
J 9.2                MESOSCALE MODELING OF URBAN CIRCULATION 
FORCED BY AIRFLOW AND URBAN HEAT ISLAND 

 
Albert. F. Kurbatskiy1∗ and Ludmila. I. Kurbatskaya2 

1Institute of Theoretical and Applied Mechanics of Russian Academy of Sciences, Siberian Branch  
1Department of Physics, Novosibirsk State University  

Novosibirsk, Russia 
2Institute of Computational Mathematics and Mathematical Geophysics SB RAS 

Novosibirsk, Russia 
 

                                                 
∗ Corresponding author address: Albert F. Kurbatskiy, 
Inst. Theor. Appl. Mech. SB RAS, Novosibirsk State 
Univ., Dept. of Phys., 630090 Novosibirsk, Russia, 
e-mail: kurbat@nsu.ru
 

 
 
1. INTRODUCTION  
 
 

The complexity of problems on the quality of air in 
urbanized areas lies in the variety of spatiotemporal 
scales on which the processes of pollution dispersion 
and transformation proceed. In particular, two of the 
most important scales include an “urban scale” of a 
few tens of kilometers (typical size of a city), on which 
a primary emission of air pollution occurs, and a 
“mesoscale” of several hundred kilometers, on which 
secondary air pollutions are formed. 

Therefore, the dispersion of pollutants depends 
strongly on both the structure of the urban boundary 
layer and its interactions with the boundary layer of 
the city’s environs and the synoptic flow. In order to 
determine the average and turbulent transport and 
chemical transformations of pollutants, it is necessary 
to accurately know major meteorological quantities 
such as wind; turbulent fluxes of momentum, heat, 
and mass; temperature; pressure; and humidity.  

These quantities can be either interpolated from 
measurement data or obtained with numerical mod-
els. These models are bound to be capable of accu-
rately describing the statistical characteristics of hy-
drothermodynamic fields on the urban scale and 
mesoscale.  

The effects of urban roughness must be param-
eterized because the horizontal sizes of the region are 
on the order of the mesoscale (100 km) and the dif-
ference-grid spacing minimized with respect to com-
putational-time consumption is generally within sev-
eral hundred meters and, consequently, the structure 
of the urbanized surface of the city is difficult to re-
solve in details.  

In review of Roth (2000), the two most important 
effects of an urbanized surface on the structure of air 
flow over it are indicated:  
a) drag to the incident air flow from buildings (be-
cause of the difference of pressures across rough-
ness elements) and  
b) differential heating of urbanized surfaces, 
which is able to generate the so-called effect of an  

 
 
urban heat island. 

A typical diagram of an urbanized surface (model 
of urban roughness) is presented in Fig. 1. The urban 
canopy layer, which is marked in the diagram as 1, 
extends from the underlying surface to the top of 
buildings and is strongly influenced by the local char-
acteristics. In this region, the local flow and the turbu-
lence have a strong effect on the dispersion of pollut-
ants. The urban boundary layer occupies the region 
extending from the urban canopy layer to the level at 
which the effect of the urbanized surface is no longer 
manifested (6). The urban boundary layer includes the 
layer of turbulent wake 3 (so-called inner boundary 
layer), which is influenced directly by roughness ele-
ments; the turbulent surface layer (2, 4); and the 
mixed layer (5). The urban boundary layer and the 
urban canopy layer are key elements in calculating 
the modification of the background winds (on the syn-
optic scale and mesoscale) by the city and in obtain-
ing the local wind fields with high resolution. 

The understanding of the required connection be-
tween these layers represents the principal complex 
problem of urban fluid mechanics (Fernando et al., 
2001). Because of this problem and a number of other 
difficulties, the effect of urban roughness on the struc-
ture of the ABL turbulence in mesoscale models is 
usually considered in a simplified form via a specific 
parameterization scheme.  

Models describing the turbulence to a different 
degree of completeness and different parameteriza-
tions of urban roughness have been used recently to 
simulate the processes of momentum and heat trans-
fer and pollutant scattering in an urban boundary 
layer. The conventional E – ε model of turbulence is 
employed by Vu et al.(2002) and the effect of stratifi-
cation on turbulent momentum and heat transfer is 
taken into account through the methodology of Laun-
der (1975), with introduction of corrections for stratifi-
cation into the proportionality coefficient standing in 
the standard two-parameter expression for the turbu-
lent viscosity. The shortcomings of this representation 
are universally known. The turbulent viscosity also 
depends on the mean-velocity gradient and vertical  
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Figure 1. Typical urbanized area on a flat terrain.  

 
turbulent heat flux (flux Richardson number) in addi-
tion to the turbulent kinetic energy E and its dissipa-
tion rate ε. Therefore, the turbulent momentum and 
heat fluxes are not expressed explicitly in terms of the 
mean-field gradients and an iteration procedure is 
required. To take into account the effect of roughness 
on heat-transfer processes and their influence on ur-
ban climate, the governing Navier–Stokes equations 
and the equation of heat inflow are averaged not only 
over an ensemble but also over space via introduction 
of a certain effective-volume function.  

Another parameterization scheme of Martilli et al. 
(2002) uses the approximation of “porous urban 
roughness,” in which the drag and frictional forces 
induced by buildings of different heights are taken into 
account in the form of source terms in the equations 
of motion and heat and moisture inflow via the method 
proposed of Raupach et al. (1991). A scheme of such 
a parameterization is depicted in Fig. 2b along with a 
horizontal-wind-velocity profile, which clearly shows 
the effect of urban roughness on flow in an urban 
canopy layer. A conventional rough-ness model and a 
profile of mean wind velocity are shown in Fig. 2a.  

The two parameterization schemes are imple-
mented in a simple two-dimensional test of ABL evo-

lution through a one-parameter model of turbulence in 
which the turbulent kinetic energy alone is determined 
from the transport equation. For all turbulent fluxes, 
the gradient model of the K-theory with the linear tur-
bulent scale regarded as a function of the vertical 
coordinate alone is used.  

