
1.3

A Random Forest Turbulence Prediction Algorithm

A. Cotter∗, J. K. Williams, R. K. Goodrich and J. Craig
National Center for Atmospheric Research, Boulder, Colorado

Abstract

Unlike traditional pilot reports, in-situ EDR reports
of atmospheric turbulence from commercial aircraft
contain both positive and negative instances, are re-
ported regularly, and have relatively accurate posi-
tions and timestamps. These data therefore make
it feasible to perform more sophisticated analyses of
the causes of atmospheric turbulence than were for-
merly possible. Several real-time gridded products
derived from satellite, radar and numerical weather
model data that represent storm location and inten-
sity currently exist. These include quantities such
as vertically integrated liquid (VIL), echo tops, and
wind direction and velocity. In this paper, the au-
thors present a machine-learning algorithm that pre-
dicts in-situ peak EDR based primarily on the values
of VIL and echo tops in a spatial neighborhood ex-
tending approximately 300km around the measure-
ment point. To summarize the values of the gridded
products associated with each in-situ EDR measure-
ment, a set of quantities including distances to grid
points with data over certain thresholds, maximum
data values within each sub-region and the propor-
tion of grid points over various thresholds within each
sub-region were computed. A set of the most use-
ful features for turbulence prediction was then de-
termined using a large-scale automated feature se-
lection algorithm. First, an estimate of the "quality”
of each candidate feature was calculated by training
a large number of decision trees on small random
subsets of candidate features and comparing their
performance on a testing set both with and without
the feature in question. Then, a linear programming
problem was formulated in which the "best" subset
of features was chosen under the constraint that no
two selected features for a given data source could
overlap. The selected features and a large training

∗Corresponding author address: Andrew Cotter, Toyota Tech-
nological Institute at Chicago, University Press Building, Second
Floor, 1427 East 60th Street, Chicago, IL 60637; e-mail: cot-
ter@rap.ucar.edu

set were then used to train a random forest as a pre-
dictive algorithm. Finally, the performance of the ran-
dom forest on an independent testing set was evalu-
ated and compared to another turbulence-prediction
product.

1. INTRODUCTION

Current turbulence detection/prediction algorithms
are primarily physical in nature in that they are based
on theories of how the causes of turbulence are rep-
resented in certain data sets (such as Doppler radar
data). Based on these theories, and the relevant
data sets, estimates of turbulence may then be cal-
culated. There are many reasons to believe that this
is a good approach. One certainly requires some
understanding of the atmospheric phenomena that
cause turbulence in order to determine, if not “what
to look for”, at least “where to look”–that is, which
data sources may be expected to be relevant. With
this said, it is not necessarily the case that this ap-
proach yields the best possible performance. The
prediction of turbulence and the understanding of
the causes of turbulence are distinct, though com-
plementary, goals. Progress towards the latter goal
will, in the long term, likely lead to the progress in ac-
complishing the former. One need not “understand”
turbulence, however, in order to find patterns in the
relationship between measured turbulence readings
and various “input” data sources (radar data, atmo-
spheric models, satellite data, etc.)–indeed, it is from
the inspection of such relationships that theories are
created (and validated) in the first place.

If current turbulence prediction algorithms are
physical, the one described in this paper is statistical.
Modern machine learning algorithms have become
very good at detecting patterns in data and using
these patterns to make predictions. Unfortunately,
they tend to be “black boxes”–the best-performing
algorithms, once trained, may not make the infor-
mation they have extracted from their training sets

1

mailto:cotter@rap.ucar.edu
mailto:cotter@rap.ucar.edu


available in any readily-comprehensible form. This
property makes them largely unsuitable to the sci-
entific goal of understanding turbulence, but in no
way mitigates their applicability to the purely prac-
tical goal of accurately predicting it. In this paper,
a machine-learning algorithm for the prediction of at-
mospheric turbulence is presented, and compared to
one currently-implemented algorithm, the NEXRAD
Turbulence Detection Algorithm (NTDA).

Section 2 contains descriptions of the data
sources used as input to the algorithm described in
this paper. In section 3, the particular machine algo-
rithm chosen for this task, random forests, is intro-
duced. Section 4 describes the turbulence predic-
tion algorithm itself, while section 5 examines some
results of its training, and its performance on testing
data. Finally, section 6 concludes with speculation
on how even better performance might be extracted
from an algorithm of this type.

2. DATA

2a. Output Data

In the past, validation of turbulence prediction or de-
tection algorithms has used pilot reports (pireps) as
a source of “truth data”. Pireps are difficult to work
with, however, because they tend to have extremely
poor position and time stamps, and negative turbu-
lence encounters are massively underrepresented in
the set of pilot reports relative to their true frequency
of occurrence. Cornman, L. B. et al. (1995, 2004)
describe the in-situ EDR stream, which is an auto-
mated system installed on some United Airlines air-
craft that reports, approximately every minute, the
median and 90th percentile of eddy dissipation rates
(EDRs) encountered in the time since the last re-
port, along with positions and timestamps for every
fourth report. The timestamps, unfortunately, have
only minutes precision (that is, they contain no sec-
onds portion).

Since the radar data grids–another input to our
algorithm–are updated every five minutes, a times-
tamp error of up to 30 seconds in our “truth data”
was undesirable. Hence, the in-situ EDR times-
tamps were “corrected” to seconds precision using
the Aircraft Situation Display to Industry (ASDI) feed.
The ASDI feed contains slightly less accurate posi-
tions than the in-situ EDR stream, but timestamps
that are accurate and recorded with seconds pre-
cision. By Kalman-smoothing an ASDI flight track,

we first derived a multidimensional Gaussian repre-
senting a distribution of what the airplane’s position
was believed to be at every second. For each of the
60 possible seconds portions of each in-situ point,
we then calculated the likelihood of the airplane be-
ing at the position reported by the in-situ stream at
the given time. We then estimated a distribution on
how widely-separated in time two consecutive in-situ
points may be (based on our understanding of the
reporting algorithm), and used this, in combination
with the aforementioned position-likelihoods, as in-
put to a dynamic programming algorithm, which cal-
culated a maximum likelihood sequence of seconds
portions of the in-situ EDR points for each flight.

