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ABSTRACT

Polarization radar offers the promise of much more accurate rainfall rate (R) estimates than possible from radar
reflectivity factor (Z) alone, not only by better characterization of the drop size distribution, but also by more reliable
correction for attenuation and the identification of hail. However, practical attempts to implement retrieval algorithms
have been hampered by the difficulty in coping with the inherent noise in the polarization parameters. In this paper
a variational retrieval scheme is described that overcomes these problems by employing a forward model for differ-
ential reflectivity (Zdr ) and differential phase shift (φdp ), and iteratively refining the coefficient a in the relationship
Z = aRb such that the difference between the forward model and the measurements is minimized in a least-squares
sense. Two methods are used to ensure that a varies smoothly in both range and azimuth. In range, a is represented
by a set of cubic-spline basis functions, and in azimuth the retrieval at one ray is used as a constraint on the next.
The result of this smoothing is that the retrieval is tolerant of random errors in Zdr of up to 1 dB and in φdp of up to
5◦. Correction for attenuation is achieved simply and effectively by including its effects in the forward model. If hail
is present then the forward model is unable to match the observations of Zdr and φdp simultaneously. This enables
a first pass of the retrieval to be used to identify the radar pixels containing hail, followed by a second pass in which
the fraction of the Z in those gates that is due to hail is retrieved, this time with the scheme being able to accurately
forward-model both Zdr and φdp . The scheme is tested on S-band radar data from Southern England in cases of
rain, spherical hail, oblate hail, and mixtures of rain and hail. It is found to be robustly stable even in the presence of
differential phase shift on backscatter.

1. Introduction

Accurate rainfall estimates are essential for short-
range flood forecasts, but with a conventional single-
polarization radar one must use a simple relationship of
the form

Zh = aRb, (1)

where Zh is radar reflectivity factor at horizontal polariza-
tion, R is rainfall rate, and a and b are constants that must
be assumed. Such relationships have been found to be
accurate to no better than a factor of two due to inher-
ent variations in the size distribution. Conventional radars
are also unable to distinguish hail from heavy rain and
are very difficult to correct for attenuation because gate-
by-gate methods are inherently unstable (Hitschfeld and
Bordan 1954).

In principle, dual-polarization radar can overcome all
these problems. The crucial size-distribution information
is obtained by exploiting the fact that raindrops become
increasingly oblate with size and fall with their major axes
aligned in the horizontal. Differential reflectivity is defined
as the ratio of reflectivity factor measured at horizontal
(Zh) and vertical (Zv) polarization:

Zdr [dB] = 10 log10

(

Zh[mm6m−3]/Zv[mm6m−3]
)

. (2)

It increases with mean drop size (Seliga and Bringi 1976)
and hence can be used to refine rain rate estimates.
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Differential phase shift (φdp) is a measure of the lag of
the phase of the horizontally polarized radiation with re-
spect to the vertically polarized radiation in the pres-
ence of oblate drops. As it is a propagation effect, the
usual approach is to make use of its gradient with range,
known as the (one-way) specific differential phase shift
Kdp = 1

2dφdp/dr. Zdr and Kdp provide similar informa-
tion on the raindrop size distribution, and the potential
for hail detection arises because when hail is present the
two sources of information are contradictory (Smyth et al.
1999). Attenuation correction is possible by making use
of φdp (e.g. Testud et al. 2000), or differential attenuation
leading to negative Zdr at the far side of heavy rain (Smyth
and Illingworth 1998a).

In practice, the inherent noise in Zdr and especially
Kdp presents problems when these techniques are im-
plemented operationally (Illingworth 2003). Because Kdp

is the derivative of an already noisy field, negative val-
ues occur (Ryzhkov and Zrnić 1996) and it is impossible
to use at each radar range gate; instead one must use
the average value over several kilometers (Blackman and
Illingworth 1997). A similar approach is necessary with
Zdr (Illingworth and Thompson 2005). Such methods can
result in sharp changes in retrieved rain rate at the inter-
face between averaging regions. Furthermore, it is diffi-
cult to design conventional algorithms to make use of Zdr

and φdp simultaneously in all situations, so operationally
one must usually choose between the most appropriate
algorithm depending on the conditions (e.g. using the cri-
teria of Ryzhkov et al. 2005).

In this paper, a variational method is applied for the
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first time to the problem of retrieving rainfall rate from
polarization radar. This approach (also known as “opti-
mal estimation theory”; Rodgers 2000) is ubiquitous in
satellite retrievals, but has only recently been applied
to radar (e.g. Austin and Stephens 2001; Löhnert et al.
2004). By an explicit treatment of errors, a seamless
transition can be achieved between each of the various
rain/hail/attenuation regimes that previously one would
have to have treated by a separate algorithm. Moreover,
it is straightforward to include attenuation in the forward
model without the instabilities discussed by Hitschfeld
and Bordan (1954), and by forward modeling φdp , we
avoid the error associated with taking the derivative to
get Kdp . The various regimes that the new scheme is de-
signed to approximate are now summarized.

1. In very light rain the drops are spherical so both Zdr

and Kdp are zero. In this case the polarization vari-
ables contain no useful information and one must
assume values of a and b in (1) that are suitable for
light rain. This is achieved by the use of an a priori.

2. In light to moderate rain, Zdr increases above 0 dB
while Kdp remains very close to 0◦ km−1. Here Zdr

provides information on a.

3. As the rain becomes heavier, Kdp increases above
0◦ km−1 and also provides information on a, e.g. as
a path-average (Testud et al. 2000). Unlike other
techniques, the new variational method then uses
the known errors in Zdr and φdp to weight the in-
formation provided by these two variables appropri-
ately.

4. When attenuation becomes significant, information
to correct for it is first obtained from φdp (Holt 1988;
Bringi et al. 1990; Testud et al. 2000).

5. Stronger attenuation results also in differential atten-
uation, whereby Zh is attenuated more strongly than
Zv such that Zdr becomes negative at the far side
of a region of heavy rain. It was argued by Smyth
and Illingworth (1998a) and Illingworth (2003) that
the total attenuation is more closely related to differ-
ential attenuation than to φdp , so in principle more
accurate attenuation correction can be performed if
this negative Zdr region is well sampled (Smyth and
Illingworth 1998a). However, the relationship is likely
to break down in the presence of wet hail.

6. Hailstones are usually close to spherical and tumble
as they fall, so their intrinsic Zdr and Kdp are close
to zero. Horizontally aligned, oblate hail are also
known to occur (e.g. Smyth et al. 1999) but have a
considerably lower Zdr than rain of the same reflec-
tivity, and still have a Kdp of close to zero. Hence the
combination of Z, Zdr and Kdp can be used to iden-
tify the presence of hail. When rain and hail coexist,
the rain rate can be estimated from Kdp alone (e.g.
Sachidananda and Zrnić 1987; Ryzhkov and Zrnić
1996). The new variational method also retrieves
the fraction of the reflectivity that is due to hail.

In section 2 the various steps of the retrieval scheme
are described, followed by the forward model in section
3. Then in section 4, the performance of the scheme on
S-band data taken by the Chilbolton radar in Southern
England during three case studies is described.

2. Retrieval method

a. Overview

The sequence of operations performed in the retrieval
is illustrated in Fig. 1. It is assumed that the measure-
ments have first been processed to subtract instrument
noise, to remove clutter and to identify the pixels where
a valid meteorological signal has been detected. This
is best achieved using the polarization parameters (e.g.
Gourley et al. 2006). Pixels within and above the melt-
ing layer should be identified and removed, using, for ex-
ample, the temperature field from an operational forecast
model (Kitchen et al. 1994; Mittermaier and Illingworth
2003). While the scheme remains stable when applied
to ice, the retrieved surface rain rate will obviously be in-
correct due to the inappropriate assumptions regarding
the nature of the scatterers. In this situation an alterna-
tive method to estimate surface rain rate should be used,
such as one based on the vertical profile of reflectivity
(Kitchen et al. 1994; Smyth and Illingworth 1998b).

First, the processing of a single ray of data contain-
ing m pixels with a detectable meteorological signal is de-
scribed. Consideration of the full scan is given in section
2e.

In a variational scheme one must decide what vari-
ables to use to describe the rain; these variables will be
retrieved and constitute the state vector, x. An obvious
choice would be rain rate, R, and some measure of the
mean drop size at each radar pixel along a ray (hail is
considered in section 2g). The observations at each pixel
along the ray (e.g. Zh, Zdr and φdp) are designated the ob-
servation vector, y. The forward model, H(x), would then
use a first guess of x to predict the observations at each
gate, with the difference between H(x) and y being used
to refine x such that a better fit with the observations is
achieved, in a least squares sense. This process would
be repeated until convergence.