In this study, a scheme of parameterization of the 
roughness of the urbanized surface (Fig. 2b) is also 
implemented for a simple two-dimensional test. A 
modified three-parameter model of turbulence for the 
ABL over an urbanized surface with modeling of the 
effect of an urban heat island is used. Unlike the 
three-parameter model developed previously of Kur-
batskii (2001), for the modified model, completely 
explicit anisotropic models are derived for the turbu-
lent momentum fluxes (Reynolds stresses) and turbu-
lent flux of the scalar via symbol algebra. The model 
provides additional possibilities for studying the ef-
fects of an inhomogeneous underlying surface (ther-
mal and mechanical) on the pattern of a stratified at-
mospheric flow as compared to one- and two-
parameter techniques of modeling the turbulence 
(see, for example, of Vu et al., 2002; Martilli et 
al.,2002). 
 

 
Figure 2. The concept of incorporation of urban canopy model: (a) –the conventional model, - the roughness 

length; (b) – the urban canopy model. 
0z



 

Furthermore, Section 2 presents the governing equa-
tions and the basic relations of the modified three-
parameter model for the turbulent ABL. In Section 3, 
the problem is formulated for a two-dimensional com-
putational test, the initial and boundary conditions are 
stated, and the numerical method is briefly described. 
The results of the numerical test are described and 
analyzed in Section 4. In Section 5 comparison be-
tween 2E ε θ− − 〈 〉  and k ε−  turbulence models is 
resulted, and in Section 6 results of numerical model-
ing of passive tracer dispersion above city are pre-
sented. Brief conclusions are presented in Section 7. 
Finally, the Appendix (Section 8) presents the govern-
ing system of equations for a two-dimensional nu-
merical test, completely explicit algebraic expressions 
for the turbulent momentum and heat fluxes, numeri-
cal values of the model’s constants, the details of the 
scheme of parameterization of urban roughness, and 
boundary conditions. 
 

2. MODIFIED THREE-PARAMETER MODEL FOR 
TURBULENT ATMOSPHERIC BOUNDARY LAYER 

 
Studies of the parameterization of turbulence were 

started in the 1940s according to Kolmogorov (1942). 
Models for turbulent stresses were subsequently veri-
fied experimentally on the basis of measurement data 
and from comparison with data obtained through 
large-eddy simulation and were applied in different 
engineering flows. In geophysical applications, turbu-
lence closure models of different levels of complexity 
were formulated of Mellor and Yamada (1974, 1982; 
hereafter MY model) and were used to simulate a 
planetary boundary model more successfully than 
many other empirical models.  

An improved turbulence closure model of level 2.5 
was used by Cheng et al. (2002) for a planetary 
boundary layer. In this model, some simplifications of 
the original MY model were eliminated via the most 
complete models developed by Zeman and Lumley 
(1979) for the pressure-velocity  and pressure-

temperature correlation 
ijП

iП
θ (see below equations. 2a 

and 3a). In the turbulence model of level 2.5, all turbu-
lent fluxes of momentum (Reynolds stresses) and 
turbulent fluxes of heat, including the temperature 
variance 〈 〉θ 2 , are determined from algebraic expres-
sions.  

Launder et al. (1975) and Launder (1996) some-
what different (but also tensor-invariant, as well as at 
Zeman and Lumley, 1979) models are proposed for 
the correlations of  andijП iП

θ . These models are 
used in this study in formulating the three-parameter 
model of turbulence. Following of Zeman and Lumley 
(1979), the parameterizations of the correlations of 

 and ijП iП
θ  of Cheng et al. (2002) include buoyancy 

effects, whereas the tensor-invariant IP model of 
Launder (1996) is used for the rapid terms of these 

correlations, and (see below the expres-

sions of (7b)). The rapid parts of both and 

(2)
ijП ( 2)

iП
θ

ijП iП
θ  

contain velocity terms related to the mean strain-rate 
tensor , and the vorticity tensor , as well as 
buoyancy terms related to the heat fluxes. The model 
for the slow part of the pressure-velocity correlation 
has a simple relaxation form:

ijS ijR

(1) /ij ijП b= − τ , where 

(2 / 3)ij i j ijb u u E= 〈 〉 − δ  is the anisotropy tensor, 

/ 2i iE u u= 〈 〉  is the turbulent kinetic energy (TKE), 
/E=τ ε  is the return-to-isotropy time scale, and ε  

is the TKE dissipation. The tensor and  in the 

rapid part of correlation have the same numerical 
coefficients as well as Launder (1975, 1996) and dif-
ferent coefficients in the models of Zeman and Lumley 
(1979) and Cheng et al. (2002). The original closure 
MY model of level 2.5 is based on simpler parame-
terizations for the pressure-velocity and pressure-
temperature correlations: 

ijS ijR
(2)
ijП

(1) /ij ijП b≈ τ , , 

and 

(2)
ij ijП ES≈

(3) 0ijП =  (buoyancy contribution); ( 1) /i iП h≈θ
θτ , 

where i ih u= 〈 〉θ  is the vector of turbulent heat flux 

and θτ is the time scale of the turbulent temperature 

field, and ( 2) ( 3) 0i iП П= =θ θ . Consequently, the MY 

model takes into account one rapid term  and 
disregards the effects of buoyancy (the 
terms , ).  

(2)( ijП )

( 2)
iП
θ ( 3)

iП
θ

Thus, the parameterizations used in this study for 
the turbulent momentum and heat fluxes are interme-
diate between the parameterizations of the improved 
model of Cheng et al. (2002) and those of the MY 
model. The improved closure model of level 2.5 was 
subject to testing by Cheng et al. (2002) during the 
solution of the standard problem of a horizontally ho-
mogeneous planetary boundary layer. However, even 
for this simple problem, an accurate calculation of the 
countergradient heat flux in the inversion layer is re-
quired under conditions of unstable stratification. In 
this case, an algebraic parameterization, which is 
used in models of level 2.5, is insufficient to calculate 
the temperature variance 2〈 〉θ  and the solution of the 
transport equation for the variance of temperature is 
needed to correctly take into account the processes of 
advection, diffusion, and destruction for this quantity. 
 
