
 



Table 4 and Figure 7 show the MAE of the 
difference of precipitation variance between the original 
and imputed data sets for each method with three 
different percentages of the observations that have 
missing data. The most obvious result is the deleterious 
effect of casewise deletion at all percentages of missing 
data.  The mean substitution has the second worst 
ability to recreate the original data variances whereas 
the remaining techniques are tightly clustered. 
 
Table 4. The MAE for each method to illustrate the difference 
of variance between the original and imputed data sets using 
the precipitation data set. 
 

Method 5% obs. of 
missing data

10% obs. of 
missing data

20% obs. of 
missing data

SVR 0.005 0.005 0.007
Stepwise Reg. 0.006 0.005 0.008

ANN 0.004 0.005 0.010
Stepwise-ANN 0.006 0.004 0.008
Mean Subst. 0.007 0.008 0.011

Simple Lin. Reg. 0.006 0.006 0.009
Casewise Deletion 0.082 0.124 0.203  

 
 

 
Figure 7. A bar chart illustrating the difference of variance 
between the original and imputed data sets using the 
precipitation data set. The MAE for each method is reported. 
 

The same experiments are applied for the 
temperature data set. Tables 4-6 and Figures 8-10 
illustrate the results for each method with three different 
percentages of the observations that have missing data 
for the temperature data set. For SVR, the best 
parameters used the radial basis function kernel and ε-
insensitive loss function with γ = 0.000003, C = 1000, 
and ε = 0.1.  For ANNs, the training activation and 

network functions for the precipitation data set are also 
used for the temperature data set.  Training stopped 
when 300 epochs is reached. The best neural network 
has 5 hidden nodes. For stepwise regression, the same 
step in and step out p-values as used for the 
precipitation data set are employed. The predictor 
variables used in stepwise regression the temperature 
data set are between 19 and 83. For the method that 
uses both stepwise regression and ANNs, the best 
neural network has 10 hidden nodes and training 
stopped when 700 epochs is reached. 

For 5% missing data, the use of the mean value for 
the same month (Table 5, Fig. 8) resulted in a large 
error (over 3.5 0C2 or almost 1.9 0C for the month).  The 
simple linear regression is somewhat more accurate 
and reduces the error by close to 80%.  Application of 
the iterative results led to a notable further decrease in 
the variance errors (approximately an additional 75% 
decrease in the error).  Again, the SVR led to the 
minimum error in reconstructing the variance field. 
 
Table 5. The average MSE for six methods with 5% of the 
observations missing for the temperature data 
set.

Iteration SVR Stepwise 
Reg. ANN Stepwise 

Reg.&ANN
Mean 
Subst.

Simple 
Lin. Reg.

1 0.144 0.179 0.237 0.179
2 0.142 0.156 0.206 0.164
3 0.140 0.154 0.197 0.169 3.670 0.751
4 0.140 0.159 0.211 0.167
5 0.140 0.159 0.188 0.163  

 
For 10% missing data, the use of the mean value 

for the same month (Table 6, Fig. 9) resulted in a growth 
of error for the substitution (over 3.98 0C2 or almost 2 0C 
for the month).  The simple linear regression results in 
some improvement, reducing the error by over 80%.  
Application of the iterative results led to a further 
decrease in the variance errors (approximately an 
additional 75%).  As in the earlier experiment, the SVR 
led to the minimum error in reconstructing the variance 
field. 
 
Table 6. The average MSE for six methods with 10% of the 
observations missing for the temperature data 
set.

Iteration SVR Stepwise 
Reg. ANN Stepwise 

Reg.&ANN
Mean 
Subst.

Simple 
Lin. Reg.

1 0.155 0.182 0.288 0.207
2 0.148 0.169 0.223 0.178
3 0.147 0.173 0.214 0.177 3.976 0.717
4 0.147 0.173 0.197 0.171
5 0.147 0.178 0.208 0.164  

 
For 20% missing data, the use of the mean value 

for the same month (Table 7, Fig. 10) resulted similar 
error for the substitution (over 3.8 0C2 or almost 2 0C for 
the month).  The simple linear regression gives about 
half the error reduction as the iterated techniques and 
reduces the error by over 80%.  As in both previous 
experiments, the SVR gave the minimum error in the 
variance field reconstruction. 



