
8B.7

The THREDDS Data Repository: for Long Term Data
Storage and Access

Anne Wilson, Thomas Baltzer, John Caron
Unidata Program Center, UCAR, Boulder, CO

1 INTRODUCTION

In order to better manage ever increasing
volumes of scientific data, infrastructure in the
form of intelligent data servers is needed.
Large data volumes mean that server-side
subsetting and aggregation are essential
server requirements. But simply being able to
serve data is no longer sufficient. Data must
also be discoverable, queriable, and
browsable. Thus these servers must also
provide a cataloging system and tools to
manage and access metadata.

Data generators and providers want to be able
to publish both transient and archival data to a
reliable and secure location that allows access
to a community of data consumers. These
providers want protection from time
consuming housekeeping tasks such as
locating storage, moving the data, and
updating metadata catalogs. They also want
to be able to easily configure their data space
in a meaningful manner.

Similarly data consumers want to be free from
issues related to locating and acquiring data,
as well as format incompatibility issues. Such
chores are often a time consuming distraction
from the actual task to be performed.
Indeed, such a level of automation is required
in order for the repository to be used by an
automated data generator or consumer, such
as an data processing system that acquires
data for inputs and generates data as outputs.

The Unidata THREDDS Data Repository
(TDR), currently under development, provides
long term data storage with metadata
management support in the form of THREDDS
catalogs. Integrated with the THREDDS Data

*Corresponding author address: Dr. Anne Wilson PO Box
3000 Boulder Colorado, 80307: anne@unidata.ucar.edu

Server (TDS), the two together provide
automated, high level data and metadata
storage and access.

Through use cases provided by two TDR
client projects, this paper discusses TDR
requirements and the functionality designed to
meet them.

2 TDR CLIENT STORIES

There are two projects that are steering design
requirements for the TDR.

2.1 The LEAD Project

Linked Environments for Atmospheric
Discovery (LEAD) is a multi-institutional Large
Information Technology Research (ITR)
project funded by the National Science
Foundation (NSF). The goal of LEAD is to
create a framework based on Grid and web
services to support mesoscale meteorology
research and education via provision of
capabilities such as running a forecast model
over a spatial and temporal domain specified
by the user, data mining for meteorological
phenomena, and dynamic orchestrations that
automatically reconfigure themselves in
response to changing weather. LEAD
accomplishes these tasks via orchestration
software that invokes and manages
component services. (“Workflow” is another
term for “orchestration”.)

LEAD presents unique challenges in
managing and storing large data volumes from
real-time observational systems as well as
data that are dynamically created during the
execution of adaptive workflows.
Furthermore, LEAD users want one stop
shopping to visualize data and store them and
their associated metadata in a location where
they could be made private or be accessed by

others, both individuals as well as services in
the orchestration.

LEAD orchestrations must retrieve data
required for their use. They also generate
intermediate and final data products to be
stored in the user’s space. An orchestration
can also acquire and generate metadata for
these generated products, such as user
information (including security tokens such as
certificates or encoded passwords), data
format, data size, provenance information, etc.

LEAD metadata is organized around individual
users, whose space is structured as projects
that contain experiments.

2.2 The STORM Case Study Archive

The Unidata STORM Case Study Archive is a
repository for case studies. This resource will
provide community access to case studies
compiled and annotated by case study
authors. The archive will store data,
metadata, and other resources such as notes,
links to other resources, IDV bundles (a
collection of data references and their
rendering created by the Unidata Integrated
Data View or IDV), etc.

Case study authors need to be able to move
data into the repository, provide metadata, and
ensure that the resources placed in the
repository, both data and metadata, are
accessible to the community they are intended
to serve. They will need to be able to update
the metadata. They will want to be able to
organize resources in the repository, moving
datasets and associated metadata around in
the case study hierarchy. For STORM, the
metadata is structured around case studies,
such as “Katrina” and “Rita”. Multiple case
study authors may be authorized to add or
change information in a case study.

Users of the case study repository will be able
to access, visualize and acquire these
resources in useable formats.

