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1. INTRODUCTION  
 
 The Federal Highway Administration 
(FHWA) has had a focused program to 
improve the integration of weather decision 
support systems into surface transportation 
operations since 1999.  Clarus (Latin for 
clear) is the FHWA’s most recent surface 
transportation weather initiative.  The Clarus 
concept is to develop and demonstrate an 
integrated surface transportation weather 
observing, forecasting and data management 
system (Pisano, 2006a).  As part of this effort, 
the FHWA is also promoting research into 
methods for applying new and existing sensor 
or probe data.  These efforts include utilizing 
new in-vehicle sensor data that will be part of 
the vehicle infrastructure initiative (VII) 
(Pisano, 2006b), and finding innovative ways 
to use existing camera imagery.  MIT Lincoln 
Laboratory (MIT/LL) was tasked to evaluate 
the usefulness of camera imagery for sensing 
ambient and road weather conditions and the 
feasibility for creating a portable visibility 
estimation algorithm.   

This paper gives a general background on 
the current utilization of camera imagery, 
including past and ongoing research of 
automated weather/condition algorithms.  This 
is followed by a description of the MIT/LL 
camera test site, the analyses performed and 
the resultant prototype visibility estimation 
algorithm.  In addition, the paper details 
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application of the prototype algorithm to 
existing state DOT cameras in Utah.  The 
final section discusses the future possibilities 
of camera-based weather and road condition 
algorithms. 
 
2. BACKGROUND 
 
 Cameras have been used for decades to 
remotely monitor traffic and to protect life and 
property.  The deployment and utilization of 
cameras has expanded dramatically in the 
last decade with support from the Department 
of Transportation for traffic and emergency 
management, “511” services, and monitoring 
of Intelligent Transportation Systems (ITS).  In 
addition, the Department of Homeland 
Security has funded camera deployments in 
support of threat surveillance and emergency 
management operations.  Camera sensors 
are particularly important for surface 
transportation applications because they 
directly observe the road/rail environment.  
Richard Cressey, a former counterterrorism 
official for the US Government, was quoted 
recently stating that “there are about 30 
million video surveillance cameras in the 
United States shooting about four billion 
hours of footage every week” (Johnson, 
2006).  Four billion hours of imagery: that is 
like watching every minute of every day of 
your life and the lives of all your direct 
relatives up to and including your great-great-
great-great grandparents, all in one week.  
And that number is growing every day. 
 Only a fraction of the surveillance 
cameras are designed to observe 
transportation assets.  But, even if you just 
consider State Department of Transportation 
(DOT) and Traffic Management Center (TMC) 
camera assets there are over 10,000 
cameras continuously monitoring major 
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roadways in the US (USDOT, 2004, and 
surveys done in support of this research).  
When you have manual observers of 
transportation assets, the observations are 
generally focused on the primary tasks of 
traffic management or security.  Ancillary 
information, such as weather or road 
conditions, are not routinely reported or 
archived.  Clearly, manual observation of all 
video footage is impossible, and more and 
more information will be lost unless 
automated algorithms are developed to 
extract and report this valuable information. 
 
2.1 Related research 
 

Recently, a number of companies have 
stepped forward to examine ways in which 
automated image processing might assist 
security and safety officials.  Most of the 
research and private sector involvement has 
focused on security surveillance: identifying 
terrorists, finding bombs, or other security 
concerns.  In the area of traffic management a 
host of companies and associated research 
offer automated license plate detection for 
automated toll-way and red light enforcement, 
and a few companies have begun to use 
video for traffic incident and flow monitoring.  
However, the area of weather and road 
condition analysis from video imagery is still 
limited to research organizations.   

Camera-based weather research has 
largely focused on road condition, driver-level 
visibility measurement and fog detection.  The 
FHWA’s successful project to create a 
Maintenance Decision Support System 
(MDSS) for winter maintenance operations 
cited the need for better road condition 
information to provide enhanced feedback 
into the system (Pisano, 2004).  A wide 
variety of international researchers have been 
at the forefront of using camera imagery for 
meteorological analysis.  The Japanese 
Meteorological Institute examined overall 
image characteristics for gauging road 
surface conditions during winter storms 
(Yamada, 2001).  Similar road condition 
studies using neural networks and IR 
cameras have been performed by the 
Swedish National Road Administration 

(SNRA, 2002).  The SNRA prototype is 
currently being evaluated throughout Sweden. 