 
2.1 Governing Equations  
 
 
Equations for the mean and turbulent quantities are 
necessary to model flows in the atmospheric bound-
ary layer. The governing equations the mean velocity 

and mean potential temperature  may be written 
as 

iU Θ

 



 

1 ˆ2
τ

ε
ρ

∂ ∂
= − − − − Ω +

∂ ∂ i

iji
i ijk j k u

j i

DU Pg U D
Dt x x

    (1a) 

and 

ˆ ,θ
Θ ∂
= − +

∂ j
j

D h D
Dt x

               (1b) 

respectively. Here, 

,∂ ∂
≡ +
∂ ∂j

j

D U
Dt t x

 ,τ ≡ 〈 〉ij i ju u  θ≡i ih u ,    (1с) 

ˆ
iuD is the source of forces (friction, form drag) in-

duced by interactions between rigid surfaces (ground, 
buildings) and the air flow, ˆ

θD  takes into account the 
effect of sensible heat fluxes from the rigid surfaces 
on the potential-temperature balance,  is a compo-

nent of the turbulent velocity fluctuation, 
iu

(0,0, )=ig g  
is the vector of gravitational acceleration,  is the 
mean pressure, 

P
ρ  is the mean density, Ω j  is the 

angular velocity of the Earth’s rotation, τ ij  is the Rey-

nolds stresses, and  is the vector of turbulent heat 
flux. 
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2.2 Equations of Turbulence 
 
 

(i) Equations for the Reynolds stresses 
 ij i ju uτ ≡ 〈 〉

τ τ τ
∂⎛ ⎞∂

+ = − + +⎜ ⎟∂ ∂⎝ ⎠

j i
ij ij ik jk i j

k k

U UD βD h
Dt x x

 

,Пβ ε+ − −j i ij ih j           (2a) 

where 
2
3
δ∂ ∂ ∂

≡ + −
∂ ∂ ∂ij i j ij k

j i k

p pП u u p
x x x

u ,    (2b) 

22 ,
3

ji
ij ij

k k

uu
x x

ε ν
∂∂

≡ =
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δ ε i igβ β≡ ,      (2c) 

2 .
3ij i j k ij k

k

D u u u pu
x

δ∂ ⎛≡ +⎜∂ ⎝ ⎠
⎞
⎟          (2d) 

Here,  is the tensor of pressure–strain correlation, ijП

ijD is the diffusion term, ν is the coefficient of mo-

lecular viscosity, β  is the volumetric expansion rate 
of air, and  is the turbulent pressure fluctuation. p

(ii) TKE balance equation 

1 ˆ
2

i
ii ij i i E

j

UDE D h
Dt x

τ β ε
∂

+ = − + − +
∂

D ,       (2e) 

where is the source of the TKE generated be-
cause of interactions between buildings in the urban 
canopy layer and the air flow. 

ˆ
ED

(iii) Transport equation for the turbulent heat flux 
i ih uθ≡ 〈 〉  

2 П ,h i
i i j ij i i

j j

UD h D h
Dt x x

θτ β θ
∂ ∂Θ

+ = − − + −
∂ ∂

   (3a) 

where i
i

pП
x
∂

≡
∂

θ θ , h
i i

j

D u u
x jθ
∂

=
∂

,       (3b) 

iП
θ  is the pressure–temperature correlation, and  

is the diffusion of the heat flux . 

h
iD

ih

(iv) Transport equation for the variance of tem-

perature 2θ〈 〉  

2 2 2i
i

D D h
Dt x

,θ θθ ε∂Θ
+ = − −

∂
           (4а) 

2

jxθ
θε χ

⎛ ⎞∂
≡ ⎜ ⎟⎜ ⎟∂⎝ ⎠

, 2
i

i

D u
xθ θ∂

=
∂

,        (4b) 

where χ  is the molecular thermal diffusivity, Dθ  is 

the diffusion of the variance of temperature, and θε  is 
the dissipation rate of the variance of temperature.  

(v) Equation of TKE spectral consumption (TKE 
dissipation rate)  

ˆD D D
Dt ε ε
ε ε

τ
+ = − Ψ + ,              (5а) 

where  

0 1 2 3
2ij i i

i j i
j j

b U UEu u i

x x
β

ψ ψ ψ θ ψ β θ
ε ε ε
∂ ∂

Ψ = + + +
∂ ∂

(5b) 

j
j

D
xε ε∂

=
∂

u ,                  (5c) 

and D̂ε  is the source of “secondary” dissipation, 

and D̂ε  is the source of “secondary” dissipation, 
which is due to the presence of buildings in the urban 
canopy layer. The interaction of the buildings with the 
air flow leads to an increase in the cascade of energy 

 



 

from the mean kinetic energy to the TKE and, conse-
quently, to an increase in dissipation.  

In this study, the terms containing the molecular 
viscosity  and thermal diffusivity χ are disregarded 
everywhere except in the expressions for 

ν
ijε  and θε . 

Moreover, rotation is also disregarded in the equa-
tions for second moments. Modeling the third-order 
moments is beyond the scope of this study. As noted 
above, the main problem was to obtain parameteriza-
tions for the turbulent momentum and heat fluxes in 
the approximation of weakly equilibrium turbulence 
(Girimaji and Balachandar, 1998), which does not 
require the modeling of the third-order moments.  

The approximation of weakly equilibrium turbu-
lence is based on the assumption that, in slowly 
evolving turbulent flows, the means of velocity, tem-
perature, and other hydrothermodynamic fields vary in 
space and time more slowly than turbulent quantities 
(turbulent stresses, turbulent fluxes of a scalar, vari-
ances) and, consequently, the turbulence is approxi-
mately in equilibrium with the imposed mean fields. In 
this equilibrium state, the material derivatives of the 
anisotropy tensor of stresses  and the vector of 
turbulent scalar (temperature) flux are approximately 
equal to zero: the turbulence reaches an equilibrium 
state, in which the equilibrium values of the tensor  

and vector  are independent of the initial conditions 

ijb

ijb

ih
 
 
2.3 Turbulence Closure: Models for Pressure –
Strain and Pressure –Scalar Correlations 
 
 
Three-parameter model of thermally stratified turbu-
lence. As compared to the conventional method of 
modeling a planetary boundary layer, when a parame-
terization of the form ε ~ E

3/2
/Λ (Λ is the linear size of 

energy-containing turbulent eddies) is used for the 
TKE dissipation rate, it is preferable to employ an-
other more universal and widely used approach in 
which the quantity ε is found from the solution of the 
differential transport equation (5a). Here, this equation 
is used in the same form given by (Kurbatskii, 2001; 
Kurbatskii and Kurbatskaya, 2001) and with the same 
numerical coefficients the values of which have been 
calibrated by different authors (see, for example, Kur-
batskii, 2001; Sommer and So, 1995; Andren, 1990) 
and the values of the numerical coefficients ψ0, ψ1, 
ψ2, and ψ3  are given in the Appendix.  

