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1. INTRODUCTION1

 
    It is a common experience that OSSE 
experiments are more optimistic (give better 
forecast impacts) than real observation 
experiments. This is generally attributed to the fact 
that in OSSEs the model errors are neglected (or 
at least they are known). Another difference 
between OSSEs and real observation 
experiments, however, is that the observation 
error statistics are perfectly known in the OSSEs 
but not in real forecast experiments.    
    Recent diagnostic work within 3D-Var and 4D-
Var (Desroziers et al, 2005, Talagrand 1999, 
Cardinali et al. 2004, Chapnik et al. 2006, and 
others) suggest that innovation and other statistics 
can be used to diagnose observation and 
background errors a posteriori. Miyoshi (2005) 
reported the use of the innovation statistics to 
estimate the background error inflation factor 
online within the Local Ensemble Transform 
Kalman Filter (Hunt et al, 2006, LETKF). Although 
the results were satisfactory this online estimation 
method relies on the assumption of the perfectly 
known observational errors. 
    Here we propose to adaptively estimate 
observational errors (for each type of instrument) 
and the inflation coefficient for the background 
error simultaneously within the LETKF. We will 
use the diagnostics in Deroziers et al. (2005) to 
estimate the background and observation errors, 
and adopt the method of Miyoshi (2005) to 
perform it adaptively within the LETKF, rather than 
a posteriori.  
 
2. METHODS 
 
2.1 Diagnosis of observation and background 
error statistics by Desroziers et al (2005)  
     
    Desroziers et al (2005) have explored the 
method to diagnose the observation and 
background error statistics in 4DVAR. They 
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showed that for a system with perfectly tuned 
statistics: 
< do−ado−b

T >= R                     (1)                 

                       (2)                 < da−bdo−b
T >= HBHT

R and B are the observation and background error 
covariance respectively. ( ) are the 
difference between the observation and analysis 
(forecast), and  is the difference between 
analysis and forecast.  
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    Therefore they can estimate the observation 
and background error variances by: 
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p is the number of observations. The tildes in (3) 
and (4) indicate that this estimate is only 
approximate because it is based on the use of 
(generally incorrect) specified values for the 
observation and background error variances. In 
Desroziers et al 2005 equations (3) and (4) are 
estimations done offline, which allows the use of a 
large enough number of samples. They suggest 
schemes to estimate iteratively the true value of 
the observation and background variances from 
(3) and (4). 
     Unlike 3DVAR or 4DVAR, the background 
error covariance in LETKF is updated from the 
ensemble perturbations every analysis time step, 
rather than specified. However, the estimated 
background error covariance usually slightly 
underestimates the true forecast error covariance 
due to the limited number of ensemble members. 
Multiplicative (or additive) covariance inflation 
scheme is a simple and common method to avoid 
this problem (e.g., Anderson and Anderson 1999, 
Whitaker et al, 2006). However, tuning the inflation 
parameter is expensive, and there is no reason to 
think that it should be constant. We can adapt 
equation (4) to objectively estimate the inflation 
parameter using  



< da−bdo−b
T >= (1+ ∆)HP f HT               (5) 

Here  is the time-dependent background error 
covariance and  is the inflation parameter 
required in LETKF. We can estimate  as 
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2.2 Adaptive estimation of covariance inflation 
 
    Miyoshi (2005) proposed another diagnostic 
based on observation-minus-background to 
adaptively estimate the inflation coefficient in 
EnKF. For a system with correctly specified 
inflation and observational error covariance, 
< do−bdo−b

T >= (1+ ∆)HP f HT + R        (7) 
Therefore, an estimate of the inflation can be 
obtained from 
 

 

%∆ =
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T do−b − sum(R)
sum(HPfH)

−1                   (8) 

     
    It is clear in order for this method to correctly 
estimate the inflation parameter it is necessary to 
correctly specify R. Miyoshi (2005) estimated the 
inflation parameter adaptively at each analysis 
time step. However, the number of samples 
available at each step is not enough, introducing a 
large sampling error. Therefore, he used a simple 
scalar KF approach usually used to postprocess 
model output (Kalnay, 2003, Appendix C) to 
accumulate past information and make the 
inflation gradually converge to the optimal value 
while still allowing for time variations. In addition, 
in order to avoid an unrealistically large sampling 
error that may occur and abruptly ruin the KF 
estimation, he imposed reasonable upper and 
lower limits in the estimation of ∆ , e.g., 