Each in-situ EDR report contains two measures
of the turbulence encountered since the previous
report–hence, each report applies not to a point in
space, but rather to an approximately one-minute
flight segment. We used the midpoints of these seg-
ments as the positions/times of each report, and at-
tempted to predict the aircraft-reported in-situ EDR
90th percentiles (henceforth called “peak EDRs”) at
these midpoints. The EDR reports themselves are
binned into eight classes: 0.05, 0.15, 0.25, 0.35, 0.45,
0.55, 0.65 and 0.75 m2/3s−1 (the units will be omitted
in the sequel). The 0.05 class contains all points for
which the peak EDR reading was less than 0.10, the
0.15 class those between 0.10 and 0.20, and so on up
to 0.75, which contains all those greater than 0.70.
These classes may be roughly interpreted as fol-
lows: 0.05 represent null turbulence, 0.15 and 0.25
are light, 0.35 and 0.45 are moderate, 0.55 and 0.65
are severe, and 0.75 is extreme.

2b. Input Data

As has been mentioned, the in-situ peak EDR read-
ings provide the output, or” truth” portion of our
dataset. The input portion consists of features de-
rived from the RUC13 model analysis and vertically-
integrated liquid (VIL) and echo tops grids pro-
vided by Unisys. The RUC13 data consist of a
set of three dimensional grids representing a num-
ber of atmospheric features derived from a Numer-
ical Weather Prediction (NWP) model. The Unisys
VIL and echo tops are two-dimensional grids de-
rived from NEXRAD radar data, each grid point cor-
responding to a “column” of the atmosphere. VIL
represents the total liquid water in the column, in
kg · m−2, while the echo top is the highest altitude
having radar reflectivity of 18 dBZ or greater. In our
dataset, only those RUC13 data nearest the aircraft

2



location at which we wish to predict turbulence are
used as features for the prediction algorithm. From
the two-dimensional Unisys VIL and echo top grids,
however, we calculated a large number of features
including not only data at the point in question, but
also in a region around the point.

While the Graphical Turbulence Guidance (GTG,
Sharman, R. et al. (2006)) product already utilizes
RUC and RUC-derived variables to forecast clear-
air turbulence, we expect that the Unisys VIL and
echo top grids may improve the prediction of atmo-
spheric turbulence near thunderstorms. The Unisys
grids also have considerably higher resolution in
both space and time–the Unisys grids are updated
approximately every five minutes, in contrast to ev-
ery hour for the RUC grids. Since one expects
convectively-induced turbulence to be a short-lived
and possibly highly localized phenomenon, these
high resolutions are quite desirable. On the other
hand, the RUC data provide information on environ-
mental conditions that may also be significant for
turbulence generation by thunderstorms. It is for
this reason that that we calculate wide-area features
from the Unisys VIL and echo tops while using only
the RUC data at the prediction location. The RUC
wind direction is also used for the important purpose
of orienting the polar grid used to extract radar data
proximity and coverage features, as will be explained
in section 4a.

3. RANDOM FORESTS

Breiman (2001) introduces random forests, a clas-
sification algorithm that is particularly well-suited to
the present application. Only the briefest outline of
the algorithm will be provided here–the reader is re-
ferred to the cited paper for an excellent description
of the details.

Random forests make use of an ensemble of
weakly-correlated decision trees, which provide a
statistical or machine learning technique for learning
data classifications. Given a training set T , a de-
cision tree is constructed by first choosing an input
feature f and threshold t that split the training set
into “maximally distinct” subsets according to some
measure (our implementation uses the Gini index
(Hastie, T. et al. 2001, p271)). The training set is
then split into two subsets T< and T≥, the first of
which consists of all training samples for which f < t,
the second for which f ≥ t. Missing data is han-

dled by treating each missing value of feature f as
if it were equal to the median f̂ of f over the train-
ing set. The decision tree D is defined as a 5-tuple(
f, t, f̂ , D<, D≥

)
, where D< and D≥ are two deci-

sion trees that have been recursively constructed
from the data subsets T< and T≥, respectively. The
recursion stops once no further splits are possible
(there may be multiple sample points at such a node,
if they have identical values in each input feature).
Such leaf nodes are defined as 1-tuples

(
v
)
, where

the “value” v is defined as the mode of the set of
output features in the training set.

For a testing sample, the prediction of a decision
tree D will be (again recursively) defined as the pre-
diction of D< if f < t in the testing sample, and of
D≥ if f ≥ t. If D is a leaf node, then the predic-
tion is the “value” v of D that was determined during
training. As in training, missing data in the testing
set is handled by treating a missing f -feature as be-
ing equal to f̂ , the median of f over the training set,
which was stored in the node D during construction.

A “randomized decision tree”, as this phrase will
be used in this paper, is extremely similar to a stan-
dard decision tree. There are, however, two crucial
differences. The first of these is that, rather than be-
ing trained on the entirety of the training set, a ran-
domized decision tree is trained only on a random
subset. Secondly, when determining which input fea-
ture to split on at each node, only a random subset
of
√

n of the n features are considered eligible. This
subset is drawn independently for each node, and
the best of these eligible features is then selected for
splitting.

