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1. INTRODUCTION

In many river basins worldwide the time
from rain reaching the ground to the arrival
of the peak flow at a flood-sensitive point
can be short, in some cases only a matter
of minutes. The result, if the flood peak is
large enough, is known as a flash flood
which can bring death and destruction
rapidly without warning.

Floods such as these may be induced by
an isolated extreme rainfall event, two
moderate rainfall events occurring with a
short separation time, rainfall with
snowmelt or the sudden release of water
from a glacier or a dam either manmade or
created through debris accumulation.
During these events rainfall
measurements are usually required every
15 minutes or less, and forecasts of
rainfall at 72 hour, preferably more often, to
allow hydrological models to update
steamflow predictions constantly (for
review see Collier, 2007). Rivers with
longer response time are, in general, not
as demanding, and for large river basins
flow measurements upstream may provide
adequate forecasts of downstream flows.
The directions in which storms move, and
the coincidence of peak flows from
tributaries, also impact floods, and require
knowledge of the actual and forecast
distribution of precipitation.

A wide range of hydrological models have
been developed over many years. Simple
Input-Storage-Output (ISO) or transfer
function models may work well over
restricted areas and time periods if
appropriate model parameter optimisation
procedures are adopted, but the rainfall-
runoff process is non-linear and time
variant restricting model applicability in
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some situations. However, as model
structures become more complicated the
impact of physical processes and spatial
heterogeneity become more evident, and
so it is not necessarily true that complexity
improves flood prediction reliability (for a
review see Beven, 2001).

Model parameter updating procedures
have been developed in which one or
more model parameters are varied in real-
time in the light of recent model
performance. In this way, real-time
correction factors provide a constant
check on flow predictions. Unfortunately
the range of parameter updating
possibilities is large, and procedures may
become complex if a high level of reliability
is to be achieved. There remains an
urgent need to provide operational
hydrologists with the means of assessing
the validity or otherwise of flow forecasts if
reliable and timely flood warnings are to
be made. In his paper we describe one
approach to assessing the quality of flow
forecasts prepared using radar or
raingauge information.

2. THE NEED FOR CONFIDENCE
INDICATORS

Although there has been considerable
progress in improving the quality of radar
estimates of rainfall problems remain. The
unpredictable nature of radar errors
continues to discourage many operational
hydrologists from using radar data
quantitatively as input to models. The
tendency has been to wait for all errors to
be removed. Unfortunately it is unlikely
that all errors will be removed for a very
long time if at all. One should recall that
data from raingauge networks remain
prone to errors even after very
considerable work over very many years.
Perhaps a more profitable approach is to
investigate the real-time derivation of data
quality flags in order to advise users of the
likely reliability of the radar estimates or
forecasts derived from them.

Complementary approaches may involve
the application of stochastic state-space



models (see for example Collier and
Robbins, 2007) to handle the error
characteristics of rainfall input to
hydrological models. Whilst work in this
area continues, data quality flags could
also be used in such research.

In what follows we investigate one
approach to the derivation of data quality
flags based upon the use of a simple
rainfall-runoff modelling approach. An
index is tested on data from the United
Kingdom.

3. HYDROLOGICAL EVALUATION OF
THE IMPACT OF ERRORS IN RADAR
ESTIMATES OF RAINFALL

3.1 Hydrograhs derived using radar
rainfall data

Collier and Knowles (1986) discussed a
number of cases in which data from the
Hameldon Hill C-band radar in North West
England were used as input to an isolated
event rainfall-runoff model. Hourly radar
and raingauge totals were used from a
number of different synoptic situations.
River hydrographs derived using both the
radar and raingauges were in near perfect
agreement in some cases, and in other
cases there were very wide differences
due mainly to deficiencies in the input
radar data. Similar results have been
found by many authors over the last 20
years or so (see for example Schulz, 1987,
Pereira and Crawford, 1995).