. 0.0 ≤ ∆ ≤ 0.2
    To adaptively estimate within EnKF, he 
calculated the inflation at each time step by using 
(8), and regarded it as an observed

∆

∆o  for the 
current time step. Instead of directly using it as the 
final estimation for that time step, he used the 
simple scalar KF approach to best combine ∆o  
and , the value derived by persistence from the 
previous time step, to get a new estimate denoted 
as the analysis : 
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where / denotes the forecast/observational 
error variance weights for the scalar KF. The error 
variance of 
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Assuming persistence as the forecast model for 
the inflation parameter, and allowing for some 
error in the “persistence forecast” (Kalnay, 2003, 
Appendix C), we have: 
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    In this study, we use equation (3) to adaptively 
“observe” the observational error variance , and 
use either (6) or (8) to obtain the “observed” 
inflation 

%σ o
2

%∆o  at each analysis time step. Then we 
use the simple scalar KF approach to make the 
best estimate of  and2

oσ ∆ . 
 
3. IMPLEMENTATION ON LORENZ 96 MODEL 
 
    First we test our approach with LETKF in 
Lorenz 96 40-variable model (Lorenz and 
Emanuel, 1998). The model time step is dt=0.025 
and observations are assimilated with LETKF 
every 3dt. We integrate the model for 15000 steps 
to get the true state. At every analysis step we 
simulate the observations by adding the Gaussian 
random noise with standard deviation 1 to the 
‘true’ state. Since the noise is uncorrelated, the 
true observation error matrix is diagonal, 
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    We run the Lorenz 96 model for total 5000 
analysis steps and only the last 2000 steps are 
used to calculate the analysis error and the online 
estimated and 2

oσ ∆  
 
3.1 Perfectly specified observation variance 
     
    We first assume that the observation error 
variance is perfectly known, i.e., the specified 
value is = =1. In this case we do not 

need estimate the R matrix, but we estimate 
inflation parameter adaptively using either 
equation (6) or (8) followed by the simple KF 
method. Table 1 shows that these two equations 
give similar results with estimated  around 0.1 
and an analysis error of about 0.27. This 
experiment will serve as a benchmark for the later 
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experiments where   is not perfectly specified 
anymore. 

2
oσ

 
Table 1 Time mean of online estimated inflation 
parameter  and the corresponding analysis error, 
averaged over the last 2000 analysis steps in the case 
the true observational error variance is perfectly known. 
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Eq (6)  1 0.096 0.264 
Eq (8) 1 0.101 0.270 

 
     
3.2 Wrongly specified observation error 
variance 
      
    In reality we do not perfectly know the true 
value of the observation error variance, and the 
specified value used in the analysis is only an 
estimate. Our second experiment with the 
Lorenz96 model is to use an inaccurately specified 

 which is ten times larger than the true , 

and keep it constant throughout the analysis, as 
done in practice. With this wrongly specified , 
the LETKF will give too small weight to the 
observations. Therefore the observation 
information is not correctly used and the analysis 
is far from optimal. From table 2, we can see the 
analysis rms errors are much bigger than those 
from the benchmark run. In this experiment when 
we use equation (6) or (8) to estimate the inflation 
parameter, we have confined the estimated 
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∆ to 
a reasonable range, . Without this 
restriction, the estimated 

0.0 ≤ ∆ ≤ 0.2
∆ will be less than zero 

which makes the model blows-up. 
 
Table 2: Time mean of online estimated inflation 

parameter ∆  and the corresponding analysis error, 
averaged over the last 2000 analysis steps in the case 

the specified observation variance  is ten times 

larger than the true  
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Eq (6) 0.002 0.799 
Eq (8) 

 
10.0 0.008 1.088 

 
  
3.3 Adaptive estimation of both the inflation 
and the observation error variance 
 

    We have seen that neither equation (6) nor (8) 
work when estimating the inflation parameter if the 
specified observation error information is wrong. In 
the third experiment, we estimate the observation 
variance and inflation simultaneously adaptively by 
using equation (3) and (6) or (8) followed by the 
simple KF method.  

Table 3 shows that no matter how poorly the 
initial specified  is (ten times larger or ten 

times smaller than the true ), equation (3) has 
the ability to correct it. The time mean of estimated 

 over the last 2000 analysis step is essentially 

the same as the true . Since R matrix is 
corrected, we can obtain a reasonable estimated 
inflation 
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∆  which is about 0.1 for all the cases in 
table 3. Therefore the analysis rms errors are very 
small, and similar to those in the benchmark 
experiment.    