A random forest is simply a set of some number of
randomized decision trees (our implementation used
500). Since each of these trees was trained on a
different subset of the training data, and was fur-
ther randomized by only permitting splits on some
random subset of the features at each node, one
may hope that the overfitting for which decision trees
are justly notorious will “cancel out” over the set of
trees–that is, that patterns that are truly present in
the training data will be learned by most (or all) of
the trees, while those that are simply relics of the
sampling will be learned by fewer trees. For a given
input, the output of the random forest is a distribu-
tion of “votes” over the various data classes. If all
goes well, the proportion of trees that “vote” for a
given class may be regarded as a measure of the
strength of the trend in the training set on which the
votes were based. Thus, the random forest general-

3



izes from patterns occurring in the training set with-
out significant risk of overfitting.

4. TURBULENCE PREDICTION
ALGORITHM

4a. Features

The goal of the research presented here is to create
a machine learning algorithm that uses the RUC13,
Unisys VIL and Unisys echo top data to predict the
in-situ EDR value at a given point in space p (a lat-
itude/longitude/altitude triplet) and time t. The obvi-
ous set of input features would therefore be the value
of the grid box containing p taken from the grid ac-
tive at the time in question, that is, the latest times-
tamped before t. For the RUC grids, these are ex-
actly the features which we use.

One would expect, however, that the turbulence
at p depends on atmospheric phenomena that do
not strictly contain p. One might ask, for example:
is p “close to” a thunderstorm? If so, is it a large
thunderstorm? Is it a severe thunderstorm? Could
the edge this thunderstorm have advected over po-
sition p in the time since the grid was created? Since
we expect answers to such questions to be useful in
predicting convectively-induced turbulence, we must
provide our learning algorithm with enough data to
answer them–hence, we must provide it with fea-
tures that not only represent the “state of the atmo-
sphere” at p, but also in some region around p.

While one certainly wants to capture as much in-
formation as possible in the features chosen, one
must attempt to minimize both the number of fea-
tures, in order for the random forest to operate
quickly, and the cost of computing the features.
These are competing requirements: we need to
maximize the amount of information available in a
small number of cheaply-computed features. More-
over, since the ideal outcome of this research would
be a real-time system that outputs a 3-D grid of pre-
dicted turbulence values or probabilities for use in
aviation, computational efficiency is a strict require-
ment.

The two grids on which we want to compute wide-
area features both tend to be locally correlated–that
is, the value at each grid point is generally “close to”
the values of its neighbors. Keeping in mind that we
wish to maximize efficiency in a future real-time sys-
tem, creating a data structure once for each grid is

Figure 1: A “dartboard” around a given position. The
dark arrow represents the prevailing wind direction,
obtained from the RUC analysis, by which the dart-
board is oriented.

a good investment of computational resources if it
allows each wide-area feature on this grid to be cal-
culated more cheaply. After all, in a gridded output
product we would need to compute features not just
around a single point, but around every point in the
output grid. Appendix A describes the data structure
which was used to efficiently construct three types of
features: the closest grid point in some region with
value above some threshold; the largest grid value
in some region; and the proportion of the points in
some region having values in a prescribed interval.
These are the three classes of features on VIL and
echo tops, called “distance”, “upper bound” and “pro-
portion” features, respectively, which are passed as
input to the machine learning algorithm described
later in this paper.

The selected “regions” and “thresholds” used for
the features defined above are now described. For
the upper bound and proportion features, the regions
were chosen to be ranges of the form [θl, θu]×[dl, du]
(here, [·, ·] denotes a closed interval), where the first
coordinate is an angle, and the second is a great-
circle distance, relative to the point at which we wish
to estimate turbulence. For the distance features, the
regions were intervals of the form [θl, θu].

The angular coordinate, however, must be spec-
ified relative to some reference. For instance, we
could take it to be simply the azimuth, so that the nth
feature would be oriented in the same compass di-
rection for every point, but we have no reason to be-

4



lieve that there is anything particularly special about,
say, the density of cloud to the North of a point in
space, relative to the density of cloud to the East, in
terms of their influence on turbulence. It does seem
reasonable, however, to expect features upwind of
the point to be more important than those downwind.
Hence, all angles are measured relative to the wind
direction in the RUC model gridpoint nearest the pre-
diction location.

Figure 1 illustrates the sort of regions over which
the upper bound and proportion features were
computed–a circle of some fixed radius (300km, in
our implementation) was first divided into annuli of
fixed width, each of which was then further divided
into regions spanning some range of angles of fixed
size, oriented using the wind direction. The final
set of regions resembles a dartboard, and a set of
such features will be referred to by this name. Not
knowing a priori which sizes and positions for the
regions would be most appropriate, a set of dart-
boards were used, and a feature selection method-
ology was then employed to select the “best” reso-
lution. Each dartboard had radius 300km and was
split into a annuli and b angle ranges, for each of
a ∈ {1, 2, 4, 8, 16, 32, 64} and b ∈ {1, 2, 4, 8, 16, 32},
making a total of 7 × 6 = 42 dartboards. The “up-
per bound” features were defined by taking the up-
per bound of the Unisys VIL and echo tops in each
enclosed region defined by the dartboard. “Propor-
tion” features measure the proportion of grid points
in each region having values within a prescribed
interval. The Unisys VIL and echo top grids are
both bounded (in fact, they are quantized–they take
on only a relatively small number of possible val-
ues), so, for the proportion features, we generated
a set of dartboards for each value range resulting
from dividing the set of possible grid values into
c ∈ {1, 2, 4, 8, 16} equally-sized ranges, for a total
of 31 value intervals, and therefore 31 × 42 = 1302
“proportion” dartboards.