Previous MIT/LL research for the 
Department of Defense (DoD) (Clark, 2000) 
has shown that statistical edge analysis of 
camera imagery could be used to estimate 
the meteorological visibility (defined below) of 
a region.  A follow on study of the DoD work 
illustrated that an automated algorithm for 
visibility using standard camera imagery was 
plausible (Hallowell, 2005).  Recent studies 
by the Hokkaido Regional Development 
Bureau have shown that manual observers 
are able to consistently perceive the 
measured visibility (very poor, poor, fair, and 
clear) by a single camera image of a road 
scene (Nagata, et.al, 2006).   

The Nagata research confirms that an 
automated algorithm that mimics the cues 
used by human observers should yield high-
quality results.  The University of Minnesota 
has performed successful visibility tests 
utilizing fixed distance targets and defined a 
visibility index called Relative Visibility to 
score such efforts (Kwon, 2004).  Hagiwara 
(2002, 2004) performed visualization 
experiments in artificial fog in initial research 
and then utilized sub-images to measure 
image contrast.  Algorithm results for the 
weighted intensity power spectra (WIPS) 
compared favorably to manually estimates of 
the test image’s visibility.  Finally, French 
researchers have used on-board cameras in 
vehicles to estimate visibility conditions 
(Hautiere, 2005).  The work presented here is 
complimentary in nature to these other 
studies. 
 
3. RESEARCH GOALS 
 

The goal of this Clarus-sponsored 
research is to develop an automated weather 
variable extraction system that utilizes 
existing visible spectrum camera technology 
to estimate meteorological visibility for surface 
transportation.  The goal focuses on visible 
imagery because the vast majority of cameras 
currently deployed as DOT sensors are 
visible-only cameras.  State DOTs are 
primarily concerned when visibilities drop 
below 1 km and more critically, below 100 
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meters. However, the system should detect all 
ranges of visibility as the rate of change in 
visibility will be a key factor in any eventual 
visibility forecast system.  Given the large 
number of camera assets, the algorithm 
should be developed in such a way as to 
maximize the ease and speed with which it 
can be deployed.  As such, the user should 
only be required to enter rudimentary location 
(latitude, longitude, elevation) and viewing 
information (minimum/maximum viewing 
distance).  Daytime imagery is the primary 
focus, as nighttime imagery requires more 
complicated analyses of ambient or fixed 
point source lighting.  Finally, a secondary 
goal is to compare the visibility as seen by an 
elevated camera to that of a winter 
maintenance operator driving on a road.  Zero 
visibility conditions are an extreme hazard for 
winter maintenance crews working to clear 
roads during winter storms.  

 
4. MIT/LL CAMERA TEST SITE 
 

Two cameras were installed at Hanscom 
Air Force Base (HAFB is co-located with 
MIT/LL in Lexington, MA) in support of 
algorithm development.  COHU-3960 visible 
imagery cameras (Figure 1) were utilized in 
this project; this camera is a high-resolution 
digital camera providing full color imagery with 
full remote pan, tilt and zoom capabilities.  
Many State DOT cameras are installed on 
light poles or in other elevated positions. 

 
Therefore, one camera was installed on 

top of the Lincoln Lab flight facility which has 
an elevation of approximately 30 meters 
(Figure 2, FF1).  A second camera was 
installed at the base of the facility on a small 
tower at a height of 5 meters (Figure 2, FF2). 
This low level camera had two purposes: (1) 
zero visibility conditions in the truck cab are a 
major concern for snow plow operators and 
this camera was a surrogate for conditions as 
seen from the cab, (2) some DOT cameras 
are mounted on ground level stations or on 
bridge overpasses; processing the algorithm 
on the low-level camera would allow us to 
discover differences in how the visibility 
algorithm might work at varying heights. 

 
 