 
Table 3, Time mean of online estimated observation 

variance , inflation parameter σ o
2 ∆  and the analysis 

error, averaged over the last 2000 analysis steps in the 

case of initially wrong observation variance  but 

estimating and correcting it adaptively online. 
)(

2
inioσ

 
R 

method 
∆  

method )(
2

inioσ
 

σ o
2  ∆  rms 

Eq (6) 0.999 0.098 0.263 

Eq (8) 

 

0.1 1.001 0.101 0.265 

Eq (6) 1.001 0.097 0.266 

 

 

Eq(3) 

 Eq (8) 

 

10.0 0.999 0.100 0.265 

 
 
4. IMPLEMENTATION ON SPEEDY MODEL 

 

In this section we will test our approach on a 
more realistic model. The SPEEDY model (Molteni 
2003) is a recently developed atmospheric general 
circulation model (AGCM) with simplified physical 
parameterizations that are computationally 
efficient, but that maintain the basic characteristics 
of a state-of-the-art AGCM with complex physics.   

The observations are obtained by adding zero 
mean normally distributed noise to the true state 
which is the two-month integration of the SPEEDY 
model from Jan 1 to Feb 28 in 1982. The 
observations are available on the model grid at 
every 4 grid points. The observed variables are 



zonal wind (u), meridional wind(v), temperature(T),  
specific humidity(q) and surface pressure (Ps) with 
error standard deviations of 1 m/s, 1m/s, 1K, 10-4 
kg/kg and 100pa, respectively. 

We double the true observational errors to get 
our first guess of the observational errors. Within 
LETKF, we estimate and correct these initially 
wrong observational errors every analysis time 
step (6-hour). We estimate the observational error 
covariance for each observed variable separately. 

From the experiments of Lorenz96 model, we 
have seen as long as the observational error is 
corrected, we can get similar result whatever we 
use equation (6) or (8) to estimate the inflation 
parameter. Therefore here we will only test 
equation (8). 

Fig.1 shows the online estimated 
observational errors for each observed variable. 
The experiment starts from wrong observational 
errors with 2 m/s for u and v, 2K for T, 2*10-4 kg/kg 
for q and 200 pa for Ps. After about 28 analysis 
time steps, i.e. one week, the estimated 
observational errors are already very close to their 
corresponding true values.  As a result, we can 
get good analyses for all the variables. We 
compare the analysis errors from this estimating R 
experiment with those in which R is perfectly 
known, we find our approach for estimating R 
works very well. Although the RMS errors are a 
slightly larger than those from the perfect R case, 
they are already quite good (Fig. 2).         

 
  Fig.1 Time series of online estimated 
observational errors of u, T, q, and Ps for the first 
50 analysis time steps (corresponding to 00z Jan 
1 through 06z Jan 13, 2004)  

      

 

500 hPa Temperature 

 

 

500 hPa Geopotential height

Fig.2 Time series of global averaged analysis 
RMS error of 500hPa temperature and 
geopotential height for January and February 2004 
with the inflation estimated adaptively, in the cases 
of using a perfectly specified R (red) and using an 
initially wrong R but also estimating it adaptively 
(green).  

 

5. CONCLUSIONS AND FUTURE WORK 
    The accuracy of an analysis system is 
dependent on appropriate statistics for observation 
and background errors. For ensemble based 
Kalman filter, tuning the inflation parameter is 
expensive. The online estimation method can 
objectively estimate the covariance inflation 
parameter but requires the appropriate information 
of observational errors. In this study, we estimate 
observational (for each type of instrument) errors 
and the inflation coefficient for the background 



error simultaneously within LETKF. The results 
show the online (adaptive) estimation of inflation 
parameter alone does not work without estimating 
the observational errors.  Estimating both of them 
simultaneously our approach works well and can 
be applied to other ensemble based Kalman 
filters. 

    Currently, we are extending our approach to 
estimate off-diagonal terms in the observation 
error covariance, since so far we have only 
estimated the observational error variance. For 
some observations, like satellite retrievals, we 
have to account for the cross-correlations between 
observations. With our approach we hope to be 
able to adaptively estimate the correlations. We 
will test this first on the Lorenz96 and then the 
SPEEDY model.   
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