The “distance” features were determined similarly.
Again oriented by the wind direction, the space
around the target point was divided into b equally-
sized angular regions for b ∈ {1, 2, 4, 8, 16, 32}, as
above, and for each of 16 different thresholds (corre-
sponding to thresholds used for the proportion fea-
tures), the great-circle distance to the closest point
within this region and over this threshold was com-
puted.

Finally, four additional features were included, be-
yond the RUC, VIL and echo top features previously

discussed. In the hope of capturing seasonal varia-
tions, the month (as an integer in the range 0 − 11)
was included in our feature set. Similarly, so that it
would be possible for the random forest to compen-
sate for advection, the age (in seconds) of each of
the most recent RUC, VIL and echo top grids were
also included. All four of these features turned out to
be removed during feature selection, so it appears
that they were not as useful as was originally hoped.

4b. Data Sets

High turbulence reports are comparatively rare in the
in-situ EDR feed. In order to ensure that the training
set for our random forest would have enough exam-
ples of high turbulence (no machine learning algo-
rithm can learn patterns that are not present in its
training set), we sampled our dataset from the EDR
stream in such a way that higher peak EDRs were
over-represented, relative to their true frequency.
During the validation of NTDA, it had been observed
that in the vicinity of thunderstorms, the peak EDR
readings were distributed roughly geometrically with
parameter 2

3 (that is, the proportion of observations
with a peak EDR of 0.05 was approximately 2

3 , of 0.15
was approximately 2

9 , of 0.25 was approximately 2
27 ,

and so on). In order to choose a higher proportion of
high-turbulence readings, yet not change the shape
of the distribution on turbulence readings too dras-
tically, we decided to sample our dataset according
to a geometric distribution with parameter 1

2 . The
dataset was otherwise sampled uniformly randomly,
from the set of all in-situ EDR readings between May
10th of 2005 and May 9th of 2006, inclusive. A total
of 242125 points were so chosen for training and test-
ing, and the features discussed in section 4a were
computed for each.

As a final step, the dataset was divided into sev-
eral pairs of training and testing sets. In order to en-
sure that no testing set point was in the same region
of space and time as any training set point and thus
ensure that the data sets were independent, this divi-
sion was performed according to the day of the week
(which should have no bearing on turbulence). One
training-testing set pair, for example, contained as
its training set all dataset points that were recorded
on a Sunday, Monday or Tuesday, and as its testing
set all that were recorded on a Thursday or Friday
(all points recorded on a Wednesday or Saturday,
the two days separating the training and testing sets,
were ignored). Another pair contained as a training
set those points from Monday, Tuesday and Wednes-

5



day, and as a testing set those points from Friday and
Saturday. This pattern was repeated (three consecu-
tive days training, one day ignored, two consecutive
days testing, one day ignored), until seven pairs of
training and testing sets were computed.

4c. Feature Selection

Including the distance, upper bound and proportion
features derived from the Unisys VIL and echo top
grids, the 24 features from the RUC model, and
the four additional time features discussed in sec-
tion 4a, we calculated a total of 514108 features for
each point in our dataset. This is obviously exces-
sive, and necessitated a feature-selection step, be-
fore any random forest could be trained as a practical
predictive algorithm.

Recall that, as described in section 3, our decision
tree implementation is capable of handling missing
values in both its training and testing sets. Given a
decision tree, then, and a testing set, one may es-
timate the “quality” of a feature f by calculating the
performance of the decision tree on the testing set,
and comparing this quantity to the performance of
the same tree on the same testing set with f set to
“missing” (NaN ) in every sample.

A straightforward way to perform feature selec-
tion would be to initially create a random forest us-
ing some random subset of the features, then calcu-
late the value of each feature, remove some number
of the worst features, replace them with randomly-
selected new features, and iterate. This approach
has two main drawbacks. The first is that it would
not result in an independent measurement of the
value of each feature, making it difficult for us to
use the output of feature selection to explore how
the atmospheric phenomena recorded in the dataset
influence turbulence–we would learn which features
were the “best”, but not the quality of each feature.
The second problem is that this approach is some-
what difficult to implement and deploy. Because this
algorithm keeps track of a single set of features that
evolves over time, to parallelize it (and, due to the
size of the task, one would need to do so) one would
need to synchronize the feature sets between the
various participating computers. This is not inher-
ently difficult; however, in the computing environ-
ment available for this research, synchronization and
automatic distribution of the workload would have
been extremely challenging.

Instead, we created a large number (834189)
of randomized decision trees, each containing 400

randomly-selected features (each feature was there-
fore included in approximately 650 decision trees).
For each tree, T , we calculated the classification er-
ror (the number of misclassifications) eT,c, the sum
of absolute errors eT,a (where the error for each tree
was the difference between the true peak EDR value
and the tree’s prediction), and the sum of squared er-
rors eT,s. We also, for each feature f in each tree T ,
replaced f with NaN in every testing sample, and
calculated errors e′f,T,α for α ∈

{
c, a, s

}
, on this new

testing set. Once we had done this for all trees, we
went through each feature f , and each error met-
ric α, and calculated sums sf,α =

∑
T3f eT,α and

s′f,α =
∑

T3f e′f,T,α (the subscripts on the sums in-
dicate that they are taken over all trees T which in-
cluded feature f ). Finally, the “with f ” sum was di-
vided by the “without f ” sum, resulting in numbers
qf,α = sf,α

s′
f,α

representing the factor by which we could

expect a decision tree’s performance to improve as
a result of including feature f . As qf,α is an approx-
imate multiplicative measure of a feature’s quality,
log qf,α is an approximate additive measure.