Meteorological visibility is defined in 
several ways in the American 
Meteorological Society’s (AMS) Glossary 
of Meteorology (AMS, 2005).  The general 
definition is the furthest distance that a 
manual observer can see a defined 
reference object with the naked eye in a 
given direction.  The manual observation 
reported is the prevailing visibility which 
refers to the median visibility gathered 
from around the horizon.  Automated 
visibility sensors used on Automated 
Surface Observing Systems (ASOS) are 
designed to measure the prevailing 
visibility by assuming that the conditions 
between the sensor’s receiver and 
transmitter represent the nominal 
conditions around the horizon.  Since the 
actual visibility may not be homogeneous 
over the entire domain, it is quite possible 
that the visibility estimate of the laser 
sensor could differ from that of a manual 
observer.  Similarly, visibility measured by 
a fixed camera and viewing angle may not 
be the same as either the manual or laser 
sensor.  The camera will capture prevailing 
visibility in the direction the camera is 
pointed; this is called directional visibility 
(akin to what the Glossary defines as 
“sector visibility”).  Directional visibility may 
differ significantly from the local laser 
sensor when the contaminant causing the 
visibility reduction is not present at the 
point of measurement.  These situations 
might occur in the case of approaching 
rain/snow showers or cloud decks, 
growing or decaying fog banks, and other 
more localized atmospheric phenomena.
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Figure 1: COHU 3960 Series environmental 
camera. 
 

 
Figure 2: Field site tiered cameras mounted at 
the MIT/LL flight facility on Hansom Air Force 
Base, Lexington, MA 

 
Both cameras were positioned to look 

west over a series of buildings and access 
roads with a low ridge line in the near 
distance.  Figure 3 (a) and (b) show 
representative views of the upper and lower 
camera views, respectively.  Camera images 
were collected at one-minute intervals starting 
with the upper camera on February 10th, 2006 
and the lower camera on March 16th, 2006.  
The images were captured at a resolution of 
320x240 pixels.  While below the maximum 
resolution of this camera, the reduced 
resolution is typical of State DOT camera 
imagery.  Camera images continue to be 
collected to this day; however, the images 
used for analysis in this paper ended on May 
31st, 2006. 

 

 

 
Figure 3: Example clear day images from the 
MIT/LL field site cameras; elevated, roof-top 
camera (a) on the top and low-level camera 
view on the bottom (b). 
 

(a) 

(b) 
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4.1 Meteorological Data 
 

HAFB has an Air Force maintained ASOS 
within one kilometer of the test cameras.  An 
example ASOS station is shown in Figure 4.  
Consequently, weather data were gathered 
from the ASOS sensor including 
measurements of temperature, dew point, 
pressure, wind speed and direction and 
visibility.  Of key interest for verification in this 
study were visibility measurements gathered 
using the ASOS’ Vaisala FD12P laser to 
estimate visibility by analyzing the scatter of 
the laser beam.  These data were also 
gathered at one-minute intervals over the 
course of the study.  For truthing and tuning 
purposes, only hourly observations (as 
reported to the NWS) were used.  Limiting the 
tuning data set made it practical for a manual 
observer to compare the ASOS reported 
visibility to the image being analyzed.  
 

 
Figure 4: Example ASOS station 
configuration, the FD12P laser visibility 
sensor is shown at the top of the mounting 
pole. 
 

The FD12P laser makes for an excellent 
automated method of generating standard 
meteorological visibility estimates.  However, 
the FD12P laser produces an estimate of the 
visibility using a small spatial sample, as the 
distance from the laser transmitter to the 
receiver is only three meters.  As mentioned 
above, the localized estimation of visibility 
from the ASOS may sometimes be different 
from the visibility as seen in a camera image 

but nevertheless be consistent with prevailing 
conditions.  Therefore, when observations 
and model estimates were significantly 
different (e.g. ASOS reported ten miles and 
the model predicted one), the image was 
manually verified by an observer. In the cases 
where the ASOS was found to be in error a 
correction was made to the truth.  Less than 
3% of the more than 3000 ASOS 
observations were corrected, but those that 
were represented gross errors by the ASOS.  
There were two main reasons for corrections: 
(1) the delayed response of the ten-minute 
time-averaged ASOS report to rapidly 
improving or decaying visibility conditions 
and, (2) distant weather viewed by the 
camera which was not yet impacting the 
ASOS.  However, the correction rate likely 
underestimates the number of corrections that 
might have been made because only gross 
differences in truth and model estimate were 
investigated.  In addition, the maximum 
visibility range reported by the ASOS is ten 
miles (16.1 km).  However, many camera 
images can detect features that are much 
further than the ASOS reported distance.  
This difference certainly had an impact on the 
algorithm’s ability to estimate visibilities of 
distances over ten miles.  However, a nominal 
clear day visibility of ten miles is more than 
sufficient for most meteorological 
applications. 
 