However, for computational efficiency it is desirable to
minimize the number of elements in x and y. Further-
more, the noise in the Zdr and φdp measurements is such
that it is not realistic to retrieve rain rate independently
at each gate; rather the information from the polarization
variables must be spatially smoothed in some way (e.g.
Illingworth and Thompson 2005). We therefore choose to
retrieve the coefficient a in (1), and represent it by a re-
duced set of n basis functions (typically n ≃ m/10) such
that smooth variation in range is guaranteed. If the reso-
lution at which a can vary is still reasonably high then the
value of b can be specified; typically a value of 1.5 or 1.6
is used. A simplified version of the scheme has been writ-
ten in which both a and b were allowed to vary (Furness
2005), but the differences in retrieved rain rate were only
around 5%. It should be stressed that a smoothly varying
a-field does not mean that retrieved rain rate is forced to
be smooth, because the fine structure in the Zh field will
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F IG. 1: Flowchart showing the sequence of operations per-
formed by the retrieval scheme. The detailed description of each
step is given in section 2.

feed through directly to R.
It was shown by Bringi and Chandrasekar (2001) that

if the size distribution is represented by a gamma distri-
bution with a fixed value for the normalized number con-
centration parameter, Nw, then this results in b = 1.5,
with the a coefficient being inversely proportional to the
square-root of Nw. Therefore, the assumption that a
varies smoothly with range is similar to the assumption by
Testud et al. (2000) that normalized number concentra-
tion parameter is constant or varies smoothly with range.

The state vector for a single ray is therefore

x =





ln a1

...
ln an



 . (3)

By using the logarithm of a, we avoid the unphysical pos-
sibility of retrieving negative a. It also turns out that the
forward model for Zdr and φdp is less non-linear when for-
mulated in terms of ln a, resulting in more rapid conver-
gence. After the scheme has converged, rain rate is cal-
culated at high resolution from Zh using (1). Effectively
we are assuming that, in relative terms, the error in Zh

is much less than the errors in Zdr and φdp so the re-
trieval should be forced to be exactly consistent with Zh

and hence Zh can be omitted from the observation vector.

Thus y is given by

y =



















Zdr ,1

...
Zdr ,m

φdp,1

...
φdp,m



















. (4)

b. Variational formulation

The essence of the technique is to minimize a cost
function J:

2J =

m
∑

i=1

(

Zdr ,i − Z′

dr ,i

)2

σ2
Zdr

+

(

φdp,i − φ′

dp,i

)2

σ2
φdp

+

n
∑

i=1

(xi − xa
i )

2

σ2
xa

. (5)

The first summation in (5) represents the deviation of
the observations Zdr and φdp from the values predicted
by the forward model Z′

dr and φ′

dp . The forward model
is described in section 3. The second summation rep-
resents the deviation of the elements of the state vec-
tor from some a priori estimate, xa (referred to as the
“background” in data assimilation). This term is nec-
essary to ensure that in the presence of very light rain
when very little information on a is contained in the mea-
surements, a tends to some predefined value, typically
200 mm6 m−3 (mm h−1)−1.5 for b = 1.5. The terms σZdr

and σφdp
are the root-mean-squared observational errors,

while σxa is the error in the a priori estimate.
In matrix notation the cost function may be written as

2J = δyT
R

−1δy + (x − x
a)T

B
−1(x − x

a), (6)

where δy = y − H(x), and R and B are the error co-
variance matrices of the observations and the a priori,
respectively. In this application we assume that R is di-
agonal, i.e. that the errors in the observations are not
spatially correlated. By contrast, the off-diagonal com-
ponents of B (not represented in Eq. 5) play an important
role in smoothing the retrieval in range, as described in
section 2d.

The cost function cannot be minimized in one step
because of the presence of the non-linear forward model
operator H(x), so we employ the Gauss-Newton method
(Rodgers 2000) in which a linearized version of the cost
function is minimized iteratively. At iteration k we have an
estimate of the state vector, xk, and the corresponding
forward-model estimate of the observations, H(xk). The
linearized cost function JL is obtained by replacing H(x)
in (6) by H(xk) + H× (x− xk), where H is the Jacobian,
a matrix containing the partial derivative of each observa-
tion with each respect to each element of the state vector.
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In this case it is a 2m× n matrix given by

H =



















∂Z′

dr ,1/∂ ln a1 · · · ∂Z′

dr ,1/∂ ln an

...
. . .

...
∂Z′

dr ,m/∂ ln a1 · · · ∂Z′

dr ,m/∂ ln an

∂φ′

dp,1/∂ ln a1 · · · ∂φ′

dp,1/∂ ln an

...
. . .

...
∂φ′

dp,m/∂ ln a1 · · · ∂φ′

dp,m/∂ ln an



















, (7)

and is calculated at the same time as the forward model,
as described in section 3c. By setting the derivative of JL

with respect to each element of x to zero and rearranging,
an expression for the state vector at the minimum of JL is
obtained:

xk+1 = xk + A
−1

[

H
T
R

−1δy − B
−1 (xk − x

a)
]

, (8)

where the symmetric matrix A is known as the Hessian
and is given by

A = H
T
R

−1
H + B

−1. (9)

For efficiency A is not inverted but rather kept on the
left hand side of (8) and the matrix problem is solved by
Cholesky decomposition. This step is represented in Fig.
1 by box 6.

For the first iteration the a priori may be used for x1,
or alternatively, the values from the previous ray or a pre-
vious radar scan. The entire loop (boxes 3–6 in Fig. 1)
is repeated iteratively (with the forward model and H re-
calculated each time), until the solution is judged to have
converged satisfactorily. A χ2 convergence test may be
used, although in practice the problem is close enough to
linear that only around 4 iterations are needed.

c. Use of cubic spline basis functions for smoothing in
range

The forward model described in section 3 works on
the radar range grid, so within the iterative loop the state
vector x containing the n coefficients of the basis func-
tions must first be converted to m values of ln a on the
radar grid, x̂. This is achieved using an m× n matrix W

containing the precomputed weights of each basis func-
tion:

x̂ = Wx. (10)

This operation is shown by box 3 in Fig. 1. In principle
any set of basis functions may be used, such as a re-
duced set of Fourier modes. However, the use of local
basis functions is preferable because it allows smoothing
to be implemented in the azimuthal direction (see section
2e), and also the fact that W is then sparse makes the
scheme more efficient. We use cubic spline basis func-
tions, which result in the retrieved ln a being continuous in
itself and its first and second derivatives. The calculation
of W is described in the appendix.

The Jacobian that is output from the forward model,
Ĥ, is also on the radar range grid, that is, it consists of the
partial derivative of each observation with respect to the
value of ln a at each radar gate, rather than with respect

to each basis function coefficient as in (7). It is converted
to a form that can be used in (8) and (9) by

H = ĤW. (11)

This step is depicted by box 5 in Fig. 1. It should be noted
that as one increases the number of basis functions n,
then not only does this slow down the solution of (8) but
also the calculation of (11), which is generally the slowest
part of the entire scheme (even using code optimized to
exploit the sparseness of W). It is still much faster than
not using basis functions at all and having one member
of the state vector for every radar pixel.

d. Use of a priori error covariances for smoothing in
range

The use of a cubic spline enforces smoothness on
local scales but does not spread information beyond the
domain of an individual basis function. In practice it might
be desirable to spread information on the value of ln a
obtained from Zdr or φdp into adjacent regions of lower
rainfall where the observations contain little information
on ln a. In the case of a diagonal a priori error covariance
matrix B, the value of ln a in these low rainfall regions
would revert rapidly to the a priori value. Off-diagonal
elements in B state that the difference between the actual
value of ln a and the a priori value is spatially correlated,
and hence has the effect of a smoothing in range.

We represent the diagonal elements of B by a con-
stant value Bi,i = 1.0, which is equivalent to saying that
the error in rain rate retrieved by assuming constant a
and b in a Z-R relationship is around a factor of two. If
it is assumed that the correlation coefficient between two
basis-function coefficients centered at ranges r i and r j

decreases as an inverse exponential with the separation
distance, then the off-diagonal elements of B are given
by

Bi, j = Bi,i exp(− |r j − r i | /r0) , (12)

where r0 is the decorrelation distance. Hence B is a
symmetric Toeplitz matrix. The problem of deciding what
value to use for r0 is common to many applications in data
assimilation (Daley 1991) and in the case of radar the
choice will depend on the error in the observations.