To investigate these variations further
three cases for catchments in North West
England have been selected for analysis,
a local thunderstorm situation over the
Ewood Catchment, River Darwen, a case
of warm sector orographic rain over the
River Ribble catchment and a case of
heavy showery rainfall over the River
Croal. A fourth case of a radar-based
rainfall forecast is also analysed as a test
of the procedure. In the local thunderstorm
case the radar greatly overestimates the
rainfall during one particular hour, the
resulting radar-derived hydrograph peak
flow being very much an overestimate.
This overestimate is probably due to the
presence of hail in the radar beam. For the
orographic rainfall case the radar
underestimates the rainfall as much of it
occurs at very low altitudes, and the peak
flow is correspondingly underestimated. In
the shower case the radar underestimates

the peak rainfall rates, but estimates the
storm total rainfall quite well.

3.2 Spectral analysis

In order to estimate the characteristic
frequencies of a rainfall time series, the
time series may be spectrally analysed to
identify what frequencies are present
within it. Figs 1-3 are plots of the
normalized spectral density (NSD) (see for
example Wilks, 1995) as a function of time
period (frequency).
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The smallest frequency is the fundamental
frequency, 2 71/n, where n is the number
of measurements in the

series, and the highest frequency is the
Nyquist frequency given by,

Wn/2 =7 (5)

If the spectrum of the data series includes
important physical processes that vary
faster than the Nyquist frequency, the data
series is said to be undersampled.
Variations that occur at frequencies higher
than the Nyquist frequency are spuriously
attributed to some lower, but
representative, frequency. These high
frequency variations are said to be aliased.
Unfortunately it is not possible to tell from
the data values alone whether appreciable
contributions to the spectrum have been
made at frequencies higher than the
Nyquist frequency, or how large these
contributions might be.



Normalized spectral density (NSD) 15-16 June 1982
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Figure 1: Spectral analyses of flow
predictions for raingauge and radar
time series inputs to an event-based
hydrological model observed for the
Ewood catchment, River Darwen, NW
England 15-16 June 1982 (see Collier
and Knowles, 1986).

The spectrum of a data series of values
equally spaced in time may be computed
analytically from the usual formulae for
harmonic coefficients (see for example
Wilks, 1995). This approach has been
used to produce Figs 1-3. Whilst this is a
reasonable approach for small datasets,
large data sets require a more
computationally efficient technique such
as the Fast Fourier Transforms (FFTs).
Unfortunately the way in which spectral
estimates are calculated may cause them
to be erratic depending upon the impact of
aliasing. Even increasing the sample size
does not give more precise information
about individual frequencies. This problem
is illustrated in Fig 1 which also shows the
spectra for this case calculated using the
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Figure 2: Spectral analysis for
raingauge and radar time series for the
inputs to stochastic hydrological model
of the Croal catchment NW England,
10-11 September 2004.
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Figure 3: Spectral analyses of flow
predictions for raingauge and radar
time series inputs to an event-based
hydrological model used for the Ribble
cathment NW England, 31 January-1
February 1982 (see Collier and Knowles,
1986). The analyses for the radar data
are carried out using both analytical
and FFT techniques.

FFT method. Both spectra are similar in
magnitude and trend, although the FFT
method smoothes the more extreme
fluctuations of those values derived
analytically. Since we are not concerned
here with absolute spectral values, the
FFT approach is quite acceptable.

In order to extract a characteristic
frequency from the spectral analyses, the
derived spectral density values are used to
weight the frequencies. For Fig 1, a
thunderstorm case, using an event based
model employing raingauge and radar
inputs separately, this gives values of the
characteristic time period of 2.1 hours for
the raingauge time series, and 6 hour for
the radar time series. In this case high
frequencies are likely to be aliased into
lower frequencies given the highly variable
nature of thunderstorm rainfall. Clearly the
hourly time step is adequate. The radar
very much overestimates the rainfall for
one particular hour making the aliasing
even worse and increasing the
characteristic time period.

We conclude that a spectral analysis of a
river flow time series using a radar rainfall
time series as input may provide useful
additional information on the likely quality
of the radar data. This possibility is
examined further later.