5. MIT/LL CAMERA ALGORITHM 
 

The MIT/LL visibility algorithm examines 
the natural edges within the image (the 
horizon, tree lines, roadways, permanent 
buildings, etc) and performs a comparison of 
each image with a historical composite image.  
Currently, the system ingests only grey-scale 
imagery (color images are converted to grey-
scale on ingest).  The composite is simply the 
average of all daylight clear-day imagery over 
a fixed time period (up to 30 days).  As shown 
in the algorithm flow diagram (Figure 5), a 
camera image is captured and then an edge 
extraction technique is applied.  Both the raw 
image and the edge detections are sent to the 
composite image generator where the images 
are checked to determine if enough edges are 
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visible for this to be a clear daytime image.  If 
the time period is acceptable then the raw and 
edge images are added to their respective 
composites.  The system is flexible in that it 
allows access to the overall composite of the 
raw or edge detection images as well as the 
same images broken down by the hour of the 
day. 

The raw edge detection is also sent to the 
normalized edge extraction process where a 
comparison is done between the current 
image and the composite image.  This 
process allows the system to focus only on 
the edges that might be expected on an 
average clear day.  By averaging, transient 
edges in the image such as cars, people, etc 
are removed.  Finally, a set of image and 
edge characteristics are calculated for the 
current image and, in turn, compared to the 
tuned visibility curves for each detector.  The 
detector estimations are then averaged 
together to provide the estimated visibility for 
the current image. 

 
5.1 Overall image analysis vs. “targets” 
 

When studying how people perceive 
visibility, researchers will often utilize targets 
of fixed shapes and sizes. For example, Kwon 
(2004) set up a series of fixed sign targets at 
various distances.  Visibility was then 
determined by asking users to select the 

furthest target that they could see clearly.  
This research was prototyped by having a 
State DOT deploy signage at fixed distances 
from camera locations.  An image analysis 
algorithm was then employed to detect those 
specific targets within the image.  However, 
there are two problems with deploying such a 
system on a wide scale.  First, deploying 
visibility markers at every camera location 
would become expensive and time-
consuming.  And, second, making such an 
algorithm robust to be able to recover from 
sign blockage or damage (if a sign falls down 
or is removed) would be challenging.  It may 
be better to utilize the entire image in the 
analysis. 

One of the primary goals of the 
envisioned algorithm is that it be easily 
deployed in a variety of environments with 
little manual site setup.  As such, it is better 
for the algorithm to rely on overall features in 
a subject image rather than explicit 
knowledge of the distance to various objects.  
Overall image analysis is based on using 
feature detectors that focus on characteristics 
of the full image along with edge features 
throughout the entire image.  It is expected 
that by including the full range of imagery that 
the resultant algorithm will be more stable 
than a fixed target system.  For these 
reasons, overall image analysis was utilized 
for the Clarus research effort.  
 

 
Figure 5: Algorithm flow diagram for the MIT/LL automated camera visibility algorithm.
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5.2 Edge detections 
 

Edges are the key to visibility estimation.  
A manual observer utilizes edges, or 
contrasts between one object and the 
background, to estimate which objects can be 
seen at various distances, as he looks out 
over the landscape.  Similarly, the automated 
algorithm starts by surveying the scene with 
an edge detection algorithm. The method 
chosen for this analysis is a ‘Sobel’ algorithm 
(Parker, 1997), although other edge detection 
algorithms were also experimented with and 
appeared equivalent.  The images in Figure 6 
were taken overlooking a radar installation at 
HAFB. The top portion of Figure 6 depicts a 
clear day image and its associated edge 
detection image.  Edges both near and far 
can be seen quite clearly in this high visibility 
case.  The bottom portion of Figure 6 shows 
low visibility conditions with laser-measured 
visibilities of approximately 100 meters.  
Correspondingly, the furthest edges that can 
be seen are those related to the radar tower 
sitting just over 60 meters from the camera 
position. 
 
5.3 Composite generation and usage 
 

The composite generator is designed to 
create a running average of the most recent 
clear images and edges ingested into the 
system.  The composite can be generated, 
stored and utilized in a variety of ways.  
Initially, the algorithm was designed to create 
the composite by averaging each edge 
detection image; however, it was discovered 
that the composite edge was cleaner and 
more precise if the raw image was used to 
create the composite.  Each time the 
algorithm called for a composite edge 
comparison, the edges would be generated in 
real-time from the raw composite image.  
Initially, the reference composite was 
generated in real-time, but removing low 
visibility or bad images from the composite in 
real-time is challenging.  The algorithm 
verifies that a significant number of edges are 
in the image (as a percentage of the expected 
edges), but if the camera were to move or 
was overwhelmed with transient edges (the 

former being a formidable challenge in the 
DOT images discussed later) then the 
composite would become corrupted with 
undesirable images and edges.  In practice, 
the composite was generated offline with prior 
knowledge that the images selected were 
clear.  In fact, it was found that composite 
image generation required relatively few 
images for it to become satisfactory for the 
system.  An 8-hour day of clear images was 
comparable to a month’s worth of daytime 
imagery when generating a composite. 
 