The problem was now to select the “best” sub-
set of n features. This was made more difficult by
the fact that many of the features contained redun-
dant information–for example, the minimum distance
to VIL over 22.5 over the angle range [0, π] is the
minimum of the same quantity calculated over each
of the two angle ranges

[
0, π

2

]
and

[
π
2 , π

]
. Includ-

ing redundant features would be wasteful. Hence,
we imposed a constraint that the chosen features
be non-intersecting–that is, none of the echo top
distance features could be taken over intersecting
angle ranges, none of the VIL proportion features
could be taken over intersecting spatial regions and
grid value ranges, and so on. Of course, differ-
ent types of features could intersect freely–echo top
distance features could intersect VIL distance fea-
tures, VIL distance features could intersect VIL up-
per bound features, etc. These constraints were for-
mulated as a linear programming problem, the ob-
jective of which was to maximize the sum of log qf,α

over each chosen feature (we used the classification
error qualities qf,c), subject to the constraints that
at most n features could be chosen, and that they
must be non-intersecting. This problem was then
solved using the COIN-OR simplex solver (http:
//www.coin-or.org/Clp/ ).

6

http://www.coin-or.org/Clp/
http://www.coin-or.org/Clp/


4d. Random Forest

Once the features had been selected (see the re-
sults below), a random forest was trained on each
training set, and its output (along with the asso-
ciated “true” peak EDR reading) was recorded for
each point in the associated testing set. In our im-
plementation, the forest consisted of 500 randomized
decision trees, each of which made a prediction of
the turbulence class at each point based on the se-
lected features. The output at each point therefore
consisted of the number of decision trees that had
“voted” for each class. It is important to note, how-
ever, that the distribution of randomized decision tree
votes at a particular point does not give a true prob-
ability distribution on the peak EDR readings at this
point.

In a pure classification problem, one would typi-
cally take the mode of this “distribution” to be the al-
gorithm’s prediction. In the present application, how-
ever, we are interested not in the “most likely” turbu-
lence reading (which is overwhelmingly likely to be
null), but in the risk that the turbulence is above a
certain threshold. Taking the distribution of random-
ized decision tree votes as the output of the algo-
rithm enables us to explore the interplay between the
false positive and false negative rates of our predic-
tions using ROC curves, and would further permit us
to make “pure classification” predictions by balanc-
ing some cost, for each turbulence reading, of a false
positive or a false negative. In an operational algo-
rithm, these ROC curves would be used to select a
threshold (or thresholds) appropriate to the applica-
tion.

5. RESULTS

5a. Feature Selection

Due to a software bug, the “quality” ratios defined
above were not calculated for the distance features.
Fortunately, there were few enough such features
(2016) that it was relatively straightforward to man-
ually select a subset of 144 that could be expected to
well summarize the data contained in the complete
set. With this done, 481 RUC, upper bound and pro-
portion features were selected using the approach
outlined in section 4c, using the quality estimates de-
rived from classification error. Combining these led
to a final set of 625 features. As was previously men-
tioned, none of the four “timing” features (the current

Selected Not selected
Altitude Wind Azimuth

Wind Velocity CLWMR
VPTMP SNMR
MIXR TKE
VVEL TSOIL

RWMR PRATE
ICMR NCPCP
GRMR ACPCP
NCIP PWAT

MSLMA POT
SHTFL CAPE

CIN

Table 1: Selected/not selected RUC features. The al-
titude, wind azimuth and wind velocity are not “true”
RUC features–the altitude field was derived from the
pressure altitude contained in the in-situ packet, cor-
rected to a mean-sea-level (MSL) altitude using the
RUC data. The wind azimuth and velocity were de-
rived from the UGRD and VGRD RUC grids.

month, and the grid ages) were selected. The se-
lected RUC features are listed in table 1.

It was decided that the classification error was the
natural metric to use when optimizing the random
forest, since the goal of this research is to produce a
classification (i.e., turbulence probability) algorithm,
not a regression algorithm. However, squared er-
rors are more natural for human inspection of fea-
ture quality. Figure 2 contains a plot of the esti-
mated quality of the features in one particular dart-
board (one of 2688 such dartboards for the various
resolutions and thresholds), using the squared error
metric. The most notable property of this plot is that,
for the vast majority of features, randomized deci-
sion tree performance was hurt, rather than helped,
by their inclusion. Such features will henceforth be
called “bad”, and, by extension, features the inclu-
sion of which tended to improve decision tree per-
formance will be called “good”. The dominance of
bad features is by no means unique to this plot: in
fact, only about 14% of all features were good, as
measured using the squared error metric. This is
likely due to the notorious tendency of decision trees
to overfit their training sets. We can also see that
the best features tended to be upwind of the point
at which turbulence was to be predicted, which is
again true in general (approximately 62% of all good
features were upwind). This validates our decision

7



−300 −200 −100 0 100 200 300

−
30

0
−

20
0

−
10

0
0

10
0

20
0

30
0

Cloud top upper bound
Distance range = 20km

Angle range = 0.392699081698724

Figure 2: Plot of “cloud top upper bound” feature
qualities. The wind direction is the gray line point-
ing upwards. Each point represents a single feature
computed over a region centered on the point. Red-
der points are worse, and bluer are better. Circled
points are “good”, as defined in section 4c.

to orient the dartboards by the RUC model winds.

It was also observed that for the upper bound fea-
tures, as illustrated in figure 3, the vast majority of
good features were close to the target point (63%
within 100km, 88% within 200km). For proportion fea-
tures, as shown by figure 4, this was not the case–
the good features were roughly evenly distributed
over distance ranges. This is possibly due to the fact
that nearby features cover a smaller area than more
distant ones, so that for proportion features, which
would seem to be most appropriately used for es-
timating the size of a storm, the diminishing impor-
tance of the more distant features is offset by their
increasing extent. For upper bound features, which
one would expect to be most useful for estimating a
storm’s intensity, there is no such trade off.

