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1. INTRODUCTION 
 

In many river basins worldwide the time 
from rain reaching the ground to the arrival 
of the peak flow at a flood-sensitive point 
can be short, in some cases only a matter 
of minutes. The result, if the flood peak is 
large enough, is known as a flash flood 
which can bring death and destruction 
rapidly without warning. 

 
Floods such as these may be induced by 
an isolated extreme rainfall event, two 
moderate rainfall events occurring with a 
short separation time, rainfall with 
snowmelt or the sudden release of water 
from a glacier or a dam either manmade or 
created through debris accumulation. 
During these events rainfall 
measurements are usually required every 
15 minutes or less, and forecasts of 
rainfall at ½ hour, preferably more often, to 
allow hydrological models to update 
steamflow predictions constantly (for 
review see Collier, 2007). Rivers with 
longer response time are, in general, not 
as demanding, and for large river basins 
flow measurements upstream may provide 
adequate forecasts of downstream flows. 
The directions in which storms move, and 
the coincidence of peak flows from 
tributaries, also impact floods, and require 
knowledge of the actual and forecast 
distribution of precipitation. 
 
A wide range of hydrological models have 
been developed over many years. Simple 
Input-Storage-Output (ISO) or transfer 
function models may work well over 
restricted areas and time periods if 
appropriate model parameter optimisation 
procedures are adopted, but the rainfall-
runoff process is non-linear and time 
variant restricting model applicability in 
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some situations. However, as model 
structures become more complicated  the 
impact of physical processes and spatial 
heterogeneity become more evident, and 
so it is not necessarily true that complexity 
improves flood prediction reliability (for a 
review see Beven, 2001). 
 
Model parameter updating procedures 
have been developed in which one or 
more model parameters are varied in real-
time in the light of recent model 
performance. In this way, real-time 
correction factors provide a constant 
check on flow predictions. Unfortunately 
the range of parameter updating 
possibilities is large, and procedures may 
become complex if a high level of reliability 
is to be achieved. There remains an 
urgent need to provide operational 
hydrologists with the means of assessing 
the validity or otherwise of flow forecasts if 
reliable and timely flood warnings are to 
be made. In his paper we describe one 
approach to assessing the quality of flow 
forecasts prepared using radar or 
raingauge information. 
 
2. THE NEED FOR CONFIDENCE 
INDICATORS 
 
Although there has been considerable 
progress in improving the quality of radar 
estimates of rainfall problems remain. The 
unpredictable nature of radar errors 
continues to discourage many operational 
hydrologists from using radar data 
quantitatively as input to models. The 
tendency has been to wait for all errors to 
be removed. Unfortunately it is unlikely 
that all errors will be removed for a very 
long time if at all. One should recall that 
data from raingauge networks remain 
prone to errors even after very 
considerable work over very many years. 
Perhaps a more profitable approach is to 
investigate the real-time derivation of data 
quality flags in order to advise users of the 
likely reliability of the radar estimates or 
forecasts derived from them.  
 
Complementary approaches may involve 
the application of stochastic state-space 
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models (see for example Collier and 
Robbins, 2007) to handle the error 
characteristics of rainfall input to 
hydrological models. Whilst work in this 
area continues, data quality flags could 
also be used in such research. 
 
In what follows we investigate one 
approach to the derivation of data quality 
flags based upon the use of a simple 
rainfall-runoff modelling approach. An 
index is tested on data from the United 
Kingdom. 

 
3. HYDROLOGICAL EVALUATION OF 
THE IMPACT OF ERRORS IN RADAR 
ESTIMATES OF RAINFALL 
 
3.1 Hydrograhs derived using radar 
rainfall data 
  
Collier and Knowles (1986) discussed a 
number of cases in which data from the 
Hameldon Hill C-band radar in North West 
England were used as input to an isolated 
event rainfall-runoff model. Hourly radar 
and raingauge totals were used from a 
number of different synoptic situations. 
River hydrographs derived using both the 
radar and raingauges were in near perfect 
agreement in some cases, and in other 
cases there were very wide differences 
due mainly to deficiencies in the input 
radar data. Similar results have been 
found by many authors over the last 20 
years or so (see for example Schulz, 1987, 
Pereira and Crawford, 1995). 
 