 
Figure 6: Edge extracted images for an 
example Hanscom AFB camera from a clear 
(>40km visibility) day on the top, and a low 
visibility (<100 meter) day on the bottom. 
 

Further improvements were made by 
creating composites broken down by hour of 
the day instead of averaging over all daylight 
hours.  Shading and light reflections can 
cause significant shifts in the edges found 
within an image and obviously changes in sun 
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angle impact both.  The analysis presented in 
the results section reflects the implementation 
of a pre-calculated composite averaged over 
all daylight hours.  Results improve a few 
percentage points when an hour-by-hour 
composite is utilized. 
 
5.4 Normalized edge extraction 
 

A clear image contains a full set of 
“expected” edges; these are the strong edges 
associated with buildings, trees, the horizon, 
roads, etc.  As visibility decreases, fewer and 
fewer expected images are visible, and the 
loss of these edges occurs from the furthest 
edge to the closest as visibility approaches 
zero.  Determining the expected edges is 
accomplished by maintaining a composite 
image as discussed above.  In addition, 
constant but weak edges are also removed 
from the composite image leaving only high 
signal edges that should be found in any clear 
image.  In each image, of course, there are 
“unexpected” edges; these are edges 
associated with traffic, dust/water on the 
camera lens, snow piles, and other varying 
phenomena.  Figure 7 illustrates the concept 
of separating expected and unexpected 
edges within the system.  Composite edges 

are shown in the upper left: a building-shaped 
edge near the bottom with an average 
weighting of 0.8 (on a hypothetical scale of 
0.0-1.0 edge strength, with 1.0 being a strong 
edge) and a horizon edge with an average 
weighting of 0.5.  Weaker edges (below some 
threshold, in this example ‘0.5’) are removed 
from the composite image.  The current 
edges in the lower left represent the edges 
from an incoming image.  In addition to the 
“expected” edges seen in the composite 
image, there are “unexpected” edges from 
transient objects (in this case rain drops on 
the camera shield).  Expected edges are 
extracted from the current edge field, by 
finding matching edges within the composite 
edge field.  The relative strength or weakness 
of expected edges as compared to the 
composite field is directly proportional to the 
reduction in visibility.  Unexpected edges are 
strong edges (>0.5) that are not associated 
with a corresponding composite edge.  This 
illustration is conceptual; the system 
examines each pixel within an image to 
determine its edge strength and while those 
strong pixels will make lines similar to the 
ones shown, the signal strength may vary 
significantly. 
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Figure 7: Illustration of edge analysis to separate strong, long-term “expected” edges from 
strong, but transient “unexpected” edges. 
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5.5 Calculating and correlating estimators 
 

The algorithm uses fuzzy logic 
integration to determine a consensus 
estimate of the visibility in the image.  
Initially, a wide set of potential estimators 
was calculated, ranging from simple sums 
of the image pixel strengths to Fast-Fourier 
Transforms (FFT) of the normalized 
expected edges.  Table 1 lists the 22 
estimators examined along with a brief 
definition of the statistic they represent.  The 

image magnitude is calculated by 
performing an FFT and then summing the 
absolute value of all pixels in the image.  
This summation provides a single measure 
of the relative frequency amplitudes in the 
input and composite image. Typical low 
visibility images, for example those caused 
by fog, tend to wash out high frequency 
edges and therefore yield lower overall 
magnitudes than images on high visibility 
days.

 
Table 1.  Estimator descriptions for visibility algorithm 

Estimator name Description 
MeanImage The mean grey-scale value of the entire image. 
StdImage The standard deviation of all grey-scale values in the image. 
MagImage The magnitude of all grey-scale values in the image. 
MeanEdge The mean edge strength value of all edges within the image. 
StdEdge The standard deviation of all edge strength values within the image. 
MagEdge The magnitude of all edge strength value of all edges within the image. 

MaskedMeanEdge The mean edge strength value for all edges within the current image that 
match expected edges that are in the composite edge image. 