2.3 Commonalities

Both of these projects require support in the
areas of:

• Long term data and metadata storage

• Data movement into and out of the
repository

• Metadata generation and
management

• High level data access functionality,
such as server side subsetting

3 The THREDDS Data Server (TDS)

The Unidata THREDDS Data Server
addresses several of these concerns. The
TDS is designed to serve a moving window of
recent scientific data and currently does so via
the protocols http, OPeNDAP, and WCS for
gridded data. It can provide the data in the
format in which it is stored on the disk, and is
working towards generating netCDF files from
a variety of data formats through the Unidata
Common Data Model (CDM). (The list of
CDM supported data formats currently
includes: NetCDF, level II and level III radar,
Grib, GINI, and HDF5.)

Also, the TDS supports metadata maintained
in the form of a hierarchy of catalogs that
contain information such as data format (e.g.
NetCDF, GRIB, HDF5, etc.), type (e.g. grid,
image, point, radial, etc.), data size, spatial
and temporal coverages, variables (if
applicable), descriptions, creators, publishers,
rights, etc.

Although Unidata does maintain some data
archives, an important TDS goal is for users to
easily implement and maintain their own data
server. For this reason, the TDS is an
integrated, easy to install package consisting
of THREDDS cataloging software, an
OPeNDAP server, a WCS server, and other
supporting software.

4 The THREDDS Data Repository (TDR)

While the TDS was designed around serving
transitory data, the TDR is intended to fill in
the long term storage aspect of the TDS. It
provides data movement into a long term
repository and ensures data access from the
repository through integration with a co-
residing TDS. In addition to providing storage
for the data, it supports incorporation of
preexisting metadata and generation of new
metadata into a metadata hierarchy that, in
later versions, will be editable through a
catalog and metadata management interface.

Indeed, the basis of the TDR is metadata
management. The handle to the actual data
can be viewed as simply another metadata
element.

Information needed by the TDR to put data
into the repository includes:

• information about a user, used in
authentication, authorization, and
elsewhere,

• a reference to the data to be stored,
either a local file or a URL,

• any preexisting metadata,
• and, a “logical name”, such as

“Katrina/data/radar/level2”, used to
position the metadata in the metadata
hierarchy.

The successful completion of a request to put
data into the repository returns a unique ID, a
non-semantic sequence of characters that is a
handle to the data. Either this ID, or the
original user information and logical name can
be used to retrieve the data.

The use cases dictate that the TDR provide
two types of interfaces. One is via a web form
where users can enter information to update
the repository. The other is via programmatic
calls from one web service to another. The
TDR is implemented as a Java servlet, which
meets both of these goals.

For the STORM project, case study authors
are provided with a web form that allows users
to enter a URL or browse for a local file to be a
data source. Also, the user can enter
metadata such as the data type and format if it
is known. Users also provide a project name
and logical name for the data being stored via
this form. The programmatic interface
provides the same information via Java
networked I/O.

Once the TDR receives a request either via
the web interface or programmatically it
performs the following sequence of actions:

1. Locate storage for the data.
2. Generate a unique ID for the data.
3. Copy the data to the storage.
4. Generate additional metadata.
5. Incorporate the metadata into the

existing metadata hierarchy.

We will examine each of these tasks
individually. These different jobs are each

performed by respective specialized task
managers: the Storage Locater, the Unique ID
Generator, the Data Mover, the Metadata
Generator, and the Cataloger.

4.1 Locate Storage

Locating storage for the data entails knowing
where there is space available to put the data.
Thus the Storage Locater must track space
availability. It is the job of the Storage Locater
to ensure that the user is authorized to use a
space and that by doing so they will not violate
any space management policies. Depending
on authorizations, space available could
include a variety of storage devices, such as
space on a mass storage device.

4.2 Generate a Unique ID

This ID will be used as a handle to the data. It
must be guaranteed to be unique within the
domain in which it exists. For the TDR that is
serving both LEAD and the STORM Case
Study Archive, the ID must be unique within all
the catalogs served by the TDS. (Algorithms
exist that generate IDs with such an extremely
low likelihood for duplication that they can be
considered unique.) The Unique ID Generator
performs this task.