To investigate these variations further 
three cases for catchments in North West 
England have been selected for analysis, 
a local thunderstorm situation over the 
Ewood Catchment, River Darwen, a case 
of warm sector orographic rain over the 
River Ribble catchment and a case of 
heavy showery rainfall over the River 
Croal. A fourth case of a radar-based 
rainfall forecast is also analysed as a test 
of the procedure. In the local thunderstorm 
case the radar greatly overestimates the 
rainfall during one particular hour, the 
resulting radar-derived hydrograph peak 
flow being very much an overestimate. 
This overestimate is probably due to the 
presence of hail in the radar beam. For the 
orographic rainfall case the radar 
underestimates the rainfall as much of it 
occurs at very low altitudes, and the peak 
flow is correspondingly underestimated. In 
the shower case the radar underestimates 

the peak rainfall rates, but estimates the 
storm total rainfall quite well.   
 
3.2 Spectral analysis 

 
In order to estimate the characteristic 
frequencies of a rainfall time series, the 
time series may be spectrally analysed to 
identify what frequencies are present 
within it. Figs 1-3 are plots of the 
normalized spectral density (NSD) (see for 
example Wilks, 1995) as a function of time 
period (frequency). 
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Where n is the number of values in the 
time series; k is an integer referring to 
particular harmonics i.e. the kth harmonic; 
Sy is the variance of the time series. 
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The smallest frequency is the fundamental 
frequency, 2 π /n, where n is the number 
of measurements in the 
series, and the highest frequency is the 
Nyquist frequency given by, 
 

Wn/2 =π                     (5) 
 

If the spectrum of the data series includes 
important physical processes that vary 
faster than the Nyquist frequency, the data 
series is said to be undersampled. 
Variations that occur at frequencies higher 
than the Nyquist frequency are spuriously 
attributed to some lower, but 
representative, frequency. These high 
frequency variations are said to be aliased. 
Unfortunately it is not possible to tell from 
the data values alone whether appreciable 
contributions to the spectrum have been 
made at frequencies higher than the 
Nyquist frequency, or how large these 
contributions might be. 
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Normalized spectral density (NSD) 15-16 June 1982
 Ewood catchment, River Darwin
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Figure 1: Spectral analyses of flow 
predictions for raingauge and radar 
time series inputs to an event-based 
hydrological model observed for the 
Ewood catchment, River Darwen, NW 
England 15-16 June 1982 (see Collier 
and Knowles, 1986). 
 
The spectrum of a data series of values 
equally spaced in time may be computed 
analytically from the usual formulae for 
harmonic coefficients (see for example 
Wilks, 1995). This approach has been 
used to produce Figs 1-3. Whilst this is a 
reasonable approach for small datasets, 
large data sets require a more 
computationally efficient technique such 
as the Fast Fourier Transforms (FFTs). 
Unfortunately the way in which spectral 
estimates are calculated may cause them 
to be erratic depending upon the impact of 
aliasing. Even increasing the sample size 
does not give more precise information 
about individual frequencies. This problem 
is illustrated in Fig 1 which also shows the 
spectra for this case calculated using the  
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Figure 2: Spectral analysis for 
raingauge and radar time series for the  
inputs to stochastic hydrological model 
of the Croal catchment NW England, 
10-11 September 2004. 
 
 

Normalized spectral density (NSD) 31 January 1983
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Figure 3: Spectral analyses of flow 
predictions for raingauge and radar 
time series inputs to an event-based 
hydrological model used for the Ribble 
cathment NW England, 31 January-1 
February 1982 (see Collier and Knowles, 
1986). The analyses for the radar data 
are carried out using both analytical 
and FFT techniques. 
 
FFT method. Both spectra are similar in 
magnitude and trend, although the FFT 
method smoothes the more extreme 
fluctuations of those values derived 
analytically. Since we are not concerned 
here with absolute spectral values, the 
FFT approach is quite acceptable. 
In order to extract a characteristic 
frequency from the spectral analyses, the 
derived spectral density values are used to 
weight the frequencies. For Fig 1, a 
thunderstorm case, using an event based 
model employing raingauge and radar 
inputs separately, this gives values of the 
characteristic time period of 2.1 hours for 
the raingauge time series, and 6 hour for 
the radar time series. In this case high 
frequencies are likely to be aliased into 
lower frequencies given the highly variable 
nature of thunderstorm rainfall. Clearly the 
hourly time step is adequate. The radar 
very much overestimates the rainfall for 
one particular hour making the aliasing 
even worse and increasing the 
characteristic time period.  

 
We conclude that a spectral analysis of a 
river flow time series using a radar rainfall 
time series as input may provide useful 
additional information on the likely quality 
of the radar data. This possibility is 
examined further later. 