It should be stressed that, unlike the use of splines in
section 2c, the use of error covariances does not force
the solution to be smooth. Rather, it adds a tendency
for smoothness, which could be overridden by accurate
observations if they showed the true solution not to be
smooth.

e. Smoothing in azimuth

In principle, smoothing in azimuth could be achieved
by treating the scan in its entirety and using two-
dimensional basis functions to ensure smoothness in
both range and azimuth. In practice, the size of the matri-
ces would be unmanageably large so a different method
is used in the azimuthal direction. Two passes of the al-
gorithm are performed through the rays in a scan. In the
forward pass, the retrieval at ray j is constrained by the
solution from the previous ray, j − 1. This is followed by
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a backward pass in which the retrieval at ray j is con-
strained by both the forward-pass solution at ray j − 1
and the backward-pass solution at ray j +1. This process
is exactly analogous to a Kalman smoother, except that
we are performing the smoothing in azimuth rather than
in time.

In the forward pass the solution at ray j −1 is denoted
as x j−1 and its error covariance as S j−1. Note that S j−1

is simply the inverse of the Hessian at the final iteration,
A−1

j−1. Before it can be used as a constraint on the next
ray, the additional error due to spatial decorrelation be-
tween rays j − 1 and j must be considered. This we rep-
resent by an error covariance matrix D j−1, j that is added
to S j−1 (represented by box 8 in Fig. 1). The constraint
is added to the retrieval at ray j (except for the first ray)
simply by adding an extra term to (8) to obtain

x j,k+1 = x j,k + A
−1

[

H
T
R

−1δy − B
−1 (x j,k − x

a)

− (S j−1 + D j−1, j )
−1 (x j,k − x j−1)

]

. (13)

Likewise the Hessian becomes

A = H
T
R

−1
H + B

−1 + (S j−1 + D j−1, j)
−1 . (14)

In the backward pass, similar terms are added to both
(13) and (14) involving the backward-pass solution at ray
j + 1, x j+1, and its error covariance, S j+1 + D j, j+1. The
forward-pass solutions from ray j − 1 must still be in-
cluded, which carries the modest overhead of keeping the
forward-pass error covariances for each ray in memory.

D j−1, j is modeled as a diagonal matrix with the er-
ror variances on the diagonal being proportional to the
separation distance of the centers of the basis functions
between ray j − 1 and ray j , and similarly for D j, j+1. The
constant of proportionality is chosen to achieve compara-
ble levels of smoothing in range and azimuth.

In an operational context, not only could one use data
from adjacent rays as a constraint, but also the retrievals
from the ray at the same azimuth in the previous scan.
In this case the formalism introduced in (13) and (14)
would be used but with subscript j − 1 referring to the
ray from the previous scan, rather than the previous ray
in the same scan. Likewise, matrix D j−1, j would rep-
resent the error covariance due to temporal rather than
spatial decorrelation. If the retrieved rain rate were to be
reported immediately then the backward pass would not
be used.

f. Correction of attenuation

As described in section 3, the correction for attenu-
ation is achieved within the forward model by using ln a
and Zh at a particular gate to estimate the associated
attenuation, and then using it to correct Zh at all subse-
quent gates. This is essentially the Hitschfeld and Bordan
(1954) method, except that the size-distribution informa-
tion in ln a enables a more accurate correction to be per-
formed than is possible using Zh alone. Nonetheless, the
method is still potentially inaccurate as small errors in the
radar calibration or the scattering model can be amplified

from one gate to the next. This problem is overcome by
the iterative nature of the variational approach. If the first
guess of ln a is too low then it will lead to an overestimate
of the attenuation for a given measured Zh, and hence
the correction applied to Zh will be increasingly overesti-
mated at the gates beyond. This will lead to the forward
model overestimating both Zdr and φdp at these gates.
When compared to the observed values, the scheme will
know that it needs to increase ln a at the earlier gates to
achieve a better fit to the observations, and the subse-
quent iterations will converge on a retrieval of ln a that is
consistent with them. In practice it is necessary to cap
the total attenuation at around 20 dB as some of the iter-
ations may have a profile of ln a that leads to the attenua-
tion correction being so unstable that the total attenuation
predicted exceeds the maximum floating-point value that
can be held in the computer.

By requiring the forward model to be consistent with
φdp at the far end of the ray, the correction for attenua-
tion will be similar to that obtained by other methods us-
ing φdp (e.g. Holt 1988; Bringi et al. 1990). However, it
was stressed by Jameson (1992) and Smyth and Illing-
worth (1998a) that attenuation is dependent primarily on
the imaginary part of the refractive index, whereas Zh, Zdr

and φdp depend primarily on the real part. Additional in-
formation on total attenuation is available from the differ-
ential attenuation that exhibits itself as a region of nega-
tive Zdr at the back of regions of heavy rain and which
does depend on the imaginary part (Smyth and Illing-
worth 1998a). In principle, the variational scheme can
use this information to assist in the correction for atten-
uation since the combination of variables that correctly
predicts any negative Zdr will have to have correctly pre-
dicted the attenuation of Zh and Zv separately.

g. Retrieval when hail is present

When hail is present in a ray, the scheme described
so far is unable find a solution for ln a that, when used
in the forward model, can closely predict both Zdr and
φdp . This property enables a first pass of the algorithm
to be used to detect the presence of hail followed by a
second to retrieve the contribution that hail makes to the
measured reflectivity factor at each pixel, recognizing the
fact that there is likely to be a continuum between rain, a
rain-hail mixture, and hail. These two passes constitute
the outer loop shown in Fig. 1.

The first pass is carried out with the error assigned to
Zdr (denoted σZdr

in Eq. 5) increased by a factor of 10.
This ensures that the solution is consistent with the mea-
sured φdp , and if hail is present it appears as an overes-
timate of Zdr by the forward model. We then impose the
ad hoc criteria that hail is present in a pixel if Zh is greater
than 35 dBZ (after correction for attenuation) and Zdr is
overestimated by more than 1.5 dB (note that other vari-
ables could also be used such as the co-polar correlation
coefficient, ρhv, and the linear depolarization ratio). In the
second pass, the error in Zdr is returned to its original
value and terms are added to the state vector represent-
ing the fraction f of the reflectivity factor that is due to hail
at each pixel identified by the criteria above. In this way
the retrieval is able to find the combination of ln a and f
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(forced to lie between 0 and 1) that enables both Zdr and
φdp to match the observations.

This strategy for identifying hail was inspired by Smyth
et al. (1999), who used Zh and Zdr to predict φdp along
a ray. If it deviated significantly from the observed φdp

then hail was deemed to be present in the ray, although
its exact location was uncertain. Here, Zh and φdp are
used to predict Zdr , and differences with the observed
Zdr at individual pixels allow the location of the hail to be
pinpointed precisely.

The ad hoc criteria given above for the detection of
hail enable the forward model to simultaneously match
the Zdr and φdp observations, but there may well be fur-
ther work to be done to tune these parameters for differ-
ent radars. Nonetheless, it is intended that the use of low
Zh and Zdr thresholds prevents the scheme from being ex-
cessively sensitive to the precise thresholds chosen; if the
hail flag is triggered incorrectly then the second pass of
the scheme should retrieve a vanishingly small hail frac-
tion f .

The situation is made more complicated by the fact
that regions of dry tumbling hail with zero Zdr are often
surrounded by regions of oblate water-coated hail with
higher Zdr . According to Smyth et al. (1999), oblate hail
still has a lower Zdr than rain with the same Zh and φdp ,
so should be detectable as hail by this methodology even
if its Zdr is difficult to characterize. Differential phase shift
on backscatter, particularly at shorter radar wavelengths,
makes the Kdp of hail similarly difficult to model. For these
reasons, even if the location of the hail has been identi-
fied correctly, the retrieved f may not be accurate. Hence,
rather than reporting the retrieved radar reflectivity due to
hail, Zhail

h , it may be more appropriate to use a more cate-
gorical determination, for instance issuing a hail warning
flag when Zhail

h exceeds some threshold. These difficulties
are best elucidated in the context of the results of apply-
ing the scheme to real hailstorms, so the discussion is
continued in section 4e where the scheme is applied to
a case with oblate hail. The difficulty in forward modeling
the attenuation and differential attenuation of hail leads to
ambiguities in the rain retrievals beyond, and is discussed
in section 4d.

Because hail occurs in very localized regions, it is not
appropriate to represent f by basis functions as with rain.
However, there is still a need to impose some kind of
smoothness with range whenever hail appears in adja-
cent gates, because otherwise the retrieved hail structure
will attempt to fit the noise in the Zdr and φdp measure-
ments. Smoothness is achieved by adding an additional
term Jf to the cost function that penalizes the second
derivative of f with range. For a sequence of contiguous
hail gates from imin to imax it is given by

Jf = λ
imax
∑

i=imin

( fi−1 − 2 fi + fi+1)
2 , (15)

where λ is a tunable smoothing coefficient. In addition
to requiring the solution for f to be smooth, it is also de-
sirable for it to tend toward zero at the each end of the
sequence. Essentially we wish (15) to behave as if there
were points at imin−1 and imax+1 where f is always zero.