The transport equation for the destruction of tem-
perature fluctuations  is more difficult to calibrate 
than the equation for the TKE dissipation. Instead of 
this equation, we use the parameterization  

θε

2

θ
θ

θ
ε

τ
= ,                     (6a) 

where the time scale of the temperature field θτ  is 

calculated from the ratio of the time scales of the tem-
perature and dynamic fields 

2

2
R

E
θ

θ

τ θ ε
τ ε

〈 〉
= =                 (6b) 

The assumption of the constancy of this ratio yields 
reasonably accurate results for both engineering 
(Kurbatskii and Kazakov, 1999) and geophysical 
(Kurbatskii, 2001; Kurbatskii and Kurbatskaya, 2001) 
flows at 0.6R = . 

For the diffusion terms ,iiD Dθ  and Dε , the follow-
ing simple gradient-diffusion approximations are used 
(Kurbatskii and Kurbatskaya, 2001): 

21
2 ii

i E i

c E ED
x x

μ

σ ε
⎛ ⎞∂ ∂

= − ⎜∂ ∂⎝ ⎠
⎟ ,           (6c) 

2

i i

c ED
x x

μ
ε

ε

ε
σ ε
⎛ ⎞∂ ∂

= − ⎜∂ ∂⎝ ⎠
⎟ ,            (6d) 
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i i

c ED
x x

μ
θ

θ

θ

σ ε

⎛ ∂∂ ⎜= −
⎜ ⎟∂ ∂⎝ ⎠

⎞
⎟ ,           (6e) 

where cµ= 0.09 (Kurbatskii and Kurbatskaya, 2001).  
The closed-form equations given in (2e), (4a), and 

(5a) form a three-parameter model of a thermally 
stratified turbulence.  

Models of correlations with pressure fluctuations.  

The pressure-velocity  and pressure-

temperature
ijП

iП
θ correlations in Eqs. (2a) and (3a) con-

tain three different contributions caused by (i) self-
interactions of the turbulence field (tending to isotropy 
or a slow part of correlation), (ii) interactions between 
the mean velocity shear and the turbulence (a rapid 
part of correlation), and (iii) interactions between the 
buoyancy and the turbulence (a rapid part of correla-
tion as well):  

(1) (2) (3)

( 1) ( 2) ( 3)

ij ij ij ij

i i i i

П П П П

П П П Пθ θ θ

= + +

= + + θ
          (7a) 

(1) 1
1ij ijП c bτ −= ; 

(2)
2 2(4 / 3) ( )ij ij ij ijП c ES c Z= − − + Σ , 

(3)
3ij ijП c B= , 

( 1) 1
1i iП c hθ
θτ

−= , ( 2)
2

i
i j

j

UП c h
x

θ
θ

∂
= −

∂
,

 



 

 
( 3) 2

3i iП cθ
θ β θ= 〈 〉 ,                (7b) 

where 

1
2

ji
ij

j i

UUS
x x

⎛ ⎞∂∂
= +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

, 1
2

ji
ij

j i

UUR
x x

⎛ ⎞∂∂
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;(7c) 

2
3ij ik kj ik kj ij km mkb S S b b SδΣ = + − , ij ik kj ik kjZ R b b R= − , 

2
3ij i j j i ij k kB h h hβ β δ β= + −            (7d) 

Here, and are the tensors of mean shear and 

mean vorticity, respectively. As mentioned above, the 
tensor-invariant IP model (Launder et al., 1975; Laun-
der, 1996) is used for a rapid part of correlation . 

ijS ijR

( 2 )
ijП

Algebraic models of the Reynolds stresses and 
vector of heat flux. The combination of Eqs. (2a) and 
(2e) makes it possible to write the equation for the 
anisotropy tensor  in the form  ijb

4 П
3ij ij ij ij ij ij ij

D b D ES Z B
Dt

+ = − −Σ − + − ,    (8a) 

where 
1
3ij i j l l ij k

k
D u u u u

x
∂ ⎛≡ −⎜∂ ⎝ ⎠

δ u⎞⎟

B

.         (8b) 

Equation (8a) can be simplified in the approxima-
tion of the weak equilibrium turbulence, where it is 
usually assumed that the diffusion term described by 
the tensor  according to (8b) is also small. The 

substitution of expression (7b) for the pressure–strain 
correlation  into the right-hand side of Eq. (8a) 

leads to the following algebraic equation for the ani-
sotropy tensor of turbulent stresses :  

ijD

ijП

ijb

( )1 2 3ij ij ij ij ijb E S Z= − − Σ + +α τ α τ α τ ,      (9а) 

2
1

1

14
3

c
c

α
−

= , 2
2

1

1 c
c

α
−

= , 3
3

1

1 c
c

α
−

= .      (9b) 

Applying the approximation of weakly equilibrium tur-
bulence to prognostic equation (3a) and using ex-
pression (7b) for the correlation iП

θ , we obtain the 
following algebraic equation for the vector of heat flux 

 at closure level 3.0 (according to the terminology 
of Mellor and Yamada 1974, 1982):  

ih

2
4 3

2
3ij j ij ij i

j
A h b E g

x
∂Θ⎛ ⎞= − + +⎜ ⎟ ∂⎝ ⎠

τ δ τα β δ

1 4
i

ij ij
j

U
A c

x
∂

= +
∂θδ τα               (10b) 

4 (1 )c2= − θα .                  (10с) 

We note that, for thermally stratified turbulence, 
the variance of temperature fluctuation 2θ〈 〉  in the 
model of level 3.0 is not parameterized but obtained 
from the prognostic differential transport equation 
given in (4a). Thus, algebraic expressions for the tur-
bulent momentum and heat fluxes assume a closed 
form when the three-parameter 2E ε θ− − 〈 〉  model of 
turbulence is used.  

Explicit algebraic expressions for the turbulent 
momentum and heat fluxes and numerical values of 
the model’s constants c1, c2, c3, c1θ, and c2θ are given 
in the Appendix.  
 
 

Parameterization of urban roughness. As noted in 
the Introduction, the parameterization of urban rough-
ness is performed in this study according to the 
scheme shown in Fig. 2b, which takes into account 
buildings of different height. Specific expressions 
used to calculate (in the governing equations) the 
effects of urban roughness on flow in the ABL are 
presented in the Appendix.  
 
 
3. COMPUTATIONAL TEST   
 
 

The three-parameter model of turbulence formu-
lated above is used to study the effect of urbanized-
surface roughness and an urban heat island on a 
global structure of the ABL during its 24-h cycle of 
evolution in a simple two-dimensional test. 
 