4.3 Copy the data to the storage

The Data Mover is responsible for copying the
data to the target destination. The Data Mover
makes decisions about how to move the data
based in part on the protocol portion of the
URL of the source file. Http service is
assumed to be available at the data source,
but if the protocol indicates a better option,
such as gridftp, that will be tried.

4.4 Generate Additional Metadata

New metadata to be generated includes
recording where the data now physically
resides. (This mapping from unique ID to
physical location could get complex if
replication was involved. In such a case name
mapping could be achieved via a separate
Name Resolution object or service.)

Perhaps the most important additional
metadata generated is the creation of access
URLs for the data. In order to create these an
attempt must be made to know the data

format. The Metadata Generator is currently
using the following logic to determine how the
data can be served:
 1) All files can be served via http.
 2) If there is a gridftp server present,
all files can be served via gridftp.
 3) If the file can be successfully
opened by the Common Data Model file
accessor, then it can be served via
OPeNDAP.
 4) If 3 above is true and the file is
known to be a grid, then it can be served via
WCS.

4.5 Incorporate the metadata into the

Metadata Hierarchy

The TDR updates the appropriate catalogs
with the new metadata, which involves the
creation of new datasets in the existing
catalogs and may also involve the creation of
new catalogs. The logical name is used to
determine where in the metadata hierarchy to
place the new dataset. Reflecting the logical
path may involve the generation of nested
datasets.

The TDR then signals the TDS to reread the
catalogs in order to incorporate the changes.
Now the data and metadata can be served via
the TDS.

5 FUTURE DIRECTIONS

A prototype implementation of the TDR is
available on the Unidata LEAD test bed. It is
currently handling input for both clients.

The next important functionality to be added is
to support the handling of a collection of files
in the form of a compressed zip file. It is
assumed that these files are of the same data
type so that a single chunk of metadata can be
applied to the entire set. Also, general
repository “editing” capabilities need to be
provided, such as the ability to add and edit
metadata and remove data and its associated
metadata.

6 ACKNOWLEDGEMENTS

 LEAD is a Large Information Technology
Research (ITR) Grant funded by the National
Science Foundation under the following
Cooperative Agreements: ATM-0331594

(University of Oklahoma), ATM-0331591
(Colorado State University), ATM-0331574
(Millersville University), ATM-0331480
(Indiana University), ATM-0331579 (University
of Alabama in Huntsville), ATM03-31586
(Howard University), ATM-0331587 (University
Corporation for Atmospheric Research), and
ATM-0331578 (University of Illinois at Urbana-
Champaign, with a sub-contract to the
University of North Carolina).

7 REFERENCES

Droegemeier, K.K. and Co-Authors, 2005:
Service-oriented environments in research
and education for dynamically interacting with
mesoscale weather. Computing in
Science and Engineering, 7, 12-29.

Droegemeier, K. K. and Co-Authors, 2005:
Linked environments for atmospheric
discovery (LEAD): Architecture, technology
roadmap and deployment strategy. Preprints,
21st Conf. on Interactive Info. Processing
Systems for Meteorology, Oceanography, and
Hydrology, San Diego, CA, Amer. Meteor.
Soc.

Droegemeier, K.K. and Co-Authors, 2005:
Service-oriented environments in research
and education for dynamically interacting with
mesoscale weather. Computing in Science
and Engineering, 7, 12-29.

Murray, D., J. McWhirter, S. Wier, and S.
Emmerson, 2003: The Integrated Data
Viewer—a web-enabled application for
scientific analysis and visualization. Preprints,
19th Conf. On Integrated Information and
Processing, 8-13 February, Long Beach, CA,
Amer. Meteor. Soc.

THREDDS Catalog Specification
http://www.unidata.ucar.edu/projects/THREDDS/
tech/catalog/InvCatalogSpec.html

OPeNDAP Project
http://www.opendap.org/

The Integrated Data Viewer (IDV)
http://www.unidata.ucar.edu/software/i
dv/

The Common Data Model (CDM)
http://www.unidata.ucar.edu/software/netcdf/C
DM/index.html

The THREDDS Data Server (TDS)
http://www.unidata.ucar.edu/projects/THREDD
S/tech/#TDS