MaskedStdEdge 
The standard deviation of all edge strength values for all edges within 
the current image that match expected edges that are in the composite 
edge image. 

MaskedMagEdge The magnitude of edge strength values for all edges within the current 
image that match expected edges that are in the composite edge image. 

ExMeanEdge The mean edge strength value of all unexpected edges within the 
current image. 

ExStdEdge The standard deviation of all unexpected edges within the current image.
ExMagEdge The magnitude of all unexpected edges within the current image. 

MissMeanEdge The mean edge strength value for all expected edges in the composite 
image that are missing from the current image.  

MissStdEdge The standard deviation of edge strength value for all expected edges in 
the composite image that are missing from the current image. 

MissMagEdge The magnitude of the edge strength values for all expected edges in the 
composite image that are missing from the current image. 

DiffMeanEdge The mean of all edge strength differences between the composite and 
the current image for all composite edges. 

DiffStdEdge The standard deviation of all edge strength differences between the 
composite and the current image for all composite edges. 

DiffMagEdge The magnitude of all edge strength difference between the composite 
and the current image for all composite edges.. 

RatioMedianEdge The median of all edge strength ratios (composite over current image) 
for all composite edges. 

RatioMeanEdge The mean of all edge strength ratios (composite over current image) for 
all composite edges. 

RatioStdEdge The standard deviation of all edge strength ratios (composite over 
current image) for all composite edges. 

RatioMagEdge The magnitude of all edge strength ratios (composite over current 
image) for all composite edges. 
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Each potential detector was calculated 
for each image and then the full set of 
calculated values was correlated against the 
hourly ASOS visibility measurement 
(corrected as noted above).  Figures 8 and 
9 show two examples of estimator 
correlations.  Figure 8 shows the 
RatioMedianEdge estimator and Figure 9 
shows the MissMeanEdge estimator.  The 
scoring curves used to map the estimator 
value to the visibility are also shown as solid 
lines.  There were a total of 17 estimators 
that were of sufficient quality to be 
incorporated into the visibility estimates for 
the roof-level camera. 

 

 
Figure 8: RatioMedianEdge vs. ASOS 
Visibility for roof-level camera estimator.  
The solid blue line represents the scoring 
function used to convert RatioMedianEdge 
values to visibility. 
 

 
Figure 9: MissMeanEdge vs. ASOS Visibility 
for roof-level camera visibility estimator.  
The solid magenta line represents the 
scoring function used to convert 
MissMeanEdge values to visibility.  

It would be ideal if the same set of 
estimators could be used to predict visibility 
from any camera or viewing angle. 
However, attempting to simply apply the 
same detectors as the roof-level camera to 
the road-level camera imagery resulted in 
extremely poor estimates of visibility. So, 
each camera site was allowed to have its 
own optimized set of detectors, weights and 
curves. Attempts to use an overall 
optimization for both cameras were also 
unsuccessful and resulted in significantly 
poorer individual results.   
 
6. TEST SITE ALGORITHM RESULTS 
 

Algorithm results for the roof-level 
camera are shown in Figure 10.  The data 
set used was the same as that used to 
optimize the algorithm scoring functions.  
Data was scored for all camera images that 
were gathered within two minutes of the 
ASOS observation (therefore there may be 
multiple images for each ASOS 
observation).  Overall, the algorithm 
performed extremely well on the 3114 
camera images verified.  The calculated 
Critical Success Index (CSI) over all ranges 
was 78% with a standard deviation between 
observed and predicted visibility of +/- 1.2 
miles.  But, images with very low visibilities 
had a significantly lower CSI of just 49% 
(primarily due to the high probability of false 
alarms when the algorithm estimated a <1 
mile visibility) and a standard deviation of 
+/- 0.77 miles.  Testing on an independent 
data set of roughly 1000 camera images for 
one month following the optimization of data 
yielded only a slightly lower overall CSI of 
72%.  

The road-level camera, however, had 
significantly poorer results on roughly the 
same data set (see Figure 11).  The overall 
CSI value was just 57% with a standard 
deviation between observed and predicted 
visibilities of +/- 3.1 miles.  In addition 
almost none of the ASOS visibilities below 1 
mile were estimated correctly.  The road-
level camera was almost incapable of 
distinguishing between edges at different 
ranges as the low incidence angle of the 
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camera to the ground tended to blur all the 
edges together.  This result strongly 
indicates that the height and angle of the 
camera are extremely important to algorithm 
performance.  