 
3.1. Computational Procedure: Initial and Bound-
ary Conditions  
 

The horizontal extent of the integration domain is 
120 km with a resolution of 1 km. The vertical resolu-
tion is 10 m within the first 50 m from the underlying 
surface, with the subsequent stretching of the grid in 
the vertical direction to a height of 1000 m, above 
which the grid spacing remains constant up to 5000 
m. The topography of the surface is flat and the ur-
banized area (the city’s model) 10 km in extent is lo-
cated at the center of the computational domain with 
an abscissa from 45 to 55 km. 

θ ,  (10а)  

 



 

Meteorological initial conditions were determined 
through specification of the geostrophic wind speeds 
(3 and 5 m/s) in the west–east direction and the at-
mospheric thermal stratification characterized by a 
value of 3.5 K/km for the potential temperature.  

On the ground, the mean departure temperature 
 from a reference temperature  was given in the 

form  
gΘ 0T

Θg(x, 0, t) = 6 Sin (πt/43200),         (11a) 

where t is the current time in seconds. This is the only 
time-dependent boundary condition of the problem, 
which simulates a 24-h cycle of heating the Earth’s 
surface by the Sun. The heat island was specified as 
the temperature contrast with respect to the surface 
temperature varying according to the same law (11) 
but with amplitude increased by 4 0K. At the trans-
verse boundaries, normal derivatives were set equal 
to zero for all required functions. At the vertical 
boundary, the required functions satisfied the same 
boundary condition.  
The model’s governing equations (1a), (1b), (1c), (2d), 
(4a), and (5a) written for a two-dimensional case (see 
Eqs. (14a)– (14e) in the Appendix), along with Eqs. 
(2e), (4a), and (5a) represented in a two-dimensional 
form, are solved via the alternating-direction method 
in combination with the sweep method on a staggered 
grid. The advective terms of the equations are ap-
proximated by the second scheme with upwind differ-
ences (Roache, 1976). The distribution of pressure 
can be calculated simultaneously with the velocity 
field from the Poisson’s diagnostic equation. In this 
study, where the model is applied to the flow in the 
ABL with flat topography of the underlying surface, it 
can be assumed that the hydrostatic approximation is 
suitable for calculating the distribution of pressure. 
During computations, the horizontal components of 
the mean wind are found first through solution of Eqs. 
(14b) and (14c). The vertical component of the mean 
wind is calculated via integration of Eq. (14a). Further, 
the potential temperature, the turbulent kinetic energy, 
the rate of its dissipation, and the temperature vari-
ance are calculated via solution of Eq. (14e) and the 
three equations written in a two dimensional form for 
the functions , ε, and . Finally, the pressure is 
found as a result of integrating the equation for the 
mean vertical wind velocity (14d) from the lower 
boundary in the vertical direction. The solution inde-
pendent of a computational grid is obtained for a 120 
× 50 grid. The time step was chosen from the condi-
tion that the accuracy remains invariant, and compu-
tations were performed with a time step equal to 
0.625 s.  

E 2〈θ 〉

4. NUMERICAL STUDY OF URBANIZED SURFACE 
EFFECT ON THE BOUNDARY LAYER  
STRUCTURE 
 
 

In this section, the results of simulation for the 
simple case described above are compared to the 
available data of measurements of turbulent momen-
tum and heat fluxes, turbulent kinetic energy, and 
temperature. Despite a simplified parameterization of 
the urban surface and a significant scatter of the data, 
it is possible to reveal some common properties in 
observations of the urban ABL that must be repro-
duced by the present model and parameterization. 
For this purpose, the behavior of the vertical profiles 
of ABL characteristics at the center of the urbanized 
area (city) is analyzed below.  
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Figure 3. Vertical profiles of the “local” friction 
velocity (defined as (*u )1/ 42 2uw vw〈 〉 + 〈 〉 ) at the 

center of the urbanized area that are normal-
ized by its maximum value. Different symbols 
show measurement data: -(Rotach, 1991, 
1993, 1995), -(Oiakawa and Meng, 1995), 
and -(Feigenwinter, 1999) Lines 1 and 2 cor-
respond to UG = 3 m/s and UG = 5 m/s, respec-
tively. The vertical coordinate Z is normalized 
by the mean height of buildings in the urban-
ized area ZH. 

4.1 Turbulent Momentum 
 
 

To verify a numerical model for the urban ABL, the 
data of measurements and observations available in 
the literature are employed. The field observations of 
the structure of turbulence inside and outside the ur-
ban canopy layer (Rotach 1991, 1993, 1995) were  

 



 

carried out in Zurich (Switzerland). The measure-
ments were taken in the central flat area of the city, 
with a fairly regular arrangement of buildings whose 
average height is no greater than 20 m.  

The values of local friction velocity at different 
heights are calculated in terms of the Reynolds tan-
gential stresses as  

( 1/ 42 2
*u uw vw= 〈 〉 + 〈 〉 )             (12a) 

Figure 3 shows the vertical profile of the normal-
ized local friction velocity obtained via the numerical 
model. In this figure, observational data are depicted 
as functions of the normalized coordinate Z/ZH, where 
ZH is the average height of a building in the urban 
canopy layer. All data are normalized by the maxi-
mum local friction velocity . These data show a 
maximum at a height approximately equal to twice the 
average height of a building and substantially smaller 
values inside the urban canopy layer. The area below 
the maximum is usually referred to as the roughness 
sublayer. Since there is no reliable information about 
the time of measurements and meteorological condi-
tions for the data obtained by different authors, the 
calculated values of the friction velocity were aver-
aged over all calculations during their 24-h cycle. As 
is seen in the figure, the calculated friction velocity 
increases with height from the underlying surface, 
reaches a maximum value at the height larger 
than

*maxu

HZ , then decreases slightly with increasing 
height. Such a behavior is consistent with the Monin–
Oboukhov similarity theory of the surface layer (the 
layer of constant flow). The small decrease with in-
creasing height is in good agreement with observa-
tional data (Oikawa and Meng, 1995; Feigenwinter, 
1999). The extensive data set of measurements in the 
cities is presented in review of Roth (2000) for the 
ratio of the local friction velocity  to the mean ve-

locity of horizontal wind (six groups of data). The cal-
culated profile of  (squares in Fig. 4) has a 
maximum near the top of the building and then de-
creases with increasing height, reaching a value close 
to 0.1 at a height of about a fourfold average height of 
the building. The profiles calculated for two values of 
the geostrophic wind (3 and 5 m/s) are in good 
agreement with observational data.  

