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1.  INTRODUCTION 

Convectively-induced turbulence (CIT) is one of 
several threats that requires aircraft to avoid 
thunderstorms in order to mitigate the risk of passenger 
injury or aircraft damage.  Current Federal Aviation 
Administration (FAA) thunderstorm avoidance 
guidelines proscribe flight within 20 nautical miles of a 
thunderstorm, above thunderstorm tops or beneath 
anvils.  In practice, interpretation of these guidelines is 
subjective and limited by available weather information, 
and the guidelines may make large regions of airspace 
unavailable to aircraft on days of widespread 
convection.  An automated turbulence product that 
makes use of radar, lightning, satellite, numerical 
weather model and convective nowcast data to 
objectively diagnose the likelihood of turbulence in the 
near-storm environment could provide valuable strategic 
and tactical decision support to pilots, dispatchers and 
air traffic controllers.  

The advent of automated, quantitative turbulence 
reports from commercial aircraft has made it possible to 
use machine learning techniques to help develop such 
diagnostics. This paper describes the use of a machine 
learning method called random forests—ensembles of 
weakly-correlated decision trees—to help establish 
relationships between storm features and aircraft 
turbulence that may then be used to develop a fuzzy 
logic predictive algorithm for turbulence intensity near 
thunderstorms.  Values from the Rapid Update Cycle 
(RUC) numerical weather prediction model were 
interpolated to the aircraft position, and a spatial 
“dartboard” oriented relative to the wind direction was 
used to collect data on storm intensity and coverage in 
the vicinity of the aircraft.  Random forests were trained 
to learn a predictive algorithm based on these 
quantities.  In the process, they provided lists of the 
variables that were most useful in distinguishing 
different categories of turbulence, allowing subsequent 
simplification of the feature set without degrading 
predictive performance.  In future work, the behavior of 
the random forest will be analyzed and the results used 
to develop a fuzzy logic algorithm that predicts 
turbulence based on thunderstorm features and 
environmental conditions.  This fuzzy logic algorithm 
should be sufficiently efficient to run in a real-time 
system.  
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2.  THE CIT AVOIDANCE PROBLEM 

Current FAA Aviation Weather Research Program 
turbulence research and development is focused in 
three areas: forecasting turbulence based primarily on 
Numerical Weather Prediction (NWP) model data, 
establishing routine and accurate reports of en route 
turbulence encountered by aircraft, and detecting 
turbulence remotely using Doppler radars and other 
sensors (Sharman et al. 2006a).  Recently, an effort has 
begun to synthesize these approaches in order to 
generate a rapid-update turbulence “nowcast” product 
based on the latest NWP model and available in situ 
and remote sensor data.  An important goal of this 
nowcast will be to provide short-term predictions of 
convectively-induced turbulence (CIT)—turbulence in 
and around thunderstorms—which studies have shown 
to be responsible for over 60% of turbulence-related 
aircraft accidents (Cornman and Carmichael 1993; see 
also Kaplan et al. 2005). Accurate diagnosis of this 
important source of turbulence will improve airline safety 
and also help mitigate the significant delays that now 
frequently afflict the national airspace system during 
periods of widespread convection.  

The mechanisms for the generation and 
propagation of CIT are not currently well-understood by 
researchers.  As the FAA thunderstorm avoidance 
guidelines indicate, CIT is commonly thought to be 
related to the proximity (vertical and horizontal), 
intensity, depth and extent of convection.  The 
guidelines include the following: 

• Don’t attempt to fly under a thunderstorm even if 
you can see through to the other side. Turbulence 
and wind shear under the storm could be 
disastrous. 

• Do avoid by at least 20 miles any thunderstorm 
identified as severe or giving an intense radar echo. 
This is especially true under the anvil of a large 
cumulonimbus. 

• Do clear the top of a known or suspected severe 
thunderstorm by at least 1,000 feet altitude for each 
10 knots of wind speed at the cloud top. 