3.3 A data quality index
If both raingauge and radar time series are

available in real-time, the ratio of peak
river flows calculated using both is a



measure of hydrological impact. However,
it is desirable to develop a quality index
which may be derived from radar and
other data which change more slowly (e.g.
soil moisture) or change not at all (river
catchment characteristics).

One possibility is to use a measure of
maximum-likelihood that identifies whether
values are part of a specific parameter
distribution. Rather than use rainfall values,
the use of peak river flow as a fraction of a
threshold flow offers a parameter which
reveals the severity of an event. However,
we propose that the threshold peak flow is
taken as the flow having a recurrence
interval of once per year. This is a
methodology reported in the Flood
Estimation Handbook (FEH 1999).
Observed peak flow divided by the
threshold flow is designated the POT,
Peaks Over Threshold. In what follows
here we calculate the model peak flow
using radar estimates of rainfall to
calculate POT for comparison with values
of the observed POT listed for specific
catchments in the FEH. The FEH contains
a comprehensive observed POT dataset
for stations throughout the United
Kingdom containing information on the
maximum, median and arithmetic mean
river flows and coefficients of variation of
the series as a fraction (the standard
deviation divided by the mean flow). We
define a radar data quality index (QlI) in
terms of the difference between the
calculated (or observed) POT (POT )
and the POT for the median observed flow
for each station within the area of radar

coverage (POT eq) divided by POT eq
that is,
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Table 1 shows the values of QI for the
observations and model using radar input
observed in a number of case studies of
peak flow. The range of Ql is from — 1 to
Qlmax and is calculating taking POT, as
the maximum value of POT so far
observed. It might be that the POT,, value
exceeds the maximum value previously
observed or is less than the median value
of POT, and therefore the QI could take a
value outside this range. However, in this
case the likelihood that the values of
rainfall and river flow are reliable is
estimated by comparing the minimum and
maximum values of POT with values
which would be derived from a Poisson
distribution over this range, where it is
assumed that flood events occur randomly
in time. In fact non-Poissoness is a feature
of UK POT data and the impact of this is
being investigated further.

Table 1: POT and QI value for cases of
thunderstorm, orographic and shower
rainfall in three catchments in North
West England, and a case of extreme
forecast rainfall over a small urban
river catchment in north London.

Catchment | Rainfall Type | Threshold | POTyeq | POTmax | POTe0 Ql* Range of
Cumecs Ql
Observed | Radar | Observed | Radar
model model
Ribble Orographic 350 1.70 0.72 0.26 -0.58 -0.84 | -1to+
1.05
Darwen Thunderstorm | 11.6 2.64 1.09 5.47 -0.59 +1.07 | -1to+
0.85
Croal Shower 5.0 11.38 3.0 4.8*% -0.73 -0.31 |-1to+
1.10
Silk Embedded 4.1 2.85 - 119.5 | - +40.9 | -1to+
Stream convection 2.59
London forecast

*Stochastic model used; for other cases
an event-based deterministic model is
used.

+May be converted to a reliability factor
using the range of QI and a Poisson
distribution.

Unfortunately equation (6), whilst
indicating whether the peak flow of the
hydrograph lies outside the range of
values which have occurred in the past,
does not give absolute confirmation that




the peak flow is to be believed. It may be
that the calculated flow has not ever been
observed in the past record, but is indeed
accurate.

Figure 4: Radar-based rainfall and
hydrograph forecasts for the Silk
Stream, North London on 24-25 June
1994 (courtesy Environment agency
Thames Region)

Fig 4 shows an example of forecast radar
rainfall and the hydrograph derived using
these data for a small urban river
catchment, the Silk Stream in north
London, on 24-25 June 1994. The QI for
this case is also given in Table 1. This
hydrograph was generated in real-time.
Fortunately the operational hydrologists
recognised that it was very unrealistic and
a major flood warning was not issued.
However, had the radar rainfall been
somewhat less a difficult decision would
have been required. It is such extreme
cases which we must have confidence in
the veracity of the hydrograph if weather
radar is to become a totally reliable
operational tool. The validity of the QI
must be tested using additional
information.