*u

* /u U

The simulated results presented in these two fig-
ures show that the modified model of turbulence for 
the ABL and a more realistic model of urban rough-
ness (Fig. 2b) are able to reproduce the vertical pro-
files of both the turbulent momentum flux and the 
mean velocity of horizontal wind that are consistent 
with observational data. 
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Figure 4. Vertical profiles of the ratio of the lo-
cal friction velocity  to the average horizon-
tal wind velocity at the center of the urbanized 
area. The symbols correspond to the data of 
different authors’ measurements presented in 
Fig. 1b of (Roth, 2000). The other notation is 
the same as in Fig. 3. 

*u
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Figure 5. Vertical profile of the deviation of po-
tential temperature for the time 03:00 at the 
center of an urban heat island (x = 50 km): 
simulation at the geostrophic wind speed (1) 
UG = 3 m/s and (2) UG = 5 m/s.  

 
 
4.2 Temperature 
 
 

The vertical profiles of the deviation of the poten-
tial temperature (see the explanation in section 8.1 of 
the Appendix) in the nighttime ABL (03:00) at the cen-

 



 

ter of an urbanized surface are calculated with the 
modified three-parameter model of turbulence for the 
ABL and are shown in Fig. 5 for low (3 m/s) and high 
(5 m/s) geostrophic wind speeds. Comparison with 
the results of measurements over Sapporo (Japan) 
exhibits good qualitative agreement with a measured 
profile of potential temperature (see profile 18U in Fig. 
5a of Uno and Wakamatsu (1992) both inside and 
outside the urban canopy layer. The measurements of 
series 18U recorded a raised inversion with its base at 
a height no greater than 60 m. The existence of the 
elevated nighttime inversion is similar to that over the 
convective mixed layer; however, the nature of at-
mospheric stability and turbulence inside the corre-
sponding layers is different (Uno and Wakamatsu, 
1992).  
 
 

4.3. Turbulent Structure of Urban Atmospheric 
Boundary Layer  

 
 

The structure of turbulence in the boundary layer 
over an urbanized surface is represented by the pro-
files of TKE (Fig. 6), standard deviation of the vertical 
velocity (Fig. 7), and vertical turbulent heat flux (Fig. 
8).  
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Figure 6. Vertical profiles of the turbulent ki-
netic energy at the center of the urbanized 
area that are normalized by the maximum 
value of the friction velocity squared: simula-
tion at the geostrophic wind speed (solid lines) 
UG = 3 m/s and (dashed lines) UG = 5 m/s; re-
sults of simulation for the time (1, 3) 12:00 and 
(2, 4) 24:00. Different symbols show meas-
urement data: - (Rotach, 1991; 1993; 1995), 

- (Oikawa and Meng, 1995), - (Feigenwin-
ter, 1999), and - (Louka et al., 2000).  
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Figure 7. Vertical profile of the standard devia-
tion for the vertical velocity at the center of the 
urbanized area: simulation at the geostrophic 
wind speed (1) UG = 3 m/s and (2) UG = 5 m/s. 
The symbols denote the measurement data 
(see, Roth, 2000).  
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Figure 8. Vertical turbulent heat flux at the cen-
ter of the urbanized area for the time 03:00: 
simulation at the geostrophic wind speeds (1) 
UG = 3 m/s and (2) UG = 5 m/s.  

Figure 6 shows the TKE vertical profiles normalized 
by the maximum friction velocity squared (see the 
definition in Section 4.1) at the center of an urbanized 
surface that are simulated for the (instantaneous) 
moments 12:00 and 24:00. The same figure presents 
some results of different databases of urban meas-
urements (Rotach, 1991; 1993; 1995; Oikawa and 
Meng, 1995; Feigenwinter, 1999; Louka et al., 2000). 
These measurements are carried out for different 

 



 

morphologies of urban roughness and under different 
meteorological conditions. The scatter of the meas-
urement data is significant. Some data show a de-
crease in the TKE in the canopy layer relative to its 
value above this layer in accordance with a large 
amount of data of measurements and simulations in 
the vegetation layer (Raupach et al., 1991). With cer-
tain restrictions, these data can be considered similar 
to those obtained over the canopy layer (buildings) 
characterized by another effect of mechanical factors 
on the flow. The numerical results obtained in this 
study have a correct behavior in the canopy layer and 
above it. In any case, it is believed that the effect of 
TKE decreasing in the canopy layer is reproduced by 
the model. Note that the three-parameter model of 
thermally stratified turbulence yields satisfactory re-
sults when data obtained under controlled conditions 
of a laboratory experiment are used (Kurbatskii, 2001; 
Kurbatskii and Kurbatskaya, 2001) and adequately 
describes the TKE behavior for different states of at-
mospheric stability. The day-night difference of behav-
iour of the TKE is difficult to explain because of a wide 
scatter of the observational data. 
The profile of standard deviation of the vertical veloc-
ity *max/W uσ  is shown by the solid line in Fig. 7 along 
with the data of measurements (eight data groups) 
presented in review of Roth (2000; fig. 2f).These data 
are depicted by the symbols (blue squares). 

From the considerations stated in Section 4.1, Fig. 
7 shows the modeling results averaged over all calcu-
lations during their 24-h cycle. We note that the calcu-
lated profiles are close to the center of the range of 
data scatter. The normalization is performed with the 
friction velocity averaged over all values calculated for 
24 h (by the same reasoning as in Section 4.1). Thus, 
it may be inferred that, for this structure characteristic 
of the turbulence field, this ABL model gives results 
that are in satisfactory agreement with observational 
data.  

The calculated profiles of vertical heat flux (Fig. 8) 
are qualitatively consistent with the profiles measured 
over Sapporo (Uno and Wakamatsu. 1992). Although 
the measurement data are characterized by a rather 
wide scatter, a marked minimum near the inversion 
boundary is present in the data of Uno and Waka-
matsu (1992) in Fig. 7 for the chosen time (03:00). 
The flux gradient changes sign, thus pointing to the 
heat flux directed downward from the base of the ele-
vated inversion layer.  
 