Finally, the reader may have noted that in figure
2, while the best features are upwind and nearby
and distant features in all directions are largely irrel-
evant (note their gray tint in the plot), the worst fea-
tures seem to be concentrated downwind, and close
to the target point. This may be due to the afore-
mentioned tendency of decision trees to overfit–one
would expect nearby features in all directions to be
correlated with turbulence, if only because if an air-

Histogram of distances to good upper bound features

Distance (km)

P
ro

po
rt

io
n

0 50 100 150 200 250 300

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

Figure 3: Histogram of distances to “good” upper
bound features (both VIL and echo top).

Histogram of distances to good proportion features

Distance (km)

P
ro

po
rt

io
n

0 50 100 150 200 250 300

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

Figure 4: Histogram of distances to “good” propor-
tion features (both VIL and echo top).

8



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

PeakEDR>0.10 (Area=0.88)
PeakEDR>0.20 (Area=0.88)
PeakEDR>0.30 (Area=0.86)
PeakEDR>0.40 (Area=0.84)
PeakEDR>0.50 (Area=0.78)
PeakEDR>0.60 (Area=0.68)
PeakEDR>0.70 (Area=0.73)

Figure 5: ROC curves of the performance of the ran-
dom forest algorithm in differentiating points with in-
situ peak EDRs less than certain thresholds from
those with peak EDRs above, where the testing
set has resampled EDR classes distributed approxi-
mately geometrically with parameter 1

2 .

plane is inside a thunderstorm, it will by definition
be surrounded by cloud. Hence, a decision tree will
naturally use these features to discriminate between
different turbulence intensities. However, these fea-
tures may have little predictive value, since as one
might expect, and as has been suggested by the fea-
ture selection results, it is primarily the upwind fea-
tures that have a causal relationship with turbulence.
This might explain the low quality scores of these
downwind features–perhaps they were considered
important by the decision tree during training, but
were found during testing to have led to erroneous
turbulence predictions.

5b. Prediction Algorithm Performance

Once we had selected the 625 most useful features,
seven random forests of 500 randomized decision
trees were trained, one on each of our seven train-
ing sets. Each testing set was then run through the
random forest that had been trained on the corre-
sponding training set. From the resulting forest out-
put at each testing point, one can easily calculate
the proportion of trees that predicted an EDR read-
ing above some threshold e–this will be represented
as Q

(
E > e

)
. For each e, one may then produce a

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC
(dataset resampled to true peak EDR distribution)

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

PeakEDR>0.10 (Area=0.88)
PeakEDR>0.20 (Area=0.95)
PeakEDR>0.30 (Area=0.96)
PeakEDR>0.40 (Area=0.93)
PeakEDR>0.50 (Area=0.86)
PeakEDR>0.60 (Area=0.72)
PeakEDR>0.70 (Area=0.88)

Figure 6: ROC curves of the performance of the
random forest algorithm in differentiating points with
in-situ peak EDRs less than certain thresholds from
those with peak EDRs above, where the testing set
has EDR classes distributed approximately accord-
ing to their true distribution in the in-situ stream.

ROC curve by varying another threshold t from 0 to
1, counting a positive detection of turbulence of in-
tensity greater than e whenever Q

(
E > e

)
> t and

a negative detection when Q
(
E > e

)
< t. Figure 5

contains ROC curves of the algorithm’s performance
computed in this manner.

Recall that our dataset had been resampled in
such a way that high peak EDR readings were over-
represented, relative to their true proportion in the
in-situ turbulence reports. In order to see how well
this algorithm would perform in a “real-world” setting,
the testing sets were resampled to contain true peak
EDR readings distributed according to the original
distribution of the in-situ peak EDR reports. Figure
6 contains the resulting ROC curves. The marked
improvement in these results indicated by the higher
true positive rates and lower false positive rates may
initially be surprising, since one might expect that a
ROC curve should be approximately invariant under
resampling of the two classes that it is comparing. It
is important to note, however, that by resampling our
dataset, we are not only changing the total number
of examples, but are also changing the proportions
among categories, which directly affects the contin-
gency tables on which the ROC plots are based.

9



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC
(distinguishing only adjacent peak EDR values)

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

PeakEDR=0.05/0.15 (Area=0.83)
PeakEDR=0.15/0.25 (Area=0.71)
PeakEDR=0.25/0.35 (Area=0.62)
PeakEDR=0.35/0.45 (Area=0.60)
PeakEDR=0.45/0.55 (Area=0.54)
PeakEDR=0.55/0.65 (Area=0.38)
PeakEDR=0.65/0.75 (Area=0.66)

Figure 7: ROC curves of the performance of the
random forest algorithm in differentiating between
points with in-situ peak EDRs in each of two adja-
cent classes.

The observation that the shape of ROC curves
may change drastically in response to changes in the
distribution of the testing set suggests that it might
be worthwhile to create a series of ROC curves that
will be invariant under a resampling of the testing
data based on peak EDR readings. Figure 7 con-
tains ROC curves of the performance of the random
forest where the task is not to differentiate between
those points containing peak EDR readings below
some threshold, and those above–rather, the task
here is to differentiate between the two classes of
points determined by two adjacent EDR readings.
These ROC curves, it may be hoped, will be easy
to compare with those produced by any future algo-
rithms that validate their performance using in-situ
EDR readings, regardless of how the testing set is
sampled.

One would expect differentiation of adjacent peak
EDR readings to be significantly more difficult than
merely differentiating “high” from “low”, and indeed
the ROC curves in figure 7 bear out this expectation,
though most of them show reasonably good skill, for
such a difficult task, particularly in the important dis-
tinction between light and moderate turbulence.