• Do circumnavigate the entire area if the area has 
6/10 thunderstorm coverage. 

• Do regard as extremely hazardous any 
thunderstorm with tops 35,000 feet or higher 
whether the top is visually sighted or determined by 
radar. 

(source: FAA Advisory Circular 00-24, available at 
www.airweb.faa.gov/Regulatory_and_Guidance_Library
/rgAdvisoryCircular.nsf/, and FAA Aeronautical 
Information Manual section 7-1-30, available from 
www.faa.gov/atpubs/AIM/).  Numerical simulation 
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studies have suggested that at least some CIT may be 
caused by gravity waves, including those generated by 
overshooting thunderstorm tops. For instance, Lane et 
al. (2003) performed simulations for an accident case in 
which severe turbulence was encountered above 
isolated deep convection.  The study suggested that 
gravity waves were produced above the rapidly growing 
cloud as it penetrated the lower stratosphere; they 
propagated several km into the stratosphere and “broke” 
to produce turbulence in the clear air above the cloud.  
The incidence of CIT is also thought to be related to 
environmental conditions, which could either promote or 
inhibit the propagation and breaking of gravity waves, 
for instance.  Nevertheless, understanding of this 
phenomenon is still quite tentative, and while the 
NEXRAD Turbulence Detection Algorithm (NTDA, 
Williams et al. 2005) will soon provide routine detection 
of turbulence in thunderstorm clouds, no operational 
system yet exists that reliably predicts out-of-cloud CIT. 

 
3.  FUZZY LOGIC AND RANDOM FORESTS 

Fuzzy logic provides a principled way to encode 
expert knowledge or heuristics into algorithms that 
mimic a human’s approach to solving challenging 
problems by weighing different sources of information 
and making judgments based on a preponderance of 
the evidence.  The fuzzy logic approach is frequently 
used to develop decision support systems for weather 
hazards, including turbulence.  For example, the 
Graphical Turbulence Guidance (GTG) system 
(Sharman et al. 2006b) combines a number of 
turbulence diagnostics based on NWP model data, with 
weights that are dynamically tuned based on their 
recent performance as measured against pilot reports 
(PIREPs).  More generally, fuzzy logic algorithms may 
be constructed by surveying human experts on their 
approach to recognizing relevant patterns in data and 
using them to produce diagnoses or forecasts.  The 
various parameters of these fuzzy logic algorithms may 
then be tuned using empirical data, if they are available, 
to optimize the algorithm’s performance.  

Unfortunately, the CIT diagnosis problem does not 
appear amenable to this approach because the 
phenomenology of CIT is so poorly understood.  Without 
an expert available to identify the most significant 
variables and define at least the basic structure of an 
algorithm, it is not immediately clear how a fuzzy logic 
algorithm for CIT might be constructed except by naïve 
trial-and-error.   In order to resolve this conundrum, the 
present paper proposes a hybrid algorithm development 
approach: using a machine learning algorithm to train an 
“expert” model based on available data, then utilizing 
the “learned” mapping to help inform the development of 
a fuzzy logic algorithm that can be employed in practice.  
The machine learning algorithm should identify the most 
important or useful feature variables for predicting the 
aircraft-measured turbulence so that a simple yet 
effective fuzzy logic algorithm can be developed.  The 
model it provides for predicting turbulence can also 
subsequently be interrogated to determine the 
relationships of the various feature variables to the likely 

intensity of turbulence.  If all goes well, this process 
should uncover patterns and relationships that might not 
be easily discerned using other data analysis methods, 
thereby helping researchers better understand the 
mechanisms underlying CIT in addition to providing a 
practical warning system. 