4.4. Effect of an Urbanized Surface on Mesoscale 
Flow 
 

The results of the previous section relate primarily 
to the behavior of flow near an urbanized surface and 

show that the modified three-parameter model is able 
to reproduce some important characteristics recorded 
during observations in cities. 
This section analyzes the results associated with the 
effect of urban roughness on the global structure of 
the ABL to find out to what extent the results obtained 
with the proposed ABL model are in agreement with 
observational data and other calculations. Situations 
with both a weak geostrophic wind, when thermal-
stratification effects are of greatest importance and a 
strong geostrophic wind are discussed.  

The numerical results presented in Figs. 3–9 are 
obtained for two values of the geostrophic wind 
speed: UG = 3 m/s and UG = 5 m/s. On the one hand, 
such wind-speed values are chosen for a qualitative 
comparison of the results of this test with the results 
of the same test of Martilli et al.(2002), where the one-
parameter turbulence model is used to calculate all 
turbulent momentum and heat fluxes with an isotropic 
effective coefficient of turbulent exchange and with 
the initiation of an urban heat island via determination 
of the temperature of the underlying surface from the 
solution of the equation of heat balance at the surface 
with consideration for all heat fluxes at the surface, 
including radiative fluxes.  

The results of this test are obtained from a physi-
cally more correct calculation of all turbulent fluxes (of 
momentum and heat) and with the initiation of an ur-
ban heat island through specification of the tempera-
ture difference between the city and its environs. On 
the other hand, a small difference between the values 
of the geostrophic wind speed (3 and 5 m/s) can pro-
vide a certain idea of the sensitivity of the improved 
model for an urban ABL to small variations in the 
geostrophic wind speed UG (in particular, for such an 
integral characteristic as the ABL height above the 
city).  
4.4.1. Daytime ABL. The calculated vertical section of 
potential temperature at noon (12:00 of a diurnal cycle 
of modeling the evolution of the urban ABL) in Fig. 9a 
clearly shows a vertical heated-air column developing 
over the city and being advected downwind by the 
synoptic flow: sensible heat fluxes in the city are 
greater than those in its environs (rural area). This 
effect, along with the strong turbulence generated by 
the city’s rough structure, increases the height of the 
boundary layer, as is shown in the figure by the 
dashed line, from about 800 m in the city’s environs to 
1.5 km over the city. (The ABL height is defined (Mar-
tilli et al., 2002) by the height of the layer of the 
model’s computational grid at which the TKE is 
smaller than or equal to 0.01 m

2
 s

–2
.) Such an in-

creased boundary layer over the city as compared to 
that in the environs was observed, for example, by 
Spanton et al. (1988). The horizontal wind field in Fig. 
9b shows low wind speeds near the surface of the 
city. 
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Figure 9. Calculated (a, c, e) vertical sections of the deviation of potential temperature (K) and (b, d, f) horizontal wind 
speed (m/s) for the time (a, b, c, d) 12:00 and (e, f) 24:00 at the geostrophic wind speed (a, b, e, f) 3 and (c, d) 5 m/s. 
On the sections of potential temperature, the dashed line shows the ABL height, which is determined as the level at 
which the TKE is smaller than 0.01 m2/s2. The segment of the heavy line with the abscissa from 45 to 55 km marks 
the location of the urbanized area (city). 
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Figure 10. Calculated vertical sections of horizontal wind speed (m/s) for the time 12:00: (a) - simulation with the 
classical MOST approach and (b) - simulation with the parameterization of urban roughness. The thick line on the 
abscissa between 45 km and 55 km indicates the location of the urbanized area (city). 
 
 

It possible to make some quantitative estimation of 
the wind speed changes above city influenced by the 
mechanical (urban roughness) and thermal (the urban 
heat island effect) inhomogeneity of the urbanized 
area. Fig. 10(a) shows results of the simulation with 
only the classical MOST approach. The simulation 
with the parameterization of the urban roughness in 
Fig. 10(b) is represented. It follows from these figures 
that the urban roughness reduces the wind speed 
above the city by about 24 percent, as compared with 
the classical MOST approach. Thus, the increase in 
wind speed above the city most is likely connected 
with the urban heat island effect. A similar modifica-
tion of the wind speed above the city was probably 
simulated (for example, Martilli et al., 2002). 

 
The influence of this effect on the structure of the 

ABL with usual roughness (Fig. 2a) and with a heat 
island during the implementation of the same simple 
two-dimensional test is shown by Kurbatskii (2005). 
Other things being equal, the height of the boundary 
layer turns out to be greater in the presence of longi-
tudinal turbulent diffusion of heat than in its absence. 
Indeed, the calculated results shown in Fig.11 allow 
estimating the effect of the longitudinal turbulent heat 
diffusion on the boundary layer characteristics. It is 
seen from Fig.11 that the height of the boundary layer 
above city (marked by the dashed line) in the pres-
ence of diffusion is higher than in its absence. The 
longitudinal diffusion transports the heat into the col-
umn of the heated air above the city (heat spot), 
which increases the TKE generation due to the fluctu-
ating buoyancy force and favors the increase of the 
PBL height. 

 



 

 
 
  a                               b  

 
 
 
Figure 11. Vertical sections of the deviations of the potential temperature, calculated taking into account (a) and ne-
glecting (b) the longitudinal turbulent heat diffusion at 12:00 a.m. (UG=5 m/s). 
 
 
 

Figures 12a and 12b depict the vertical sections of 
the deviations of the potential temperature (a) and the 
mean wind field (b) calculated with the mesoscale 
model, described in this paper, for 12:00 a.m. in the 
diurnal cycle of modeling. Figures 3c and d show the 
same sections over the modeled heat island obtained 
in [5] with a single-parameter model of turbulence (all 
turbulent momentum and heat fluxes are determined 
by the gradient Boussinesq model with the turbulent 
viscosity coefficient) and parameterization of the main 
factors of the heterogeneous urban surface (head 
resistance of buildings, radiative processes in city 
canyons). In both of the cases, the same test for the 
2D area (see Subsection 3.1 above) and the same 
initial distribution of the potential temperature and the 
geostrophic wind were used. 
The results of both tests cannot be compared quanti-
tatively because of different parameterization of the 
effect of the urban heat island and the effects of the 
urban roughness, which significantly change the 
structure of the flow directly in the layer of obstacles, 
a part of the urban atmospheric boundary layer adja-
cent to the surface. However, the large-scale air circu-
lation within the domain of integration in both of the 
numerical tests can be compared qualitatively. It  
 
 

 
 
should be noted, in addition, that the verification of 
one or another parameterization of the turbulent 
exchange processes within urban surfaces always 
present severe difficulties either due to the absence 
of field measurements or due to the heterogeneity 
of urban surfaces, which is always very high. The 
vertical sections of the field of the potential tempera-
ture are similar.  