The fact that the ROC curve for differentiation be-
tween peak EDR readings of 0.55 and 0.65 is nega-
tive is surprising, and may be due in part to the small
number of high-turbulence training examples and the

Threshold NTDA RF (5) RF (6)
0.10 0.64 0.88 0.88
0.30 0.74 0.86 0.96
0.50 0.78 0.78 0.86
0.70 0.86 0.73 0.88

Table 2: Areas under the ROC curves for discriminat-
ing in-situ peak EDR readings below certain thresh-
olds from those above. The “RF (5)” and “RF (6)”
columns contain the areas under the ROC curves in
figures 5 and 6, respectively.

small relative difference between these turbulence
levels. The comparatively high performance of the
algorithm in differentiating between points with peak
EDRs of 0.65 from those of 0.75 is easier to explain.
In the in-situ feed, the 0.75 class contains all points
with peak EDR readings of 0.70 or higher. Thus, it
contains a number of extremely high, and hence dis-
tinctive, turbulence cases.

5c. Comparison with NTDA

Figure 12 in Williams, J. K. et al. (2005) contains
ROC curves measuring the performance of an ex-
perimental version of the NTDA in discriminating be-
tween peak EDR readings above and below certain
thresholds (0.10, 0.30, 0.50 and 0.70,representing
light, moderate, severe and extreme thresholds).
The testing set used in the NTDA validation was
sampled from in-situ EDR reports without regard
to their peak EDR values, except that out-of-cloud
cases (where there was no NTDA data available)
were ignored. As was previously noted, it was ob-
served that, in the vicinity of storms, peak EDRs ap-
pear to be distributed approximately geometrically,
with parameter 2

3 . Since figure 5 was created using
a testing set for which peak EDR readings were dis-
tributed geometrically with parameter 1

2 , while figure
6 was created using a testing set where the distribu-
tion of peak EDR readings was approximately equal
to their true frequency in the in-situ EDR stream,
one would expect the distribution of peak EDRs in
the NTDA validation set to lie somewhere between
these two extremes. Table 2 contains a comparison
of the areas under the ROC curves from the NTDA
validation paper, and those in figures 5 and 6. Al-
though ROC curves from different datasets may not
be directly comparable, the random forest developed
in this paper appears to outperform the NTDA in the
prediction of light (a threshold of 0.10) or moderate

10



(0.30) turbulence, was slightly better than NTDA at
the prediction of severe (0.50) turbulence, and was
slightly worse at the prediction of extreme (0.70) tur-
bulence. These results are striking when one con-
siders that the NTDA is a direct detection algorithm.
Of course, a more meaningful comparison between
the two algorithms would require testing their per-
formance on precisely the same datasets. but this
comparison has not yet been performed.

6. SUMMARY AND FUTURE
WORK

A machine-learning technique has been presented
for effectively predicting atmospheric turbulence
based on RUC model data and the two-dimensional
Unisys grids of VIL and echo tops. Evaluation re-
sults show that it compares favorably to an existing
turbulence detection algorithm, and the ROC perfor-
mance curves suggest that it could be a valuable
operational product. It has long been understood in
the AI community that perhaps the key component to
the successful application of a machine learning al-
gorithm to a particular problem is the choice of “the
right set of features”, and it appears that, in this par-
ticular case, the wide-area features computed from
the Unisys grids, as described in section 4a, are ap-
propriate to the task of turbulence prediction. With
this said, the feature selection algorithm of section 4c
leaves much to be desired. The most obvious route
to improving the random forest turbulence predic-
tion algorithm would be to implement the “straightfor-
ward” feature-selection technique described in sec-
tion 4c.

Improvement might also be achieved by providing
the random forest with a richer set of features, for
instance, features derived from NTDA data, satellite
data, or raw Doppler radar data. When provided with
three-dimensional radar data, such as the radar re-
flectivity, velocity, or NTDA data, it seems reasonable
to expect that the performance of a properly trained
random forest could only improve. In addition, a ran-
dom forest based on radar data might be used to
improve the performance of the NTDA itself, thus of-
fering the prospect of providing better in-cloud tur-
bulence measurements to the random forest turbu-
lence prediction algorithm.

Unfortunately, there are significant challenges to
the inclusion of three-dimensional data, the greatest
of which is simply its size–for instance, the raw radar

data to cover our current 1-year, CONUS dataset
would occupy several terabytes. Using 3-D mosaic
grids of the radar data would make storing it more
tractable, and such grids would also be necessary
to collect the dartboard data using an algorithm like
the one described in section 4a. Since the Doppler
radar dartboards would be three-dimensional, the
number of candidate features would potentially be
much higher than the corresponding number for the
2-D Unisys grids, making an alternative to the linear-
programming feature selection method presented
here particularly desirable.

To use the random forest operationally would re-
quire implementing it in a real-time system. Effi-
ciency and parallelism have been key considerations
at every step of its development, and it seems pos-
sible that, with sufficient computational resources, it
could be used to generated high-dimensional turbu-
lence grids every five minutes over the continental
United States. These grids, like those of GTG or
NTDA, could then be used to provide turbulence in-
formation to airline dispatchers, pilots, and air traffic
managers. Due to the success that has been shown
at this early stage, it seems reasonable to expect
that such a system would show impressive perfor-
mance.

Acknowledgement Thanks to Valliappa Laksh-
manan of NSSL for making his AMS Latex style file
available on the web.

Acknowledgement This research is in response
to requirements and funding by the Federal Avia-
tion Administration (FAA). The views expressed are
those of the authors and do not necessarily repre-
sent the official policy or position of the FAA.

References

Breiman, L., 2001: Random forests. Machine Learn-
ing, 45, 5–32.