 
3.3 A data quality index 
 
If both raingauge and radar time series are 
available in real-time, the ratio of peak 
river flows calculated using both is a 
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measure of hydrological impact. However, 
it is desirable to develop a quality index 
which may be derived from radar and 
other data which change more slowly (e.g. 
soil moisture) or change not at all (river 
catchment characteristics). 
 
One possibility is to use a measure of 
maximum-likelihood that identifies whether 
values are part of a specific parameter 
distribution. Rather than use rainfall values, 
the use of peak river flow as a fraction of a 
threshold flow offers a parameter which 
reveals the severity of an event. However, 
we propose that the threshold peak flow is 
taken as the flow having a recurrence 
interval of once per year. This is a 
methodology reported in the Flood 
Estimation Handbook (FEH 1999).  
Observed peak flow divided by the 
threshold flow is designated the POT, 
Peaks Over Threshold. In what follows 
here we calculate the model peak flow 
using radar estimates of rainfall to 
calculate POT for comparison with values 
of the observed POT listed for specific 
catchments in the FEH. The FEH contains 
a comprehensive observed POT dataset 
for stations throughout the United 
Kingdom containing information on the 
maximum, median and arithmetic mean 
river flows and coefficients of variation of 
the series as a fraction (the standard 
deviation divided by the mean flow). We 
define a radar data quality index (QI) in 
terms of the difference between the 
calculated (or observed) POT (POT c/o) 
and the POT for the median observed flow 
for each station within the area of radar 

coverage (POT med) divided by POTmed 
that is,  

 

                 
med

medoc

POT
POTPOT −/         

                                   
     (6) 

 
Table 1 shows the values of QI for the 
observations and model using radar input 
observed in a number of case studies of 
peak flow. The range of QI is from � 1 to 
QImax and is calculating taking POTc/o as 
the maximum value of POT so far 
observed. It might be that the POTc/o value 
exceeds the maximum value previously 
observed or is less than the median value 
of POT, and therefore the QI could take a 
value outside this range. However, in this 
case the likelihood that the values of 
rainfall and river flow are reliable is 
estimated by comparing the minimum and 
maximum values of POT with values 
which would be derived from a Poisson 
distribution over this range, where it is 
assumed that flood events occur randomly 
in time. In fact non-Poissoness is a feature 
of UK POT data and the impact of this is 
being investigated further.  

 
Table 1: POT and QI value for cases of 
thunderstorm, orographic and shower 
rainfall in three catchments in North 
West England,  and a case of extreme 
forecast rainfall over a small urban 
river catchment in north London. 

 
POTc/o 

 

QI* Catchment Rainfall Type Threshold 
Cumecs 

POTmed POTmax

Observed Radar 
model

Observed Radar 
model

Range of 
QI 

Ribble 
 

Orographic 350 1.70 3.49 0.72 0.26 -0.58 -0.84 -1 to + 
1.05 

Darwen 
 

Thunderstorm 11.6 2.64 7.88 1.09 5.47 -0.59 +1.07 -1 to + 
0.85 

Croal 
 

Shower 5.0 11.38 23.89 3.0 4.8* -0.73 -0.31 -1 to + 
1.10 

Silk 
Stream 
London 

Embedded 
convection 
forecast 

4.1 2.85 10.24 - 119.5 - +40.9 -1 to + 
2.59 

 
*Stochastic model used; for other cases 
an event-based deterministic model is 
used. 
+May be converted to a reliability factor 
using the range of QI and a Poisson 
distribution. 

 
Unfortunately equation (6), whilst 
indicating whether the peak flow of the 
hydrograph lies outside the range of 
values which have occurred in the past, 
does not give absolute confirmation that 

QI     =



 5 
 

the peak flow is to be believed. It may be 
that the calculated flow has not ever been 
observed in the past record, but is indeed 
accurate. 
 

 

 
 
Figure 4: Radar-based rainfall and 
hydrograph forecasts for the Silk 
Stream, North London on 24-25 June 
1994 (courtesy Environment agency 
Thames Region) 
 
Fig 4 shows an example of forecast radar 
rainfall and the hydrograph derived using 
these data for a small urban river 
catchment, the Silk Stream in north 
London, on 24-25 June 1994. The QI for 
this case is also given in Table 1. This 
hydrograph was generated in real-time. 
Fortunately the operational hydrologists 
recognised that it was very unrealistic and 
a major flood warning was not issued. 
However, had the radar rainfall been 
somewhat less a difficult decision would 
have been required. It is such extreme 
cases which we must have confidence in 
the veracity of the hydrograph if weather 
radar is to become a totally reliable 
operational tool. The validity of the QI 
must be tested using additional 
information. 
 