The machine learning technique selected for the 
present study was random forests (Breiman 2001).  
Essentially, random forests are ensembles of weak, 
weakly-correlated decision trees that “vote” on the 
correct classification of a given input.  These ensembles 
minimize the risk of overfitting the training set, a 
significant and well-known problem with individual 
decision trees.  In constructing each tree of a random 
forest, a “bagged” training sample is selected by 
drawing a random subset of n elements from the n-
member training set, with replacement after each draw.  
Then, at each node of the tree, a subset of m feature 
variables are selected as candidates for splitting, and 
the best of the candidates is used; this contrasts with 
the usual practice in decision tree construction in which 
the best of all feature variables is selected for splitting.  
Because not all feature variables are used to train each 
tree, those not used (the so-called “out-of-bag” samples) 
may be used to evaluate the performance of that tree.  
Leaving out feature variables in turn by setting them to 
their median value, their importance may be determined 
based on the degradation in classification performance 
of the subset of the random forest for which they were 
not used in training.  Using this technique, the feature 
variables may be ranked in order of their importance to 
the random forest’s performance. 

 
4. DATA SOURCES 

The turbulence “truth” data used for training and 
evaluation of the random forest consists of quantitative 
measurements from the FAA’s automated in situ 
turbulence reporting system (Cornman et al. 1995 and 
2004), currently operational on United Airlines B-737 
and B-757 aircraft.  The system provides reports of eddy 
dissipation rate (EDR, ε1/3), an aircraft-independent 
atmospheric turbulence metric, at approximately one-
minute intervals, including both the median and 90th 
percentile (“peak”) EDR encountered over that period.  
The EDR data are reported in bins at 0.05 (roughly, null 
turbulence), 0.15 and 0.25 (light turbulence), 0.35 and 
0.45 (moderate turbulence), 0.55 and 0.65 (severe 
turbulence), and 0.75 m2/3 s-1 (extreme turbulence).  The 
present study utilizes the peak EDR value because it 
supplies a good indication of hazard to the aircraft and 
is better distributed over the reporting bins.  The location 
of the aircraft EDR report is taken to be the midpoint of 
each 1-minute flight segment; since commercial aircraft 
typically fly at airspeeds near 250 m s-1, the peak EDR 
locations may be in error by 4 nmi (7.4 km) or more.  
Nevertheless, these uncertainties are significantly less 
that those of pilot reports (PIREPs) which frequently 
involve significant errors in the reported event’s location 
and time (Schwartz 1996).  The high temporal and 
spatial resolution and objective nature of the in situ EDR 
reports make them ideal for the present study. 



Several sources of data are available for providing 
thunderstorm characteristics and environmental state 
variables that may be expected to be related to the 
incidence of CIT.  Information about the location and 
severity of thunderstorms was derived from radar and 
lightning data via the National Convective Weather 
Detection (NCWD) product (Megenhardt et al. 2004).  
Briefly, the NCWD provides a 2-D mosaic of convective 
intensity in units of vertically integrated liquid (VIL,  
kg m-2) on a 4-km grid.  The NCWD makes use of 
NEXRAD VIL data via a 2-D mosaic supplied by Unisys 
along with cloud-to-ground lightning data from the 
National Lightning Detection Network (NLDN).  VIL data 
at locations having radar echo tops below 15,000 ft. are 
removed.  The number of lightning strikes over the past 
10 minutes occurring within 8 km of a grid point are 
combined with the latest VIL mosaic using an 
empirically-derived formula to create the NCWD 
convective intensity value.  The NCWD grid is updated 
every 5 minutes.  In addition to VIL, a Unisys 2-D 
mosaic of NEXRAD echo tops data was available, as 
were GOES IR satellite data    

Environmental state data were provided by the 
Rapid Update Cycle (RUC) NWP model (Benjamin et al. 
2004).  The RUC data include 13-km 2-D and 3-D grids 
of variables including winds, turbulent kinetic energy 
(TKE), convective available potential energy (CAPE), 
convective inhibition (CIN), potential temperature, 
humidity mixing ratio, and a number of others.  
Additionally, all of the RUC-derived turbulence 
diagnostics used in the GTG forecast algorithm 
(Sharman et al. 2006b) were computed.  These include 
Richardson number (Ri), structure function eddy 
dissipation rate (EDR), horizontal and vertical shear, 
inverse stability, and a large number of others.  