We must put aside the rainfall rate volume
since there is no way yet of objectively
determining whether its value is correct,
unless the errors which are present in the
data are known. This may be possible in
the future as algorithms have been, and
are being, developed to test for the
presence of bright-band (melting snow),
hail, ground clutter etc. using single
polarisation, multi-parameter and Doppler
radar data (see for a review Collier, 1996).
However, at present, the reliability of these
algorithms, whilst in some cases being
individually acceptable, remains
collectively unreliable for continuous

objective operational use. Alternatively,
the frequency of the rainfall time series
may offer some deterministic method of
identifying whether an extreme event is
actually occurring. We assess this
approach in what follows.

3.4 Spectra of time-domain
autoregressive models

Rainfall is a continuous variable, and
therefore the correlation structure of a
time-series of rainfall measurements may
be represented by a class of time series
models known as Box-Jenkins models
(Box and Jenkins, 1976). The types of
time dependence produced by different
autoregressive models generate
characteristic spectral signatures that can
be related to the autoregressive parameter
¢ (see for example Wilks, 1995), which in

its simplest form is the sample lag one
autocorrelation coefficient.

The simplest Box-Jenkins model is the
first-order autoregression {AR(1)} model,
sometimes called the Markov process. In
this case positive values of ¢ induce a

memory into the time series that tends to
smooth over high frequency (small period)
variations, and emphasize the low
frequency (long period) variations. This
leads to more spectral density at low
frequencies and less spectral density at
high frequencies, in this case the AR (1)
process being known as “red noise”. For
negative values of ¢ the opposite is true,

and an AR (1) process tends to generate
erratic short-time variations in the series.
In this case the AR (1) process is known
as “blue noise”, which is rare in
environmental time series other than those
heavily aliased. Finally a zero value of ¢

indicates an AR (1) process consisting of a
series of temporally uncorrelated data
values i.e. a time series of truly
independent data. The spectrum is flat and
the process is referred to as a “white
noise” process.

Higher order autoregressions allow data
values progressively further back in time
as predictors. The spectral characteristics
of higher order processes exhibit a wide
variety of behaviour including periodicities.

In Fig 1, the thunderstorm case, we see
that the raingauge time series has more
spectral density in the high frequencies, a



“blue noise” process, than the radar time
series. This could indicate a movement
towards dominant “red noise” processes
namely those in which the most erratic
point-to-point variations in the uncorrelated
series are smoothed out. However, the
spectral contribution in the low and high
frequencies is very similar for the radar
time series, and this tends to suggest that
this time series is better represented by a
higher order autoregressive model.

Normalized spectral density for radar and Autoregressive
model (AR) 24-25 June 1994 Silk Stream (A) and 15-16 June
1982 River Darwin (B)
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Figure 5: Sample theoretical spectral of
a second order auto-regressive model
superimposed upon the spectral
density of the radar time series shown
in Figs 1(B) and 4 (A).

This is further demonstrated in Fig 5
where sample theoretical spectra of a
second order autoregressive model [AR
(2)] are superimposed upon the spectral
density of the radar time series. Two
cases are shown namely the thunderstorm
case calculated using the FFT method (Fig
1 and the case of extreme forecast rainfall
313mm in 24 hours, derived from the radar
rainfall estimates on 24-25 June 1994 (Fig
4) calculated using an AR (2) model with
¢1=0.1and ¢,-0.5 allowing for aliasing

effects. However, the extreme rainfall case
may only be modelled with very moderate

success using an AR (2) model with ¢ 1=

0.1 and ¢, = 2.0. These parameter values

fall outside the allowable parameter space
for stationary AR (2) processes. Non
stationarity can be seen as a drifting of the
mean value. In this case this would
indicate some problem with the radar
calibration, and therefore the data set is
suspect. Taken together with an extremely
small value of the QI as shown in Table 1,
the radar estimated peak flow is regarded
as highly suspect.