 

 
Figure 10: Visibility algorithm results for the 
MIT/LL roof mounted camera.  
 

 
Figure 11: Visibility algorithm results for the 
MIT/LL road-level camera. 
 
 
 
 

7. APPLICATION TO STATE DOT CAMERAS 
 

Camera data were downloaded for 
several cameras from the Utah 
Commuterlink traveler information site 
(www.utahcommuterlink.com) starting on 
January 10th, 2006 and ending for this 
analysis on June 30th, 2006. Images were 
collected every 10 minutes, although the 
update rate of each camera varied from 10 
to 20 minutes between cameras. Weather 
data, as with the MIT/LL cameras, were 
gathered from the standard hourly NWS 
ASOS station (the additional one-minute 
ASOS data were not available for this 
dataset).  Two of the downloaded camera 
images are shown annotated with key 
features and distances in Figures 12 and 
13. 
 

 
Figure 12: Salt Lake City, Utah camera 
number 48 located at I-80 and 3400W 
Street. Key edges within the image are 
identified; the image shown is the nominal 
operating image looking west. 
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Figure 13: Salt Lake City, Utah camera 
number 56 located at I-80 and 700E Street. 
Key edges within the image are identified 
and annotated with the distance of each 
feature.  The image shown is the nominal 
operating image looking west. 
 
7.1 State DOT algorithm results  
 

The extension of the algorithm 
methodology to additional existing DOT 
cameras in Utah was challenging.  There 
were three main obstacles in analyzing the 
DOT cameras: (1) a lack of a homing 
setting, (2) random changes in camera 
views, sometimes for extended periods of 
time, and (3) the camera was incapable of 
reporting back its pan, tilt, and zoom 
settings for automated processing.   

Although the camera images shown in 
the figures are the nominal views for each 
camera, there was no pre-set homing 
setting that brought the camera back to its 
base position and setting.  So, if the camera 
was moved to view other areas and then 
returned to the nominal view the image 
would often be slightly shifted or 
(un)zoomed. This reset error often resulted 
in the composite imagery becoming blurry 
as the edges became misaligned.  To 

alleviate this problem an image registration 
process was added to the algorithm.  Each 
incoming edge image is correlated to the 
expected composite image edges, and 
shifted up to 15 pixels to compensate (this 
had the adverse affect of reducing the 
overall image size that could be processed).  
If the camera was shifted to an entirely 
different view, the algorithm would ignore it 
and wait for the next acceptable image.  

Algorithm results for Camera 48 are 
shown in Figure 14.  The data set used was 
the same as that used to optimize the 
algorithm scoring functions.  Data were 
scored for all camera images that were 
gathered within ten minutes of the ASOS 
observation.  Overall the algorithm 
performed with a calculated CSI over all 
ranges of 61% with a standard deviation 
between observed and predicted visibility of 
+/- 2.3 miles.  Images with very low 
visibilities also had a CSI of 61% and a 
standard deviation of +/- 0.8 miles. Similar 
results can be seen for Camera 56 in Figure 
15.  The overall CSI score was 62% and a 
standard deviation of +/- 2.5 miles, although 
the CSI for less than 1 mile was 53% and a 
standard deviation of 1.1. 
 

 
Figure 14: Scoring results for Utah camera 
#48.  
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Figure 15: Scoring results for Utah camera 
#56. 
 
8. CONCLUSIONS 
 

Camera and video data availability is 
growing rapidly and automated tools are 
needed to extract derived information from 
images that are often the only source of 
valuable weather and surface condition data 
in the transportation corridor. An algorithm 
was presented that shows promise in 
estimating the critical variable of roadway 
visibility.  Estimators were defined that 
generated visibility estimates that are 
optimal for providing qualitative estimates of 
visibility conditions (e.g. low, moderate, 
high) and moderately successful at 
predicting specific visibility values.  Tuning 
of the system required only 4-6 weeks of 
variable visibilities.  The technique of 
extracting expected and unexpected edges 
as a method of both finding the most 
important edges and controlling for 
contaminants on the lens performed quite 
well.  In addition, there are several 
important findings from this work that should 
be noted for further camera research: 
 
 
 

Camera siting: 
Elevated cameras that have a diverse 

view of the surrounding landscape show the 
most promise for the edge-based visibility 
algorithm.  The road-level camera at the test 
site performed poorly during low visibility 
events, however, Utah camera 48 was a low 
camera yet it performed equally well on low 
and high visibility events.  Therefore, the 
sensitivity of the algorithm to camera 
siting appears to be more a function of 
the range of edges that are visible in the 
image rather than the relative height of 
the camera itself.   