The additional term in the cost function is implemented by
creating a “Twomey” matrix T (Rodgers 2000), adding it
to the right-hand side of (9) and subtracting Tx from the
terms in square brackets in (8). The matrix T contains
zeros for elements corresponding to the ln a part of x, but
for each section of x containing contiguous f values, it is
pentadiagonal. Thus if elements i to i + 4 of x contain the
hail fractions for 5 contiguous gates, then the appropriate
subregion of T would contain

T {i..i + 4, i..i + 4} = λ









5 −4 1 0 0
−4 6 −4 1 0

1 −4 6 −4 1
0 1 −4 6 −4
0 0 1 −4 5









.

(16)
This is the same as the Twomey matrix described by
Rodgers (2000), except that the outermost rows and
columns have been excluded, which neatly enforces the
constraint that f should tend toward zero at each end of
the sequence. At each iteration it is necessary to check
that each value of f lies between 0 and 1 and if necessary
correct it.

With the inclusion of hail and attenuation, the formula
for deriving rain rate from the observed linear reflectivity
Zh and the retrieved variables a and f is

R =
[

(1− f )100.1AhZh/a
]1/b

, (17)

where Ah is the total two-way attenuation at horizontal po-
larization in dB.

h. Calculation of error in final rain-rate field

After the solution has converged, the Hessian matrix
A can be used to estimate the error in the retrieved vari-
ables. The first step is to subtract any smoothing terms
that had been added (i.e. use the Hessian defined by Eq.
9 rather than Eq. 14). This is because the extra con-
straints act like an a priori with a low error, so have the
effect of artificially reducing the inferred error in the solu-
tion. When this has been done, A−1 constitutes the error
covariance matrix of the solution in x. To derive the error
in the high resolution rain-rate field we first determine the
error covariance of the high resolution ln a field, which is
given by

Sln a = WA
−1
ln aW

T, (18)

where here A−1
ln a is taken to be just the part of A−1 that

describes the error of the ln a basis function coefficients
(i.e. removing any columns and rows associated with hail
fraction). The diagonal elements of Sln a we denote as
σ2

ln a (note that Eq. 18 is calculated much more efficiently
if only the diagonals are required). For simplicity it is as-
sumed that the errors in the various terms in (17) are in-
dependent, which enables the error in retrieved rain rate
at each gate to be written as

σR

R
≃ σln R =

1
b

[

(

ln 10
10

)2
(

σ2
Zh,dB

+ σ2
Ah

)

+ σ2
ln a +

σ2
f

(1− f )2

]
1
2

,

(19)
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where σZh,dB is the random error in Zh in dB, which has
been neglected until now. The error variance in hail frac-
tion, σ2

f , is simply taken from the appropriate diagonal
element of A−1. For simplicity, the error in attenuation,
σAh , is simply taken to be 25% of the mean value, i.e.
σAh = Ah/4.

It should be noted that (19) has neglected errors in the
forward model, such as due to deviations of the shape of
the size distribution from the one assumed, and uncer-
tainties in the relationship between drop size and axial
ratio. The sensitivity of the retrieval scheme to systematic
(i.e. calibration) errors in Zdr and φdp is also not repre-
sented in (19), but is similar to that for other algorithms as
described in detail by Bringi and Chandrasekar (2001).

3. Forward model

In this section the details of the forward model for Zdr

and φdp are described. The forward model encapsulates
our understanding of the how the properties of rain and
hail affect these variables, so readers who are familiar
with the interpretation of these variables may wish to skip
some or all of this section.

a. Look-up tables for rain

The scattering properties of oblate raindrops have
been calculated using the T-matrix method (Waterman
1969) for equivalent-volume drop diameters between 0.1
and 10 mm. The Andsager et al. (1999) relationship
for drop axial ratio as a function of diameter has been
used. However, above 4.5 mm this relationship is not con-
strained by observations and predicts unrealistically low
axial ratios, so here we change seamlessly to the God-
dard et al. (1995) shapes. The temperature-dependent
refractive index of liquid water is calculated following
Liebe et al. (1989).

The task of the forward model is to predict Z′

dr and
φ′

dp from the observed Zh (assumed to be exactly cor-
rect) and the elements of the state vector, in particular
ln a. First, the simple case of no attenuation or hail is de-
scribed. Look-up tables are constructed relating Zdr and
the ratio Kdp/Zh to the ratio Zh/R. These have been calcu-
lated from gamma size distributions with a range of me-
dian diameters. At this stage the normalization of the dis-
tributions is arbitrary because we are just relating ratios
of moments of the size distribution, so the normalization
factor (denoted Nw by Bringi and Chandrasekar 2001) is
eliminated. The results are shown in Fig. 2 for tempera-
tures of 0◦C and 20◦C, and for gamma distributions with
shape parameters of µ = 0 and µ = 5. Based on the
evidence of Tokay and Short (1996), Wilson et al. (1997)
and Illingworth and Johnson (1999), a value of 5 is used
later in this paper, but it is trivial to change in the algo-
rithm. It can be seen that for these variables the value of
µ leads to a greater uncertainty than temperature.

By rearranging (1), ln(Zh/R) is calculated at each gate
from Zh and ln a. The look-up tables then provide Zdr and
Kdp/Zh at each gate from ln(Zh/R). Differential phase shift
φ′

dp is calculated in the forward model simply by multiply-
ing Kdp/Zh by Zh and integrating in range.
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F IG. 2: (a) Differential reflectivity, Zdr , versus the ratio of reflec-
tivity factor to rain rate, Zh/R, for two values of temperature and
two gamma-distribution shape parameters µ. The corresponding
median volumetric diameter, D0, for µ = 5 is shown on the up-
per axis. (b) The ratio of one-way specific differential phase shift
to reflectivity factor, Kdp/Zh, versus Zh/R. The calculations have
been performed at S-band (3 GHz) using the T-matrix method.

In the presence of attenuation the forward model must
estimate αh and αv, the one-way specific attenuations at
the two polarizations, in dB km−1. Look-up tables for
αh/Zh and αv/Zh are constructed in the same way as for
Kdp/Zh, and Fig. 3a shows αh/Zh versus Zh/R. It can
be seen that temperature has a much greater role than
in Fig. 2, because attenuation depends primarily on the
imaginary part of the refractive index, which is strongly
temperature dependent, while Zdr and Kdp depend on the
real part, which is not. Figure 3b shows the correspond-
ing plot for differential attenuation, (αh − αv)/Zh.

b. Forward model in the presence of attenuation and hail

The look-up tables calculated in the previous section
are used in the forward model as follows. Each range
gate is considered in turn. At gate i we have the mea-
sured linear reflectivity factor Zh,i and three variables from
the state vector, ln ai and fi . We also have the total two-
way attenuations at the two polarizations, Ah,i and Av,i , in
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F IG. 3: (a) The ratio of one-way specific attenuation at horizon-
tal polarization to reflectivity factor, αh/Zh, versus Zh/R, for two
values of temperature and two gamma-distribution shape param-
eters µ. (b) The ratio of one-way specific differential attenuation
to reflectivity factor, (αh − αv)/Zh, versus Zh/R. The calcula-
tions have been performed at S-band (3 GHz) using the T-matrix
method.

dB. At the first gate these are both zero. First, the unat-
tenuated linear reflectivity factors of the rain and hail are
calculated using

Zrain
h,i = (1− fi) 100.1Ah,i Zh,i; (20)

Zhail
h,i = fi100.1Ah,i Zh,i. (21)

Next, by rearranging (1) we obtain ln
(

Zrain
h,i /Ri

)

from Zrain
h,i

and ln ai . This is used in the look-up table described in
the previous section (and plotted in Fig. 2a) to derive
the unattenuated differential reflectivity for rain, Zrain

dr ,i , in
dB. The measured value is affected by hail, which is as-
signed an intrinsic differential reflectivity of Zhail

dr ,i (usually
assumed to be 0 dB), and differential attenuation. Thus
the forward-model estimate of differential reflectivity is
given by

Z′

dr ,i = Zall
dr ,i − Ah,i + Av,i , (22)

where it can be shown that the unattenuated differential
reflectivity of the rain-hail mixture is

Zall
dr ,i = −10 log10

[

fi10−0.1Zhail
dr ,i + (1− fi) 10−0.1Zrain

dr ,i

]

. (23)

We now consider the propagation variables. The look-
up tables are used to calculate the ratios Kdp/Zh, αh/Zh

and αv/Zh for rain from ln
(

Zrain
h,i /Ri

)