To produce training and testing sets, five months of 
data from June – October 2005 were used.  Each in situ 
EDR measurement was associated with feature 
variables containing environment and thunderstorm 
information.  RUC and RUC-derived data from the 
nearest analysis time were interpolated from the nearest 
points surrounding the aircraft location.  The GOES IR 
temperature nearest the point was also used, as was 
the radar echo top data for the nearest mosaic grid 
point.  The distance to the nearest NCWD VIL value 
above each of several selected intensity thresholds 
were computed, as were the echo tops associated with 
those VIL values.   More challenging was associating 
the aircraft measurement with information about the 
coverage and relative proximity of convection relative to 
the prevailing wind direction.  This was accomplished by 
orienting a polar coordinate system relative to the 
aircraft-measured wind vector (in an operational system, 
RUC or radar-derived winds would be used).  Figure 1 
depicts six 60° “wedges” oriented relative to the wind 
vector.  To supply information on the proximity and 
relative location of convection, the closest distance to 
NCWD VIL above each of several intensity thresholds 
was computed for each of these wedges.  Percent 
coverage data were then compiled by computing the 
proportion of VIL values above several selected 
intensity thresholds falling within prescribed range 

intervals in each wedge, i.e., the regions defined by the 
“dartboard” pattern defined in Figure 2.  Cotter et al. 
(2007) describes a computationally efficient method for 
computing these values.  All together, 272 feature 
variables were available to the machine learning 
algorithm, including the aircraft altitude, pressure 
corrected altitude, satellite IR data at the aircraft 
position, 24 RUC variables, 28 RUC-derived variables, 
197 VIL distance and dartboard coverage values, and 
20 echo top variables.   
 
  

 

Figure 1: “Wedges” oriented relative to the wind vector 
(arrow) for purposes of collecting thunderstorm 
proximity information. 

 

 

Figure 2: “Dartboard” oriented relative to the wind 
vector (arrow) for purposes of collecting thunderstorm 
intensity and coverage information.  Range rings are at 
distances of 5, 10, 20, 40, 80 and 160 nmi from the 
aircraft. 
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Before being used for training, this dataset was 
analyzed to confirm that the feature variables were 
indeed related to the frequency and intensity of CIT.  
Figure 3 depicts the distribution of distances to 
convection having NCWD VIL > 3.5 kg m-2 for each of 
several levels of measured peak EDR.  The increasing 
risk of turbulence encounters as the aircraft nears the 
thunderstorm is clearly evident.  Figure 4 depicts the 
distribution of turbulence encounters as a function of the 
aircraft’s distance above the NEXRAD echo top; 
negative values represent encounters below the echo 
top.  Again, there is a clear relationship between this 
vertical proximity and the risk of turbulence.  Finally, 
Figure 5 and Figure 6 depict histograms of dartboard 
coverage by NCWD VIL above various intensity 
thresholds for the regions enclosed by the six wedges 
and the 10 and 20 nmi range rings (see Figure 2).  
Figure 5 shows histograms for cases in which the in situ 
EDR is 0.05 (null turbulence), and Figure 6 shows 
histograms for EDRs of 0.35 or greater (moderate or 
greater turbulence).  The difference in the shapes of 
these conditional histograms clearly indicates that the 
VIL coverages of these regions are positively correlated 
with the occurrence with turbulence.  Similar conditional 
histograms for selected RUC and RUC-derived fields 
may be found in Sharman et al. (2006b). 

The clear relationships between the measured 
variables and incidence of turbulence illustrated by 
these histograms suggest that they should be useful in 
predicting the location and intensity of turbulence.  
However, these variables do not represent independent 
predictors of turbulence; rather, they are quite highly 
correlated with one another.  Simple averaging or 
summing of predictions from individual variables is 
therefore unlikely to produce an optimal turbulence 
diagnosis algorithm.  Instead, the optimal prediction is a 
function of the joint distribution of the variables; for 
instance, some feature variables may have predictive 
value only within certain domains of others.  Fortunately, 
learning such a function is precisely the domain in which 
a random forest can be effective.  Decision trees 
effectively split up the hypercube of feature variable 
values and predict the class for each sub-region.  
Taking an ensemble of such trees exploits this feature 
while also making it possible to generalize well to an 
independent testing dataset.   
 