 
Table 7. The average MSE for six methods with 20% of the 
observations missing for the temperature data set. 
Iteration SVR Stepwise 

Reg. ANN Stepwise 
Reg.&ANN

Mean 
Subst.

Simple 
Lin. Reg.

1 0.180 0.229 0.287 0.230
2 0.169 0.190 0.245 0.200
3 0.165 0.183 0.213 0.200 3.804 0.665
4 0.164 0.187 0.222 0.196
5 0.164 0.194 0.213 0.206  

 

 
Figure 8. Average MSE for six methods for 5 iterations when 
5% of the observations have missing data for the temperature 
data set. 
 
 

 
Figure 9. Average MSE for six methods for 5 iterations when 
10% of the observations have missing data for the temperature 
data set. 

 
 

 
Figure 10. Average MSE for six methods for 5 iterations when 
20% of the observations have missing data for the temperature 
data set. 
 

As the number of iterations increases, the behavior 
of each of the imputation techniques can be compared.  
All of the iterative imputation methods have a lower 
MSE in the second iteration, compared to the first.  In 
many instances a third iteration leads to a small 
improvement over the second.  Beyond three iterations, 
the techniques show no systematic reduction in MSE.  
This behavior for the temperature data was consistent 
with that for the precipitation data. 

In Table 8 and Fig. 11, the MAE of the difference of 
variance between the original and imputed data sets for 
each method with 5%, 10%, and 20% of the 
observations that have missing data using the 
temperature data set are reported. The variance 
analysis for the temperature data show interesting 
results (Table 8).  Casewise deletion causes variance 
errors of over an order of magnitude more than the next 
closet method, mean substitution.  Simple linear 
regression has errors that are larger than the iterated 
techniques.  The results are shown graphically in Fig. 
11.   
 
Table 8. The MAE for each method to illustrate the difference 
of variance between the original and imputed data sets using 
the temperature data set. 

Method 5% obs. of 
missing data

10% obs. of 
missing data

20% obs. of 
missing data

SVR 0.009 0.008 0.009
Stepwise Reg. 0.008 0.008 0.009

ANN 0.006 0.008 0.010
Stepwise-ANN 0.008 0.009 0.011
Mean Subst. 0.045 0.039 0.044

Simple Lin. Reg. 0.017 0.020 0.022
Casewise Deletion 0.232 0.311 1.014  

 



 
Figure 11. A bar chart illustrating the difference of variance 
between the original and imputed data sets using the 
temperature data set. The MAE for each method is reported. 
 

 
6. CONCLUSIONS 
 

Data sets of monthly total precipitation and monthly 
mean temperature are tested to determine the impact of 
removing these data on the mean and variance error.  
Elements are removed from these data matrices 
randomly in increments of 5, 10 and 20%.  Casewise 
deletion, mean substitution, simple regression, and 
imputation, with stepwise linear regression, ANN and 
SVM, are tested to determine how well the techniques 
can reproduce the variance structure and estimate the 
missing values (except for the casewise deletion, which 
can not estimate the missing value). 

Results of extensive experimentation with the 
aforementioned methods provide interesting findings 
and implications. By estimating the missing data and 
then comparing these estimates with the known values, 
the amount of signal that can be recovered is identified. 
In all experiments, the use of casewise deletion causes 
large errors in the variance of the estimates.  The use of 
mean substitution leads to large errors in the mean and 
moderate errors in the variance estimates.  Simple 
linear regression is a minor improvement over use of the 
mean.  The lowest errors are found for the multiple 
imputation methods.  Among the imputation techniques 
tested, SVM is ranked lowest in data error reported.  
Hence, more widespread use of this technique is 
warranted in situations when it is important to obtain 
accurate estimates of missing data. 
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