. These ratios are then
multiplied by Zrain

h,i itself to recover the actual values Krain
dp,i ,

αrain
h,i and αrain

v,i . The forward-model estimate of two-way
differential phase shift is then incremented by the contri-
butions from rain and hail:

φ′

dp,i+1 = φ′

dp,i + 2∆r
(

Krain
dp,i + Khail

dp,i

)

, (24)

where ∆r is the range-gate spacing. The differential
phase shift at the first gate is taken to be zero. Note
that for spherical or tumbling hail the one-way specific
differential phase shift, Khail

dp,i would be zero, but if other
information were available on the fall mode then it could
be represented as a function of Zhail

h,i . The total two-way
attenuations are calculated in the same way:

Ah,i+1 = Ah,i + 2∆r
(

αrain
h,i + αhail

h,i

)

; (25)

Av,i+1 = Av,i + 2∆r
(

αrain
v,i + αhail

v,i

)

. (26)

Again, the intrinsic attenuation of the hail, αhail
h,i and αhail

v,i

could be parameterized as a function of Zhail
h,i , but it is often

reasonable to assume hail attenuation to be small com-
pared to rain attenuation. Now that the total attenuation
at the next gate has been estimated, we proceed to that
gate and repeat the procedure, thus obtaining Zdr and φdp

at each gate.
No attempt is made to forward-model effects such as

differential phase shift on backscatter, which can add a
random offset of either sign to φdp in the cores of hail-
storms. Because Kdp is not used directly, the retrieval
should be relatively insensitive to this effect, with φdp at
the far end of the storm still providing a reliable path
constraint. However, to avoid the possibility of this phe-
nomenon degrading the retrieval, the error in the mea-
sured φdp could be increased just in those hail-containing
pixels that are likely to be affected.

c. The Jacobian

The Jacobian matrix is found by calculating the par-
tial derivatives of the expressions in the previous section
with respect to each element of the state vector. Its ele-
ments are defined in (7) for the simplified case when f is
excluded from the state vector.

We start by considering the derivatives of the total at-
tenuations, which will be required in the formulation of the
derivatives of the measured variables. The simplest case
is the dependence of Ah at one gate on ln a at the gate
immediately before. Taking the partial derivative of (25)
with respect to ln ai we obtain

∂Ah,i+1

∂ ln ai
= 2∆r

∂αrain
h,i

∂ ln(Zrain
h,i /Ri)

∂ ln(Zrain
h,i /Ri)

∂ ln ai
. (27)

Note that Ah,i in (25) is dependent only on gates earlier
than i, and hence not on ln ai . From (20) it is seen that
Zrain

h,i is independent of ln ai , so ∂ ln(Zrain
h,i /R)/∂ ln ai = 1/b,

and (27) may be rewritten as

∂Ah,i+1

∂ ln ai
= 2∆r

Zrain
h,i

b

[

∂(αh/Zh)

∂ ln(Zh/R)

]rain

i

. (28)
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The term in square brackets is taken directly from the
appropriate look-up table, and is simply the slope of the
graph in Fig. 3. For the derivative of Ah at gate j with re-
spect to ln a at a gate i much earlier in the ray, things are
somewhat more complicated. Not only does a change in
ln ai imply a change in the attenuation due to gate i (and
hence the total attenuation Ah at all subsequent gates), it
also changes the degree to which the reflectivity of inter-
vening gates needs to be corrected for attenuation, and
in turn changes their implied contribution to the attenua-
tion at the gate j . This complication may be treated by
considering each gate sequentially; the derivative of (25)
may be written as follows using the chain rule (omitting
the hail term for simplicity)

∂Ah, j+1

∂ ln ai
=

∂Ah, j

∂ ln ai

(

1 + 2∆r
∂αrain

h, j

∂Zrain
h, j

∂Zrain
h, j

∂Ah, j

)

. (29)

The derivative of attenuation-corrected linear reflectiv-
ity with respect to the two-way attenuation in dB is
∂Zrain

h, j /∂Ah, j = 0.1 ln(10)Zrain
h, j . The other derivative in the

parentheses in (29) is given by

∂αrain
h, j

∂Zrain
h, j

=
αrain

h, j

Zrain
h, j

+
(

1−
1
b

)

[

∂(αh/Zh)

∂ ln(Zh/R)

]rain

j

. (30)

Thus it is possible to proceed from one gate to the next
using the derivative from the previous gate.

The derivation of the derivatives for Av and φ′

dp pro-
ceeds in a very similar fashion. In the case of φ′

dp , the
adjacent-gate derivative (the equivalent of Eq. 28) is

∂φ′

dp,i+1

∂ ln ai
= 2∆r

Zrain
h,i

b

[

∂(Kdp/Zh)

∂ ln(Zh/R)

]rain

i

, (31)

where the term in square brackets is the gradient of the
appropriate line in Fig. 2b. For non-adjacent gates we
have (still omitting the hail term)

∂φ′

dp, j+1

∂ ln ai
=

∂φ′

dp, j

∂ ln ai
+ 0.2 ln(10)∆r

Zrain
h,i

b
∂Ah, j

∂ ln ai

×

{

Kdp

Zrain
h, j

+
(

1−
1
b

)

[

∂(Kdp/Zh)

∂ ln(Zh/R)

]rain

i

}

, (32)

which is the equivalent of (29) and (30).
For differential reflectivity we use (22) and (23) to first

obtain the derivative of Zdr at a pixel with respect to ln a
at the same pixel:

∂Z′

dr ,i

∂ ln ai
=

1
b

[

∂Zdr

∂ ln(Zh/R)

]rain

i

(1− fi)100.1(Zall
dr ,i−Zrain

dr ,i ), (33)

where the term in square brackets is the gradient of the
appropriate line in Fig. 2a. For the derivative of Z′

dr , j with
respect to ln ai at an earlier gate we first apply the chain
rule to Zall

dr , j :

∂Zall
dr , j

∂ ln ai
=

∂Zall
dr , j

∂Zrain
dr , j

∂Zrain
dr , j

∂ ln(Zrain
h, j /Rj)

∂ ln(Zrain
h, j /Rj )

∂Zrain
h, j

∂Zrain
h, j

∂Ah, j

∂Ah, j

∂ ln ai
.

(34)

Evaluating each of these derivatives and including the at-
tenuation terms in (22) we obtain

∂Z′

dr , j

∂ ln ai
= 0.1 ln(10) (1− f j ) 100.1(Zall

dr , j−Zrain
dr , j )

×
(

1−
1
b

)

[

∂Zdr

∂ ln(Zh/R)

]rain

j

∂Ah, j

∂ ln ai

−
∂Ah, j

∂ ln ai
+

∂Av, j

∂ ln ai
. (35)

The calculation of the derivatives of the observations
with respect to f proceed in a similar way (not shown).

4. Results

In this section, three case studies are used to demon-
strate the application of the technique.

a. Demonstration of the retrieval of rain rate

Figures 4a–4c show Zh, Zdr and φdp observed by the
Chilbolton 3-GHz radar for a case in which no hail was
present. The radar has a beamwidth of 0.28◦ and a
range resolution of 300 m. It has been calibrated us-
ing the method of Goddard et al. (1994), which uses the
redundancy of Zdr and φdp in moderate to heavy rain.
The scans have been truncated at a range of 80 km due
to contamination by the melting layer beyond this dis-
tance. Ground clutter and other non-precipitation echos
have been removed by rejecting all pixels with Zh less
than 0 dBZ or with linear depolarization ratio larger than
−20 dB. The algorithm has been run using basis func-
tions with centers spaced 3 km apart in range, and a
decorrelation length of 5 km. The coefficient b in (1) is
fixed at 1.5, while retrieved coefficient a is assigned an
a priori value of 200 mm6 m−3 (mm h−1)−1.5 and an error
standard deviation in the a priori value of ln a of 1.0 (i.e.
+172%/−63%, which translates to an error in rain rate
of a factor of two). At large signal-to-noise ratios we as-
sume root-mean-squared random errors in Zdr and φdp of
σZdr

= 0.2 dB and σφdp
= 3◦; these values are close to

the theoretical prediction for the Chilbolton radar (Li et al.
1994) and are generally what is found in the data. The
errors are assumed to increase at low signal-to-noise ra-
tios. Unfortunately, ρhv was not available from Chilbolton
at this time to perform a more rigorous error calculation.
Note that operational radars with both higher scan rates
than Chilbolton (which is only 1◦ s−1), and less perfect
antennae will tend to have higher errors, even at large
signal-to-noise ratio.