5. RANDOM FOREST TRAINING AND RESULTS 

The first step in running the random forest was to 
create appropriate training and testing sets.  In order to 
minimize unwanted dependence between the variables 
used, separate days were chosen for the training and 
testing sets.  Roughly one of every three days was 
chosen for training, and two for testing, each with even 
distributions over the period for which data were 
available.  Because the “null” and “light” turbulence 
categories had by far the highest frequency in the 
dataset, the training set sampled only a limited number 
from these categories while utilizing all of the moderate 
or greater reports.  The next step was to determine how 
many variables should be randomly selected as 

candidates for splitting at each node, and how many 
trees to grow.  After some experimentation, the number 
of variables for splitting was chosen to be 25.  Figure 7 
shows the maximum true skill score achieved by the 
random forest as a function of the number of trees 
trained for one of the scenarios described below.  It can 
be seen that the random forest’s performance is quite 
near its maximum after just 100 trees, after which it 
continues to improve gradually as more trees are 
added.  The results presented in this paper are based 
on training 500 trees.   
 

 
Figure 3: Distribution of distances to convection having 
NCWD VIL > 3.5 kg m-2 for various levels of peak EDR 
(dark blue = 0.15, light blue = 0.25, green = 0.35, 
orange = 0.45, and dark red = 0.55 or greater).  The z-
axis is normalized to show “relative risk”, that is, the 
frequency of that level of turbulence divided by its 
overall frequency in the dataset. 

 

 
Figure 4: Distribution of vertical proximities to radar 
echo tops for various levels of turbulence intensity.  The 
z-axis is again in terms of “relative risk.”   



 

Figure 5: Histograms of dartboard wedge-range region 
coverage of NCWD VIL values above various thresholds 
(red = 0.9, orange = 5, green = 10, light blue = 15 and 
dark blue = 30 kg m-2) for cases in which the in situ peak 
EDR was reported as 0.05 (null turbulence).  Beginning 
with the upper middle plot and proceeding clockwise, 
the histograms are for regions between 10 and 20 nmi 
in wedges 0, 1, 2, 3, 4 and 5, as described in Figure 1.  
The percentages displayed on each histogram 
represent the average coverage of VIL above 0.9, 5, 10, 
15 and 30 kg m-2, respectively, in that region.  Finally, 
values for the first bin of each histogram represent 
1/100 of the actual frequency. 

 

Figure 6: Conditional histograms like those in Figure 5, 
except for cases in which the in situ peak EDR was 
reported as 0.35 or greater, representing moderate or 
greater turbulence.  The difference in the conditional 
histograms indicates that convective “coverage” might 
be a good predictor of turbulence.  

 

 

 

Figure 7: Plot showing maximum true skill score (TSS) 
as a function of the number of trees trained, with results 
for each of the various EDR categories. 

 

Random forests were trained for a number of 
different scenarios and evaluated by generating ROC 
curves for different turbulence intensity levels like the 
ones in (figure).  These curves were generated from the 
random forest output by taking the weighted mean of 
the turbulence category votes as a scalar predictor.  A 
threshold on this predictor was selected, and the 
number of points correctly and incorrectly classified 
were used to determine the probability of detection 
(POD, y-axis) and probability of false detection (POFD, 
x-axis).  As the threshold was varied, these pairs traced 
out the curves shown on the ROC plots.  A POD of 1 
and POFD of 0 would represent a perfect algorithm, so 
the curves that approach the upper-left corner most 
closely are deemed to show the best performance.  The 
maximum true skill score (TSS = POD – POFD) was 
also computed as a summary statistic for the random 
forest’s performance at each turbulence level. 