4. A REAL-TIME PROCEDURE FOR THE
GENERATION OF A HYDROLOGICAL
RADAR QUALITY INDEX

4.1 A real-time hydrological quality
indicator

Use of a hydrological model offers a
simple procedure, based on the previous
discussion, for quality controlling radar
data from a hydrological point of view. The
proposed procedure is as follows:

» At the time of each radar rainfall
measurement estimate the likely
peak flow for the particular
catchment(s) of interest using the
rainfall time series up to the
current time

e Evaluate the POT, from this peak
flow

» Extract values of POT,e4 and
POT ax from the catchment(s)
history using the FEH.

+ Calculate QI and compare against
the range of QI previously
experienced

» Carry out spectral analysis of the
rainfall time series

» Fit autoregressive model(s) to the
spectral analysis

» Assess the validity of fit and
compare with QI analysis

» Set quality flag indicating likely
reliability of hydrographs
calculated using radar data

In the following section we go some way to
testing this procedure.

4.2 The Easter 1998 floods in the
Midlands, England

Rainfall during the period 8-10 April 1998
on already saturated land caused record
flooding over extensive areas of Wales
and Central and Eastern England.
Convective cells were seen to be
embedded within more stratiform rainfall.
The hyetograph for a raingauge located
near Banbury with the corresponding
hydrograph is shown in Fig 6. The
synoptic situation was a thundery, near
stationery, low pressure system.

Real-time radar estimates of the rainfall
were adversely affected during the first
part of the event by an inability of an
objective bright-band correction (Kitchen
et al, 1994) procedure to handle correctly



the convective cells embedded in
stratiform rainfall consequently the radar
estimates were reduced causing a
significant underestimate. During the
second half of the event the radar
performed well in representing this rainfall.
Hydrograph predictions using these
estimates resulted in peak flows which
were too low.

Figure 6: Hyetograph for the Byfield
raingauge located near Banbury and
the Banbury hydrograph for the River
Cherwell (courtesy Environment
Agency, Thames Region).

The deficiency (over estimate) of the radar
estimate is revealed by the analysis of the
raingauge and radar rainfall time series
shown in Fig. 7 during the first half of the
event (03-08 UTC).

Figure 7: Grimsbury raingauge (upper
panel) and corresponding 2km x 2km
radar estimate time series from 0001
UTC 9 April 1998 to 0001 UTC 10 April
1998.

During the period 03-08 UTC the spectral
analysis of the radar data is quite different
from that of the raingauge data (Fig 8a). It

is not possible to fit a physically realistic
autoregressive model to the radar spectral
analysis, and therefore the radar data are
suspect. However, during the second half
of the event, the spectral analyses of the
raingauge and radar time series are very
similar (Fig 8b). It is possible to fit a
physically realistic autoregressive model to
these data as shown. During the latter
period it would appear that the radar is
performing reliably.
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Figure 8: Spectral analyses for the
raingauge and radar time series shown
in Fig 7 for (a) 03-08 UTC (upper panel)
and (b) 08-19 UTC (lower panel) on 9"
April 1998. The radar analysis is shown
as a dashed line and the raingauge
analysis is shown as a solid line. Also
shown (heavy-solid line) is an
autoregressive model curve with the
parameters given

We conclude that the use of the spectral
analysis technique with both raingauge
and radar data would have flagged the
deficiency in the radar estimates of rainfall
during the first half of the event. In practice
the spectral analysis would have to be
carried out continuously, and further
consideration should be given to the
minimum size of the time series necessary
for reliable results.

5. CONCLUSIONS AND FUTURE
WORK

A method of quality controlling radar
estimates of rainfall has been described.



The technique is based upon a twofold
approach. Firstly river peak flow is
estimated using the radar data and a
hydrological model. The calculated peak
flow is compared against previously
occurring peak flows using the FEH.

A further test involving the spectral
analysis of raingauge, or river flow using
the input radar time series data, is the
carried out. Attempts to fit a physically
realistic autoregressive model to these
data are made. Failure to fit such a model
to the radar time series spectral analysis
indicates deficiencies in the radar
estimates of rainfall.

Further case studies are recommended,
as is the implementation of the system for
real-time operation. The extent to which
the spectral analysis can be associated
with specific types of radar error should be
investigated.
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