Figure 4d shows the rain rate retrieved by the al-
gorithm, and Figs. 4e and 4f depict the corresponding
forward-modeled fields of Zdr and φdp at the final itera-
tion for each ray. It can be seen that the algorithm has
converged to a solution in which Zdr and φdp are very
well modeled, but without reproducing the random noise
in these observations, as would have occurred had a sim-
ple R(Zh, Zdr ) relationship been applied at every pixel.

Figure 5a shows the corresponding retrieval of the
a coefficient, which the algorithm has ensured varies
smoothly on a scale of 3–5 km in both directions. Note
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F IG. 4: Radar observations and retrieval from a 1.0◦-elevation scan by the Chilbolton 3-GHz radar on 18 August 2000 at 09.55 UTC:
(a) observed radar reflectivity factor; (b) observed differential reflectivity; (c) observed two-way differential phase shift; (d) retrieved
rain rate; (e) differential reflectivity predicted by the forward model at the final iteration of the retrieval; (f) forward-modeled differential
phase shift at the final iteration of the retrieval.

that the forward model defines these values at all loca-
tions, even where no signal was present in the observa-
tions. An important step will be to test the retrieved val-
ues of a using distrometers, although that is beyond the
scope of the present paper. Figure 5b depicts σln a, the
retrieval error in ln a as described in section 2h. It should
be stressed that this is only the retrieval error associated
with random errors in the measurements of Zdr and φdp ;
errors in the forward model (specifically due to size distri-
butions and drop shapes) have not been included. It can
be seen to be around 15% through most of the region,
but is higher within 20 km of the radar due to the reduced
number of observations here. It is also higher far from
the radar in regions of low signal to noise ratio due to
the larger error ascribed to Zdr in these regions. Further-
more, at low rain rate the drops are nearly spherical so
the information on drop size contained in Zdr is low (i.e.
∂Zdr/∂a ≃ 0) and the error in retrieved ln a tends towards
the a priori error of 1.0.

A single ray from this case is shown in Fig. 6. Figures
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F IG. 5: Retrieval output for the scan shown in Fig. 4: (a) coeffi-
cient a in Z = aRb in units of mm6 m−3 (mm h−1)−1.5, and (b) the
retrieval error in ln a assuming a perfect forward model.

6a–6c depict the observations and, in the case of Zdr and
φdp , the corresponding forward-modeled values. The fact
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F IG. 6: Observed and retrieved quantities for the 293◦-azimuth
ray from the case shown in Figs. 4 and 5: (a) observed radar re-
flectivity factor; (b) differential reflectivity from the observations
and the forward model at the final iteration; (c) differential phase
shift from the observations and the forward model at the final it-
eration; (d) retrieved coefficient a in Z = aRb with the gray band
indicating the retrieval error assuming a perfect forward model,
together with the a priori value of 200 mm6 m−3 (mm h−1)−1.5;
(e) rain rate from the retrieval with the gray band indicating the
retrieval error (assuming a perfect forward model and no obser-
vational error in Zh), and using a simple empirical relationship of
the form Zh = 200R1.5.

that the large Zdr and differential phase shift at a range
of 36 km can be accurately modeled with a single value
of a indicates clearly that the associated high radar re-
flectivity factor is due entirely to rain and there is no hail
present. Figure 6d shows retrieved coefficient a, again
illustrating the increased error in regions with few obser-
vations or low signal-to-noise ratio. The corresponding
rain rate is shown in Fig. 6e, and can be seen to be up to
a factor of 2 different from the rain rate calculated using
the fixed a priori estimate of a, and outside the expected
error bounds. Note that the retrieval error has been cal-
culated using σZh,dB = 0 dB in (19), in order to highlight
the error due to the retrieval method rather than errors in
the final scaling with Zh.

b. Sensitivity tests

In this section we investigate the dependence of the
retrievals on random errors in the observations of Zdr and
φdp , as well as the relative importance of these two vari-
ables to the rainfall estimate. To investigate the role of Zdr

in the retrieval, Figs. 7a and 7b depict the same as Fig. 5
but with only Zdr being used in the retrieval, i.e. with φdp

removed from the observation vector in (4). The results
are virtually identical, indicating that most of the informa-
tion on a is being taken from Zdr . This is due to the lower
relative error of Zdr as measured by the Chilbolton radar,
coupled with the fact that φdp only provides information
in regions of moderate to high rain rate where there is a
sigificant gradient in differential phase shift.

To investigate the effect of increased observational er-
ror on the retrieval, Gaussian-distributed random noise
has been added to the Zdr measurements with a standard
deviation of 1 dB, and the retrieval has been rerun. The
results are shown in Figs. 7c and 7d. The increased error
results in less weight being applied to the Zdr measure-
ments relative to the a priori and the smoothing terms,
with the result that the field is smoother and closer to the
a priori value, particularly in the low reflectivity regions
further from the radar. Nonetheless, the broad region of
elevated a in the center of the scan is still present, but
with increased retrieval error (Fig. 7d). The increased
tendency for the solution to approach the a priori may
be countered simply by increasing the error assigned to
the a priori. Figure 7e shows the retrieved a field for the
same noisy Zdr field, but increasing the error in the a priori
value of ln a from 1.0 to 2.5. The results are surprisingly
similar to the original retrieval in Fig. 7a that had only the
intrinsic Zdr noise of ±0.2 dB. This indicates that noisier
Zdr measurements by a radar with a much shorter dwell-
time than Chilbolton could still be used for improving rain
rate estimates, providing that the appropriate smoothing
of the inferred a coefficient is applied. It should be noted
that errors in Zdr of ±1 dB can only be tolerated if they
are truly random, as in this example; there is still a need
for Zdr to be unbiased, i.e. to be calibrated to better than
0.2 dB.

We next consider the case when only φdp is used in
the retrieval. The top panels of Fig. 8 show the same
as Fig. 5 but with Zdr removed from the observation vec-
tor. Due to the larger relative error of φdp , the retrieved a
is smoother and closer to the a priori than in Fig. 5, al-
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F IG. 7: Retrieval for the scan shown in Fig. 4, but in the case that
differential phase shift is not used in the retrieval: (a) coefficient
a in Zh = aRb in units of mm6 m−3 (mm h−1)−1.5, and (b) the
retrieval error in ln a. Panels (c) and (d) show the same as (a)
and (b), respectively, but in the case that an additional random
error has been added to differential reflectivity with a standard
deviation of 1 dB. Panels (e) and (f) show the same as (c) and
(d), respectively, but with the error in the a priori estimate of ln a
being increased to 2.5.

though the general pattern is similar to that shown in Fig.
7c indicating that φdp and Zdr are providing the same in-
formation on drop size in this case. The retrieval error in
Fig. 8b shows values significantly less than the a priori er-
ror only in regions where there is a significant gradient in
φdp . This is in contrast to Zdr , which provides information
on drop size in much weaker rain rates. Figures 8c and
8d show the results of a retrieval carried out after adding
5◦ Gaussian noise to the φdp measurements and keeping
the error in the a priori constant. As in Figs. 7c and 7d,
the a coefficient can be seen to be even more constrained
by the a priori value.
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F IG. 8: As Fig. 7 but in the case that differential reflectivity is not
used in the retrieval. Panels (a) and (b) are for the case when
the the observed differential phase shift is used, while panels (c)
and (d) are for the case that an additional random error has been
added to differential phase shift with a standard deviation of 5◦.

c. Comparison with other polarimetric algorithms

The variational scheme is now compared with three
other algorithms. To represent the Zdr errors for a typical
operational radar, random Gaussian noise with a stan-
dard deviation of 0.5 dB has been added to the Zdr field,
as plotted in Fig. 9. To compensate, the a priori error in
ln a has been increased to 1.7. Comparison of the black
line in Figs. 6d and 9b confirms the point made in the pre-
vious section that the variational scheme is very robust to
random errors in Zdr .

The first of the other algorithms considered is the
“ZPHI” method of Testud et al. (2000), which may be im-
plemented as a limiting case of the variational scheme.
Essentially, a single value of a is retrieved for each ray
such that when combined with Zh it correctly predicts the
φdp at the far end of the ray. It can be seen in Fig. 9b
that the constant retrieved value of a [labeled R(Z, φdp) in
the figure] matches the variational retrieval at a range of
37 km, as this is where most of the differetial phase shift
occurred. Elsewhere the two retrievals diverge. This al-
gorithm can also be implemented by dividing φdp into a
number of segments along the ray and retrieving a sepa-
rate value of a for each one. To some extent this is akin
to the φdp-only scheme illustrated in Fig. 8a, but without
the smoothing of a in the azimuthal direction.