Cornman, L. B., Meymaris, G., and Limber, M.,
2004: An update on the FAA aviation weather re-
search program’s in situ turbulence measurement
and reporting system. 11th AMS Conference on
Aviation, Range, and Aerospace Meteorology .

Cornman, L. B., Morse, C. S., and Cunning, G.,
1995: Real-time estimation of atmospheric turbu-

11



lence severity from in-situ aircraft measurements.
Journal of Aircraft , 32, 171–177.

Hastie, T., Tibshirani, R., and Friedman, J., 2001:
The Elements of Statistical Learning. Springer-
Verlag, New York, NY.

Sharman, R., Tebaldi, C., Wiener, G., and Wolff, G.,
2006: An integrated approach to mid- and upper-
level turbulence forecasting. Weather and Fore-
casting, 21, 268–287.

Williams, J. K., Cornman, L. B., Yee, J., Carson, S.
G., and Cotter, A., 2005: Real-time remote de-
tection of convectively-induced turbulence. 32nd
AMS conference on radar meteorology .

A. CALCULATION OF WIDE-
AREA FEATURES

The data structure which was used to accelerate
the calculation of wide-area features is related to a
quadtree. For an n × m input grid G, where the el-
ement in the ith row and jth column will be repre-
sented as (G)i,j , we may define two sequences Lk

and Uk of size nk ×mk, each element of which is a
lower (respectively upper) bound on a sub-grid of G.
First, let L0 = U0 = G, n0 = n and m0 = m. Then,
iteratively define for k ≥ 0:

nk+1 =
⌈

1
2
nk

⌉
mk+1 =

⌈
1
2
mk

⌉
(Lk+1)i,j = min

i′ ∈ {2i, 2i + 1}
j′ ∈ {2j, 2j + 1}

(Lk)i′,j′

(Uk+1)i,j = max
i′ ∈ {2i, 2i + 1}
j′ ∈ {2j, 2j + 1}

(Uk)i′,j′

with the understanding that elements of the min/max
that are outside the bounds of Lk and Uk are ig-
nored. Once Lk and Uk are 1 × 1 grids, we stop.
We define K as the smallest value of k for which
nk = mk = 1.

This data structure allows us to compute a number
of features of interest quickly. The general method of
doing so is to search for the set of all grid points sat-
isfying some property by first finding some candidate

regions using the bounds contained in the coarsest
grids, then progressively refining our search on ever-
finer bound grids. For example, for some point p and
region of space S (represented as a set of pairs of G-
indices), we may find the distance from p to the clos-
est point in S with a value larger than some thresh-
old, α, as follows. First, define:

Hk,i,j =
{

(i′, j′) ∈ N2 :
2ki ≤ i′ < 2k (i + 1)
2kj ≤ j′ < 2k (j + 1)

}
This will be exactly the set of indices of points in
G that were used to calculate (Lk)i,j and (Uk)i,j

(again, with the understanding that points outside
the bounds of G are ignored). Now let d

(
p, i, j

)
be a

metric giving the distance from a point p to a grid
point

(
G

)
i,j

, and suppose (as is the case for the
great-circle distances used in our implementation)
that we may quickly find lower and upper bounds on
the distance to the points in Hk,i,j :

lk
(
p, i, j

)
≤ min“

i′, j′
”
∈Hk,i,j

d
(
p, i′, j′

)
uk

(
p, i, j

)
≥ max“

i′, j′
”
∈Hk,i,j

d
(
p, i′, j′

)
We will define a sequence of lists AK , AK−1, . . . , A0,
each of which contains the region of the grid in which
we are “interested” at each iteration. Let AK =
{(0, 0)}, representing that initially we will search over
all grid points in HK,0,0–namely, the entire grid. We
may now define an iteration for k : 0 ≤ k < K. First:

bk = min

uk+1 (i, j) :
(i, j) ∈ Ak+1

(Lk+1)i,j ≥ α

Hk+1,i,j ⊆ S


This will be an upper bound on the distance to some
point that we know is inside S, and is no smaller
than α. If the set over which the minimum is taken is
empty, let bk = ∞. We may now define:

Ak =

(i, j) :

(⌊
1
2 i

⌋
,
⌊

1
2j

⌋)
∈ Ak+1

(Uk)i,j ≥ α

lk (p, i, j) ≤ bk

S ∩Hk,i,j 6= ∅


This will be exactly the set of regions of interest in
the “next” set of bounds that could possibly contain
points larger than α inside S that are closer than bk.

12



This completes the definition of a single iteration. We
perform these iterations until we have computed A0,
which contains a list of grid points with thresholds
larger than α (since U0 = G) that are inside S (since
Hk,i,j = {(i, j)}); if this set is nonempty, one of its
members is the closest point. We now simply com-
pute the distance to each point, and choose the one
nearest to p.

In practice, due to the smoothness of the input
grids in question G (Unisys VIL and echo tops),
the lower and upper bounds are frequently close to-
gether (especially for the finer grids, though to some
extent in all of them), which enables us to rule out
large regions of the grid in early iterations using
both to the distance bound bk (which is defined us-
ing the grid-value lower bound Lk+1), and the grid-
value upper bound Uk (in the definition of Ak for
0 ≤ k < K). Similar (though slightly more compli-
cated) algorithms were developed to use this data
structure to quickly compute the largest grid value in
some region and the proportion of the points in some
region having values in a prescribed interval.

13


	INTRODUCTION
	DATA
	Output Data
	Input Data

	RANDOM FORESTS
	TURBULENCE PREDICTION ALGORITHM
	Features
	Data Sets
	Feature Selection
	Random Forest

	RESULTS
	Feature Selection
	Prediction Algorithm Performance
	Comparison with NTDA

	SUMMARY AND FUTURE WORK
	CALCULATION OF WIDE-AREA FEATURES