Initial experiments with the random forest utilized 
EDR reports from all altitudes, resulting in quite 
exceptional ROC curves like the one shown in Figure 8 
for training and testing on data from July 2005.  
However, further analysis of the data suggested that this 
performance was largely due to the vastly increased 
incidence of light or greater turbulence at levels below 
15,000 ft, which made the aircraft altitude a powerful 
predictor.  Furthermore, the in situ EDR reports are 
believed to be frequently inaccurate at these lower 
levels (Larry Cornman, personal communication), so it is 
not clear that how meaningful these results are.  Finally, 
turbulence above 15,000 ft is of greatest significance to 
commercial airlines since passengers are less likely to 
be buckled in.  For these reasons, further experiments 
with random forests focused on upper levels only.  
Unfortunately, the NEXRAD echo top data described 
earlier were inadvertently omitted from the training and 
testing datasets and so were not used for the results 
shown below. 
 



 
Figure 8: ROC curves showing results for a random 
forest trained and tested using data from July 2005.  
ROC curves are color-coded based on the EDR 
turbulence level being predicted.  The area under the 
curve and the maximum TSS for each turbulence level 
are included in the legend. 

 
Figure 9: Same as Figure 8 for a random forest using 
data from June-October 2005, including only aircraft 
turbulence reports above 15,000 ft. 

 
Figure 10: Same as Figure 9 but for a random forest 
trained using only the aircraft altitude, RUC, and RUC-
derived feature variables and none of the radar-derived 
proximity, intensity and coverage variables. 

 
Figure 11: Same as Figure 9, but using only EDR 
reports within 40 nmi of convection as defined by 
NCWD VIL > 0.9 kg m-2. 

 
Figure 12: Same as Figure 10, but using only EDR 
reports within 40 nmi of convection as defined by 
NCWD VIL > 0.9 kg m-2. 

Figure 9 shows performance results for a random 
forest trained using data from June-October 2005, 
including only aircraft turbulence reports above 15,000 
feet.  The performance of the random forest as a 
predictive algorithm, evaluated on an independent 
“testing” subset of the data, is excellent, particularly for 
distinguishing the operationally significant moderate-or-
greater (MoG, >0.30) turbulence from less than 
moderate turbulence.  For MoG turbulence, a POD of 
80% may be attained with a corresponding POFD of 
less than 10%, or a POD of 90% with POFD just over 
20%.  Figure 10 depicts the performance of a random 
forest trained without the NCWD VIL proximity, intensity 
and coverage data; that is, it utilized only data available 
to GTG.  The performance is slightly worse, indicating 
that the NCWD did provide some useful information, 
though surprisingly little.  Finally, Figure 11 shows 
results for a random forest trained and tested only on 
EDRs recorded within 40 nmi of convection, as defined 
by NCWD VIL > 0.9 kg m-2, and Figure 12 shows results 
for a random forest trained and tested on EDRs within 



40 nmi of convection but without the NCWD VIL 
features. The poorer performance of the random forests 
for the subset of cases within 40 nmi of thunderstorms is 
likely due to the fact that, since proximity is a good 
predictor of turbulence, the discrimination problem is 
much harder in this domain.  In other words, the 
frequency of null turbulence reports is much smaller 
near thunderstorms, and discriminating different levels 
of non-null turbulence from one another is much more 
difficult.  The random forest’s performance is degraded 
somewhat when the NCWD data is omitted, but again 
not nearly as much as might have been expected.   