The second algorithm utilizes Zdr and is denoted
R(Z,Zdr ) in Fig. 9. Because Zdr is too noisy to use at each
gate, both Zh and Zdr have been averaged over regions
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F IG. 10: As Fig. 4 but for a 1.5◦-elevation scan by the Chilbolton 3-GHz radar on 19 May 1999 at 17.22 UTC. Note the change in color
scale for φdp .

measuring 4 km in range and 2◦ in azimuth. The look-up
table shown in Fig. 2a is then used to estimate rain rate
and a. In general the results are reasonably similar to the
variational scheme, except that fine structure in the rain
field cannot be resolved, and no retrievals are possible
between 60 and 70 km where Zdr is slightly negative.

The final algorithm utilizes Kdp alone, which has the
advantage that it is insensitive to calibration errors that
can beset both Zh and Zdr . However, φdp is a noisy field so
has been averaged over the same 4-km×2◦ regions used
above, before calculating the derivative with range. The
relationship of Bringi and Chandrasekar (2001) is used to
calculate rain rate: R(Kdp) = 50.7K0.866

dp , where one-way
Kdp has units of ◦ km−1 and rain rate is in mm h−1. It can
be seen in Fig. 9c that the remaining noise in Kdp makes
the retrieval of low rain rates inaccurate, and sometimes
impossible when Kdp is negative. There is a trade-off
between resolution and accuracy for this method; higher
resolutions were attempted but it was found that they re-
sulted in many more negative Kdp regions where rain rate
could not be retrieved, and in general a greater devia-
tion from the other methods in Fig. 9c. Operationally, an

adaptive window would be required if the heavy rain is to
be resolved.

Despite the differences in the detailed structure, each
of the methods agrees within around a factor of two when
the path-integrated rain rate is considered. Note that both
the Kdp-only method and the ZPHI method would expect
more accuracy at shorter wavelengths in moderate rain
due to the increased differential phase shift for a given
rain rate, but at higher rain rates this is countered by the
increase in attenuation.

d. Demonstration of the retrieval of hail intensity

To demonstrate the ability of the algorithm to retrieve
hail, Figs. 10 and 11 show the results of its application to
a much more challenging case with differential phase shift
of up to 80◦ and differential attenuation of up to 1 dB. The
gray regions in Figs. 10b and 10e show the negative Zdr

due to differential attenuation by heavy rain closer to the
radar. The settings are as in the previous case except for
the additional loop to retrieve hail (as described in section
2g).
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F IG. 9: (a) Observed differential reflectivity with an additional
random error of 0.5 dB added, and forward model values from
the variational retrieval (denoted “VAR”) for the same ray of data
as shown in Fig. 6; (b) comparison of a retrieved by the varia-
tional retrieval, an algorithm using just Zh and φdp , and an algo-
rithm using just Zh and Zdr ; (c) comparison of rain rate retrieved
by the three algorithms shown in panel b, plus an algorithm using
Kdp alone.

The retrieved a and its error is shown in Figs. 11a and
11b. As in the previous case, the error tends to increase
towards the edge of the regions of rain. The fraction of
the radar reflectivity factor that is due to hail is shown in
Fig. 11c, and appears in the form of isolated patches of
hail several kilometers across. To indicate the workings of
the hail retrieval it is illuminating to consider the retrievals
for a single ray through the most intense part of the hail
storm, shown in Fig. 12. In the first pass of the algorithm
to locate the hail, the scan is assumed to consist only of
rain and the error on Zdr is multiplied by 10. This way,
the initial retrieval is mostly constrained by φdp , so that
differences between the information provided by Zdr and
φdp (an indicator of the presence of hail; see Smyth et al.
1999) may be highlighted. The observed peak in reflec-
tivity factor of 59 dBZ at a range of 64 km (see Fig. 12a)
is associated with no significant increase in Zdr or gra-
dient in φdp . In an attempt to make this consistent with
φdp , the first pass of the algorithm increases a (see the
gray dashed line in Fig. 12d) since larger drops result in
a lower specific differential phase shift for a given radar
reflectivity factor. Even then, the forward model cannot
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F IG. 11: Retrieval output for the scan shown in Fig. 10: (a) co-
efficient a in Zh = aRb in units of mm6 m−3 (mm h−1)−1.5, (b) the
retrieval error in ln a assuming a perfect forward model, (c) the
fraction f of radar reflectivity factor that is due to hail.

accurately match φdp in this region (see the gray dashed
line in Fig. 12c). When the forward-modeled Zdr from the
first retrieval (gray dashed line in Fig. 12b) is compared
to the observations, the difference of 6 dB is found to ex-
ceed the threshold of 1.5 dB, and so hail is deemed to be
present.

Next, the assumed observational error in Zdr is re-
turned to its original value and a second pass of the al-
gorithm is carried out, in which hail fraction f is retrieved
at the pixels where the Zdr threshold was exceeded. The
solid gray lines in Figs. 12b and 12c indicate that now it
is possible for the retrieval to be consistent with both Zdr

and φdp . The gray filled regions in Fig. 12a show the re-
trieved contribution of hail to Zh, highlighting an intense
hail shaft centered on a range of 64 km, but with weaker
hail regions earlier in the ray. With the dominance of hail
rather than rain at 64 km, the algorithm is no longer forced
to retrieve a very high a coefficient in an attempt to rec-
oncile Zh and φdp , and a lower value is retrieved (see Fig.
12d). Figure 12e shows that when the hail contribution
to Zh is removed, the inferred rain rate is more than an
order of magnitude lower than that obtained by blind ap-
plication of an empirical Z-R relationship. This is crucially
important if false alarms are to be avoided in the fore-
casting of flash floods. Nonetheless, it should be noted
that the rain rate is not very accurate when hail is present
because of the large uncertainty in the fraction of the re-
flectivity factor that is due to rain. This is reflected by the
increased error reported in a at this point (due to the final
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F IG. 12: Observed and retrieved quantities for the 54◦-azimuth
ray from the case shown in Figs. 10 and 11: (a) radar reflectiv-
ity factor as observed, observed but with correction for attenua-
tion, and from the hail component only; (b) differential reflectivity
from the observations, the forward model and the forward model
in the first pass of the algorithm to identify the location of the
hail; (c) two-way differential phase shift from the observations,
the forward model and the forward model in the first pass; (d)
retrieved coefficient a in Zh = aRb with the gray band indicating
the retrieval error assuming a perfect forward model, together
with the value retrieved in the first pass, and the a priori value
of 200 mm6 m−3 (mm h−1)−1.5; (e) rain rate for both the full re-
trieval (with the gray band indicating the error) and assuming a
simple empirical relationship of the form Zh = 200R1.5.
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F IG. 13: As Fig. 12 but for a ray at an azimuth of 29◦, elevation
0.7◦, through an isolated storm at 17.07 UTC on 10 July 1995.
This ray was also analysed in Fig. 12 of Smyth et al. (1999),
although note that they averaged 4 adjacent rays whereas only
a single ray is shown here. The numbered regions 1–4 in panels
b and c are discussed in the text.

term in square brackets in Eq. 19). When heavy rain co-
exists with hail (as reported by the algorithm between 30
and 40 km) then φdp still provides a reasonable constraint
on rain rate and the rain part of the retrieval will be more
accurate.

The performance of the scheme in the presence of
heavy rain and hail is encouraging, but there is a need
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to examine its reliability in the rain regions that lie in the
shadow of intense hail shafts. The heavy rain between
20 and 40 km in Fig. 12 caused appreciable attenuation.
The forward model includes a prediction for attenuation
of the horizontally and vertically polarized radiation that
is able to correctly predict the observed negative Zdr in
Figs. 10b and 12b. However, Figs. 11a and 12d reveal
that the coefficient a in the shadow of the largest region
of hail is lower than anywhere else in the scan. The most
likely reason for this is not that the drops are unusually
small in this region, but rather than the forward model has
underestimated the differential attenuation that occurred
earlier in the ray. It is possible that there is an error in
the forward modeling of differential attenuation by heavy
rain, but more likely that there were non-spherical hail-
stones present that caused additional differential attenu-
ation. There is clearly a need to investigate how to rep-
resent this effect. One approach could be to retrieve an
additional variable describing the asphericity of the hail,
but that is beyond the scope of this paper.

e. Retrieval in the presence of oblate hail and differential
phase shift on backscatter

Finally, the scheme is tested on an isolated thunder-
storm observed on 10 July 1995, which was found in the
detailed study of Smyth et al. (1999) to contain oblate hail
that led to significant differential phase shift on backscat-
ter, δ. This case therefore provides a stringent test of the
stability of any hail retrieval method. A horizontal scan
through this storm was shown in Fig. 7 of Smyth et al.
(1999) so is not reproduced here. A ray through the base
of the storm is shown in Fig. 13, and has been split into
the same four regions as they used.