We must put aside the rainfall rate volume 
since there is no way yet of objectively 
determining whether its value is correct, 
unless the errors which are present in the 
data are known. This may be possible in 
the future as algorithms have been, and 
are being, developed to test for the 
presence of bright-band (melting snow), 
hail, ground clutter etc. using single 
polarisation, multi-parameter and Doppler 
radar data (see for a review Collier, 1996). 
However, at present, the reliability of these 
algorithms, whilst in some cases being 
individually acceptable, remains 
collectively unreliable for continuous 

objective operational use. Alternatively, 
the frequency of the rainfall time series 
may offer some deterministic method of 
identifying whether an extreme event is 
actually occurring. We assess this 
approach in what follows. 

 
3.4 Spectra of time-domain 
autoregressive models 

 
Rainfall is a continuous variable, and 
therefore the correlation structure of a 
time-series of rainfall measurements may 
be represented by a class of time series 
models known as Box-Jenkins models 
(Box and Jenkins, 1976). The types of 
time dependence produced by different 
autoregressive models generate 
characteristic spectral signatures that can 
be related to the autoregressive parameter 
φ  (see for example Wilks, 1995), which in 
its simplest form is the sample lag one 
autocorrelation coefficient. 
 
The simplest Box-Jenkins model is the 
first-order autoregression {AR(1)} model, 
sometimes called the Markov process. In 
this case positive values of φ  induce a 
memory into the time series that tends to 
smooth over high frequency (small period) 
variations, and emphasize the low 
frequency (long period) variations. This 
leads to more spectral density at low 
frequencies and less spectral density at 
high frequencies, in this case the AR (1) 
process being known as �red noise�. For 
negative values of φ  the opposite is true, 
and an AR (1) process tends to generate 
erratic short-time variations in the series. 
In this case the AR (1) process is known 
as �blue noise�, which is rare in 
environmental time series other than those 
heavily aliased. Finally a zero value of φ  
indicates an AR (1) process consisting of a 
series of temporally uncorrelated data 
values i.e. a time series of truly 
independent data. The spectrum is flat and 
the process is referred to as a �white 
noise� process. 
 
Higher order autoregressions allow data 
values progressively further back in time 
as predictors. The spectral characteristics 
of higher order processes exhibit a wide 
variety of behaviour including periodicities.  
 
In Fig 1, the thunderstorm case, we see 
that the raingauge time series has more 
spectral density in the high frequencies, a 
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�blue noise� process, than the radar time 
series. This could indicate a movement 
towards dominant �red noise� processes 
namely those in which the most erratic 
point-to-point variations in the uncorrelated 
series are smoothed out. However, the 
spectral contribution in the low and high 
frequencies is very similar for the radar 
time series, and this tends to suggest that 
this time series is better represented by a 
higher order autoregressive model.  
 

Normalized spectral density for radar and Autoregressive 
model (AR) 24-25 June 1994 Silk Stream (A) and 15-16 June 

1982 River Darwin (B)
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Figure 5: Sample theoretical spectral of 
a second order auto-regressive model 
superimposed upon the spectral 
density of the radar time series shown 
in Figs 1(B) and 4 (A). 
 
This is further demonstrated in Fig 5 
where sample theoretical spectra of a 
second order autoregressive model [AR 
(2)] are superimposed upon the spectral 
density of the radar time series. Two 
cases are shown namely the thunderstorm 
case calculated using the FFT method (Fig 
1 and the case of extreme forecast rainfall 
313mm in 24 hours, derived from the radar 
rainfall estimates on 24-25 June 1994 (Fig 
4) calculated using an AR (2) model with 
φ 1 = 0.1 and φ 2 = 0.5 allowing for aliasing 
effects. However, the extreme rainfall case 
may only be modelled with very moderate 
success using an AR (2) model with φ 1 = 
0.1 and φ 2 = 2.0. These parameter values 
fall outside the allowable parameter space 
for stationary AR (2) processes. Non 
stationarity can be seen as a drifting of the 
mean value. In this case this would 
indicate some problem with the radar 
calibration, and therefore the data set is 
suspect. Taken together with an extremely 
small value of the QI as shown in Table 1, 
the radar estimated peak flow is regarded 
as highly suspect. 
 