 
Camera meta-data: 

Standard State DOT camera imagery 
offers many challenges from alternating 
image scenes to misaligned edges due to 
repositioning errors.  Techniques were 
successfully applied to control for slight 
misalignments.  Alternating scenes, when a 
camera switches between preset views 
could be handled by allowing the system to 
maintain multiple expected composites (and 
some experimentation was successfully 
performed as a proof-of-concept).  
However, manual shifting of images to 
capture accidents or monitor road work was 
extremely difficult to differentiate from poor 
visibility images that should be processed.  
As part of the Clarus system design, 
metadata for camera imagery is being 
proposed that will capture attributes such as 
pan, tilt, and zoom factors.  State DOTs 
should strongly consider capturing 
camera orientation data to make all 
forms of automated processing simpler 
and more exact.  
 
How good is good enough?: 

A number of states operate fog or low 
visibility warning systems that can be used 
as a measure of desirable operating ranges 
and accuracies (FHWA, 2006).  The 
average system begins to warn motorists 
that low visibility conditions are present 
when visibilities are between 250 to 400 
meters, speed reductions are recommended 
between 60 and 300 meters, and roads are 
often closed when visibilities drop below 60-
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90 meters.  Formal requirements for 
detection/forecast accuracy of visibility 
conditions for surface transportation 
operations could not be found.  In general, 
users express a need for a better than 90% 
probability of detection with less than 10% 
probability of false alarm (corresponding to 
a CSI of 82%).    

The overall CSI value for the four 
cameras ranged from 57-78%.  CSI scores 
for low visibility events (<1600 meters) were 
significantly poorer, ranging from near zero 
to 61%.  Scores for visibilities in the ranges 
applicable to the fog warning systems cited 
above (<400 meters) were not possible 
because of the infrequency of the events 
within the test data set.  When examining 
the larger dataset, the algorithm 
performed close to user expectations 
and with further refinement could meet 
performance criteria.  However, the lack 
of events with these extremely low 
visibilities was a shortcoming of the 
analysis effort.  Future research should 
capitalize on fog warning data systems 
as a source of very low visibility events. 

 
Towards a portable visibility algorithm: 

The algorithm parameters were able to 
be tuned on multiple cameras using only a 
small subset of verification data.  Ideally one 
would prefer a single set of estimators that 
allowed users to estimate visibility from any 
camera given limited meta-data about the 
environment.  However, generically applying 
the original test suite algorithm by adding 
camera characteristic variables was only 
marginally successful.  The existing 
algorithm could be set up in a dense 
camera environment (such as Salt Lake 
City, UT) allowing many cameras to be 
tuned simultaneously.  The wide variety 
of camera views sensing in a similar 
visibility environment would provide a 
rich dataset to optimize the 
generalization of this algorithm.   
 
9. FUTURE CAMERA RESEARCH 
 

The field of mining digital imagery for 
weather and road condition data is in its 

infancy.  By leveraging the growing industry 
of security surveillance for homeland 
defense and traffic monitoring operations, 
new algorithms to detect and/or measure 
precipitation type/intensity, wet roads, 
icy/snow covered roads and bridges, and 
refined algorithms for visibility are on the 
horizon.   

But these algorithms will only be 
marginally useful if they stand alone as 
simple point sources of data.  These data 
must be integrated into an overall 
forecasting system such as the one 
visualized under Clarus.  The power of 
integration allows the marginal estimate of 
visibility from a new video sensor to become 
the final piece that confirms hazardous 
conditions in a lower valley, hail on a 
roadway, or other weather/road hazards.  In 
addition, connecting the camera sensor into 
the larger network allows there to be 
feedback to the camera itself.  High wind or 
hail warnings could trigger the camera to 
transition to a protective mode.  A system 
like MDSS might activate a camera to pan 
and zoom to a potentially icy intersection to 
confirm treatment recommendations.   

Finally, automated algorithms for 
weather, traffic, emergency management 
and security could be integrated 
themselves.  Integration at this level would 
provide priority ratings of various images 
based on content and allow users to choose 
only those images, or roadways, or vehicles 
that are of interest to their specific 
application.  For example, Traffic 
Management Centers could benefit from 
this priority rating by automatically selecting 
images where traffic is stopped or an 
accident is detected. 
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