As mentioned earlier, a random forest produces a 
ranked list of the feature variables that it finds most 
important to classifying the data during training.  This list 
may be quite helpful in designing a fuzzy logic 
turbulence prediction algorithm because it indicates 
what fields should be used and which may be safely 
ignored in the interest of simplifying the algorithm.  For 
the random forest whose results are displayed in Figure 
9, 29 of the top 30 fields were RUC or RUC-derived 
variables, followed by a mix of additional RUC fields and 
distances to different NCWD convection intensities 
along the different wedges.  Even for the data within 40 
nmi of convection, none of the highest-ranked fields 
were related to NCWD intensity, coverage or proximity.  
These results are surprising, because, as Figure 3 
shows, thunderstorm proximity is clearly related to the 
frequency of elevated turbulence reports, and one would 
expect that the 4-km NCWD, produced at 5-minute 
intervals, would be better at locating thunderstorms that 
the 13-km RUC analysis data, produced only hourly.  
Nevertheless, it is possible that the RUC data is 
capturing both the features most relevant to clear air 
turbulence as well as some of the conditions most 
related to CIT, rendering the NCWD data less important.  
If so, this is an important result, as it suggests that the 
effort required to incorporate NCWD data into a CIT 
warning system may not be worthwhile, at least for 
predicting upper-level turbulence.  However, it is 
expected that the NCWD will be an important predictor 
at lower altitudes, and that the NEXRAD echo top data, 
when included among the feature variables, may 
significantly increase the random forest’s performance. 
 

6.  SUMMARY AND FUTURE WORK 

The causes of convectively-induced turbulence 
(CIT) are currently poorly understood, but it is a 
significant hazard to aviation that a turbulence nowcast 
system should be able to predict in order to be effective.  
In the absence of human expert knowledge to form the 
basis of designing a fuzzy logic algorithm to predict CIT, 
a machine learning technique may be used to develop a 
model that can then inform the development of a fuzzy 
logic algorithm by identifying important feature variables.  
By using a random forest instead of more common 
techniques such as linear correlation analysis, complex 
relationships between the feature variables and the 
incidence of turbulence may also be uncovered.  
Random forests are more straightforward to apply than 

other machine learning techniques, requiring 
significantly less expertise and “art” than artificial neural 
networks, for instance.  Only two parameters really need 
to be established for a random forest: the number of 
candidate features for splitting at each node and the 
total number of trees to be trained.  Furthermore, unlike 
individual decision trees, random forests do not tend to 
overfit the training set.  Finally, the random forest 
provides a ranking of the feature variables in the order 
of importance that may be used as a starting place for 
developing an alternative algorithm.   

In the present paper, we have applied the random 
forest to environmental information and turbulence 
diagnostics derived from a NWP model analysis; 
thunderstorm proximity, intensity and coverage data 
obtained from the NCWD grid, satellite IR data, 
NEXRAD echo tops.  The performance of the random 
forests were quite impressive, but they showed, 
surprisingly, that the NCWD data did not appear to add 
significant information to the RUC data for predict the 
measured in situ aircraft turbulence, at least for upper 
levels.  Unfortunately, the completeness of these results 
was limited by the inadvertent omission of radar echo 
tops data, which may be expected to be quite important 
in diagnosing CIT.  Nevertheless, they point out the 
importance of using a machine learning algorithm to 
investigate whether data provide information useful to 
the solution of a problem before embarking on creating 
a solution. 

The next phase of the project, after the missing 
echo tops data are added and the analyses above 
repeated, will be to run the trained random forest for a 
number of case studies.  By running the random forest 
on each point in a grid, spatial patterns of predicted 
turbulence relative to thunderstorms will become 
evident.  The proximity, extent and intensity of the 
thunderstorm will then be systematically varied, along 
with the RUC’s environmental variables, in an attempt to 
uncover the significant relationships learned by the 
random forest model.  From these, a fuzzy logic 
algorithm will be formulated.  Instead of computing 
proximity, intensity and coverage features surrounding 
each grid point, the fuzzy logic algorithm might identify 
thunderstorm “objects” or environmental regions 
conducive to CIT and predict turbulence in and around 
them based on appropriate heuristics derived from the 
relationships learned by the random forest.  The 
parameters of this algorithm could then be tuned using 
empirical data. 

 
 
Note: The latest version of this paper may be obtained 
from www.rap.ucar.edu/staff/williams/papers/ or by 
contacting the first author. 
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