Region 1 was stated by Smyth et al. (1999) to be com-
posed predominantly of a small concentration of large
raindrops and indeed that is what has been retrieved at
the leading edge of the storm. In region 2 there was
a mixture of rain and tumbling hail, and the forward-
modeled values of Zdr and φdp are able to accurately
simulate the observations at this location. Region 4 con-
tained lighter rain, and the near-constant φdp in this region
provides a useful path constraint for the scheme in its es-
timate of the rain rate through the core of the storm.

A more complex picture emerges in region 3 (and to
a lesser extent between regions 1 and 2), where sub-
stantial δ reduced the measured φdp as much as 20◦

below what would be expected from propagation effects
alone. This can be explained by the presence of large
oblate wet hailstones with a degree of alignment (i.e. not
falling with their major axis always in the horizontal), con-
firmed by Smyth et al. (1999) who collected of a num-
ber of disc-shaped hailstones from this storm that had a
typical aspect ratio of 0.6 and typical maximum dimen-
sion of 2 cm. As the forward model is unable to repre-
sent non-spherical hail, the retrieval scheme has diag-
nosed the presence of a mixture of raindrops and spher-
ical hail in this location, enabling it to fit the observed Zdr

but not the observed φdp . Some inaccuracy should there-
fore be expected in the weighting between rain and hail,
since oblate hail would be expected to contribute itself
to positive Zdr . However, the forward-modeled φdp does

correctly predict the propagation component, and is very
similar to the curve that was “fitted by eye” by Smyth et al.
(1999). This implies that the estimated mean rain rates
across the storm should still be reasonable.

It should be noted that some of the anomalous φdp

values may have been caused by increased statistical er-
rors due to the reduced co-polar correlation, rather than
purely a δ effect, but unfortunately ρhv was not measured
during this case. However, the nature of the anomalous
φdp region when viewed in a horizontal scan was to be
systematically negative, not random as would be the case
if it were simply statistical error. In any case, the retrieval
scheme is robustly stable whatever the mechanism.

There is some evidence that this configuration of a
core of dry tumbling hailstones being encircled by a re-
gion of water-coated oblate hail also occurred in the pre-
vious case; Fig. 10b shows an arc of high Zdr immediately
adjacent to the largest region of hail identified in Fig. 11c.
However, there is no evidence of δ in the observed φdp ,
so it is equally likely that this arc was simply heavy rain.

Hence we conclude that the scheme is stable in the
presence of oblate hail and differential phase shift on
backscatter, and correctly identifies the location of hail,
even if its reflectivity fraction is not accurate. Note that
any algorithm that explicitly calculated Kdp by taking the
derivative of the observations in Fig. 13c would have
severe problems in interpretting the negative values fol-
lowed by large positive values in the vicinity of region 3.

5. Conclusions

For the first time a variational method has been used
to tackle the problem of retrieving rain rate and hail inten-
sity from polarization radar. By an explicit treatment of
the observational errors, the scheme is able to make op-
timum use of the complementary but sometimes conflict-
ing information from Zdr , φdp and any a priori information
we have on the size distribution. Horizontal smoothing of
the information provided by the polarimetric variables en-
ables random errors in Zdr of up to 1 dB to be tolerated,
and the use of a forward model appears to solve the prob-
lem of how to deal with negative Kdp and Zdr . Attenuation
correction is included in the forward model in such a way
that it is consistent with both φdp and the measured dif-
ferential attenuation; hence it will be at least as accurate
as methods that use only one of these variables. The al-
gorithm is fast enough that it may be applied in real-time
to operational radar data, where derived rain rate fields
are required within in a matter of minutes of the event. It
should be stressed that other formulations of the problem
are possible within the variational framework, for exam-
ple using a different choice for the variables in the state
vector or a different method for spatial smoothing.

The retrievals are still sensitive to problems that affect
existing (non-variational) polarimetric algorithms, such as
calibration of Zdr , beam obscuration and clutter rejection.
Nonetheless, it should be possible to alleviate these prob-
lems within a variational framework. As an example, the
retrieval in low rain-rate regions has been found to be
quite sensitive to the calibration of Zdr . A simple solution
would be to manipulate the elements of the observational
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F IG. 14: Illustration of the use of cubic splines to produce a
smooth, high resolution function x̂ (thick black line) from a small
number of control points x (circles). The individual weighted ba-
sis functions are shown by the thin black and gray lines and sum
to equal x̂.

error covariance matrix R (in Eqs. 8 and 9), either by in-
cluding the appropriate off-diagonal terms that arise due
to a systematic error in all Zdr values, or simply increas-
ing the error assigned to the Zdr measurements at low
values of Z. This would then cause the retrieved coeffi-
cient a to tend towards the a priori value at low rain rate.
A more ambitious approach would be to devise a varia-
tional calibration scheme that would be run on a routine
basis to correct Zh and Zdr ; essentially one would formu-
late a scheme in which the Zh and Zdr calibration factors
were included as retrieved variables in the state vector.

The next step is clearly to validate the retrieved drop-
size information against distrometer data. The perfor-
mance of the scheme is dependent on the relative weight
given to the observations, the a priori and the various
smoothness constraints, so if the scheme is to be ap-
plied operationally then observational error needs to be
rigorously calculated for that particular radar, in partic-
ular to include its dependence on signal-to-noise ratio
and whether ground clutter is likely to be present, mak-
ing use of ρhv where available. In intense convection it
would be desirable to increase the error in φdp due to the
possibility of backscatter differential phase, and in Zh due
to the possibility of non-Rayleigh scattering by large hy-
drometeors. Of particular interest in an operational con-
text is the application of the scheme at C-band (typically
around 5.6 GHz), which is commonly used in Europe and
Japan, but where attenuation and differential phase shift
are much larger than the S-band data used in this paper.

APPENDIX

The basis-function matrix

Here we outline how matrix W in section 2c is de-
fined. In (10), x represents the amplitudes (or “control
points”) of the set of n basis functions contained in the
columns of W. The rows of W represent the m points of
the high resolution grid at which each basis function has
been evaluated and at which we require the values of x̂.
Cubic splines have the property that the resulting x̂ will be

continuous in itself and its first and second derivatives,
but will not necessarily pass through the control points
(Prenter 1975). We consider element j of x̂, denoted x̂j ,
that lies between control points i and i +1 of x. The order
of the spline determines how many control points x̂j will
depend on. For a cubic spline, x̂j depends on the four
nearest control points, i.e. xi−1, xi , xi+1 and xi+2. Defin-
ing u as a variable between 0 and 1 that represents the
distance that point j lies between the control points i and
i + 1, the four non-zero elements of row j of W are given
by

W{ j , i − 1..i + 2} =
1
6







(1− u)3

4− 6u2 + 3u3

1 + 3u + 3u2 − 3u3

u3







T

. (36)

Each row of W is built up in the same way for each point j
on the high resolution grid. At the edge of the domain the
basis functions are constructed such that x̂ is produced
as if there were a repeated control point beyond each end
of the domain. Figure 14 demonstrates the fitting of a
smooth curve using this method.
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mates from differential polarization measurements. J. At-
mos. Oceanic Technol., 4, 588–598.

Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar differ-
ential reflectivity measurements at orthogonal polarizations

for measuring precipitation. J. Appl. Meteorol., 15, 69–76.

Smyth, T. J., and A. J. Illingworth, 1998a: Correction for atten-
uation of radar reflectivity using polarization data. Quart. J.
Roy. Meteorol. Soc., 124, 2393–2415.

Smyth, T. J., and A. J. Illingworth, 1998b: Radar estimates of
rainfall rates at the ground in bright band and non-bright
band events. Quart. J. Roy. Meteorol. Soc., 124, 2417–
2434.

Smyth, T. J., T. M. Blackman and A. J. Illingworth, 1999: Ob-
servations of oblate hail using dual-polarisation radar and
implications for hail-detection schemes. Quart. J. Roy. Me-
teorol. Soc., 125, 993–1016.

Testud, J., E. L. Bouar, E. Obligis and M. Ali-Mehenni, 2000: The
rain profiling algorithm applied to polarimetric weather radar.
J. Atmos. Oceanic Technol., 17, 332–356.

Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop
spectra of the origin of rain from stratiform versus convective
clouds. J. Appl. Meteorol., 35, 355–371.

Waterman, P., 1969: Scattering by dielectric obstacles. Alta
Freq., 38, 348–352.

Wilson, D. R., A. J. Illingworth and T. M. Blackman, 1997: Differ-
ential Doppler velocity: A radar parameter for characterizing
hydrometeor size distributions. J. Appl. Meteorol., 36, 649–
663.

18