4. A REAL-TIME PROCEDURE FOR THE 
GENERATION OF A HYDROLOGICAL 
RADAR QUALITY INDEX 
 
4.1 A real-time hydrological quality 
indicator 
 
Use of a hydrological model offers a 
simple procedure, based on the previous 
discussion, for quality controlling radar 
data from a hydrological point of view. The 
proposed procedure is as follows: 
 

• At the time of each radar rainfall 
measurement estimate the likely 
peak flow for the particular 
catchment(s) of interest using the 
rainfall time series up to the 
current time 

• Evaluate the POTc from this peak 
flow  

• Extract values of POTmed and 
POTmax from the catchment(s) 
history using the FEH. 

• Calculate QI and compare against 
the range of QI previously 
experienced 

• Carry out spectral analysis of the 
rainfall time series 

• Fit autoregressive model(s) to the 
spectral analysis 

• Assess the validity of fit and 
compare with QI analysis 

• Set quality flag indicating likely 
reliability of hydrographs 
calculated using radar data 

 
In the following section we go some way to 
testing this procedure. 
 
4.2 The Easter 1998 floods in the 
Midlands, England 
  
Rainfall during the period 8-10 April 1998 
on already saturated land caused record 
flooding over extensive areas of Wales 
and Central and Eastern England. 
Convective cells were seen to be 
embedded within more stratiform rainfall. 
The hyetograph for a raingauge located 
near Banbury with the corresponding 
hydrograph is shown in Fig 6. The 
synoptic situation was a thundery, near 
stationery, low pressure system. 
 
Real-time radar estimates of the rainfall 
were adversely affected during the first 
part of the event by an inability of an 
objective bright-band correction (Kitchen 
et al, 1994) procedure to handle correctly 
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the convective cells embedded in 
stratiform rainfall consequently the radar 
estimates were reduced causing a 
significant underestimate. During the 
second half of the event the radar 
performed well in representing this rainfall. 
Hydrograph predictions using these 
estimates resulted in peak flows which 
were too low. 
 

 
 
Figure 6: Hyetograph for the Byfield 
raingauge located near Banbury and 
the Banbury hydrograph for the River 
Cherwell (courtesy Environment 
Agency, Thames Region). 
 
The deficiency (over estimate) of the radar 
estimate is revealed by the analysis of the 
raingauge and radar rainfall time series 
shown in Fig. 7 during the first half of the 
event (03-08 UTC).  
 

 
 
Figure 7: Grimsbury raingauge (upper 
panel) and corresponding 2km x 2km 
radar estimate time series from 0001 
UTC 9 April 1998 to 0001 UTC 10 April 
1998. 
 
During the period 03-08 UTC the spectral 
analysis of the radar data is quite different 
from that of the raingauge data (Fig 8a). It 

is not possible to fit a physically realistic 
autoregressive model to the radar spectral 
analysis, and therefore the radar data are 
suspect. However, during the second half 
of the event, the spectral analyses of the 
raingauge and radar time series are very 
similar (Fig 8b). It is possible to fit a 
physically realistic autoregressive model to 
these data as shown. During the latter 
period it would appear that the radar is 
performing reliably. 
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Normalized spectral density (NSD) 08-19 GMT 9 April 1998 
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Figure 8: Spectral analyses for the 
raingauge and radar time series shown 
in Fig 7 for (a) 03-08 UTC (upper panel) 
and (b) 08-19 UTC (lower panel) on 9th 
April 1998. The radar analysis is shown 
as a dashed line and the raingauge 
analysis is shown as a solid line. Also 
shown (heavy-solid line) is an 
autoregressive model curve with the 
parameters given 
 
We conclude that the use of the spectral 
analysis technique with both raingauge 
and radar data would have flagged the 
deficiency in the radar estimates of rainfall 
during the first half of the event. In practice 
the spectral analysis would have to be 
carried out continuously, and further 
consideration should be given to the 
minimum size of the time series necessary 
for reliable results. 
 

5. CONCLUSIONS AND FUTURE 
WORK 
 

A method of quality controlling radar 
estimates of rainfall has been described. 
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The technique is based upon a twofold 
approach. Firstly river peak flow is 
estimated using the radar data and a 
hydrological model. The calculated peak 
flow is compared against previously 
occurring peak flows using the FEH. 
 
A further test involving the spectral 
analysis of raingauge, or river flow using 
the input radar time series data, is the 
carried out. Attempts to fit a physically 
realistic autoregressive model to these 
data are made. Failure to fit such a model 
to the radar time series spectral analysis 
indicates deficiencies in the radar 
estimates of rainfall. 
 
Further case studies are recommended, 
as is the implementation of the system for 
real-time operation. The extent to which 
the spectral analysis can be associated 
with specific types of radar error should be 
investigated. 
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