The wind velocity (Figs. 12b and d) increases over 
the city, because the vertical temperature gradient 
between the air above the city and the air above the 
city surroundings generates the thermal circulation, 
which can be seen from the isotachs of the vertical 
velocity in Fig.14. In addition, the pressure gradient, 
caused by higher temperatures over the city, has here 
the same sign as the advection. Along with the effects 
of friction near the surface, this leads to the lower 
wind values near the urban surface and higher values 
above it. The minimum in the wind velocity down-
stream out of the city arises because the pressure 
gradient and the advection of the synoptic wind have 
the opposite signs in this area. The presence of such 
a "cap" of the warm air above the urban heat island 
was observed, in particular, in laboratory measure-
ments (Lu et al., 1997)  and in numerical investigations 
(Kurbatskii, 2001). 
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Figure 12. Vertical sections of the potential temperature (a, c) and the mean horizontal wind (b, d) at 12:00 a.m. as 
calculated in this study (a, b) and in [5] (c, d) ( GU = 3 m/s). 
 
 
 
5. COMPARISON BETWEEN 2ε θ− − 〈 〉E  and 

ε−k  TURBULENCE MODELS 
 

As noted in the introduction, two turbulence mod-
els commonly used for simulating the urban boundary 
layer include standard −k ε model modified for ef-
fects of buoyancy on vertical turbulent transport (see, 
for example, Vu et al., 2002), and a traditional ap-
proach (see, for example, Martilli et al., 2002) based 
on the one-parameter turbulence model. In this 
model, the turbulence length scale is found as a func-
tion of the vertical coordinate based on some assump-
tions. Such an approach does not take into account 
either anisotropic transport in vertical and horizontal 
directions, or effects of buoyancy on vertical turbulent 
transport. 
 

 
 
Computations of wind field, temperature and tur-

bulent quantities inside the urban boundary layer al-
low detecting differences in the turbulent transport 

modeled with the three-parameter 2E ε θ− − 〈 〉  
model and standard K-theory]. For this purpose, val-
ues of “turbulent exchange coefficients” 

/( / )MK uw U z= −〈 〉 ∂ ∂  and /( / )HK w zθ= −〈 〉 ∂Θ ∂  
are computed diagnostically in the same way as for 
the horizontal homogeneous atmospheric boundary 
layer (Mellor and Yamada, 1974), and the results are 
shown in Fig. 13a,b. As can be clearly seen in Fig. 
13a, b, negative values of MK  and HK  are predicted 
in the region of turbulent thermal circulation on the 
leeward side of the urbanized area (Fig. 14). How-
ever, their negative values are also predicted in the 

 



 

lower urban boundary layer part for MK  and upper 

urban boundary layer part for HK . 

Regions of negative values of MK  and HK  ex-
plicitly indicate non-local character of the turbulent 
transport which can not be described using simple 
one- or two-parameter turbulence models. In these 
two models, it is difficult to correctly account for ef-

fects of buoyancy on the turbulent transport of mo-
mentum, mass and heat. For example, figure 15 
shows that the ‘standard’  model underpredicts 
values of the vertical turbulent heat flux when com-
pared with the 

k − ε

2E ε θ− − 〈 〉  model and fully explicit 
anisotropic model for turbulent fluxes of momentum, 
mass and heat. 
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Figure 13. Momentum ( ) and heat (a b ) turbulent exchange coefficients for Urban simulation at noon. Results 

are for the case with  geostrophic wind. 13ms−
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Figure 14. Velocity vectors and isotachs ( 1ms− ) for vertical velocity at 12:00 (noon) in the diurnal cycle of 

simulation for the geostrophic wind speed 1
GU 3ms−= . 
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Figure 15. Vertical turbulent heat flux in a point in the center of the city at 12:00 (noon) in the diurnal cycle of 
simulation for the geostrophic wind speed 1

GU 3ms−=  computed by means of ‘standard’ k ε−  model and the 

three-parametric 2E ε θ− − 〈 〉 turbulence model with the fully explicit anisotropic model for turbulent fluxes. 
The fluxes normalized on the maximum value of 0w〈 θ〉 . 

 
 
6.  DISPERSION OF PASSIVE TRACER ABOVE 
CITY: NUMERICAL TEST 

 
6.1.  Introduction 
 
For a typical urbanized surface (city), a significant 
contribution to the total emission of pollutants is made 
by a large number of relatively weak sources located 
mainly near the surface. As a result, effects of turbu-
lence in the urban canopy layer become important for 
modeling of pollution dispersion in a city environment, 
and they should be included in urban dispersive mod-
els for improving the quality of forecasting (Rotach, 
1999). In mesoscale modeling of a structure of wind 
and temperatures fields, the city can be represented 
by a heated "spot" surrounded by its neighborhoods 
(Fernando et al., 2001), and effects of  urban rough-
ness on turbulent transport of  momentum, heat and 
mass can be parameterized (Vu et al., 2002; Martilli et 
al., 2002). Developing internal boundary layer at the 
“city-rural area" interface has a mechanical as well as 
a thermal origin. Because of this, it is desirable to 
preserve anisotropy of turbulent transfer in vertical 
and horizontal directions which cannot be adequately 
reproduced by traditionally used one-and two-
parametric models of a turbulent atmospheric bound-
ary layer  (see, for example, [3, 5]). The improved  

 

mesoscale model of a turbulent atmospheric bound-
ary layer with anisotropic expressions for turbulent 
fluxes of momentum and heat, and parameterization 
of urban roughness effects on turbulent transport al-
lows to obtain wind and temperature fields above the 
urbanized surface predicting increase in wind speed 
above the city, which qualitatively agrees with obser-
vation data (Bornstein and Johnston, 1977). The 
model also takes into account the impact of the longi-
tudinal turbulent diffusion of a scalar (heat and con-
centration) resulting from the horizontal thermal inho-
mogeneity created by city and its neighborhoods on 
integral characteristics of an urban boundary layer. 
The present section formulates the turbulent diffusion 
mesoscale model where turbulent fluxes of concentra-
tion are defined by completely anisotropic algebraic 
expressions. This model is used for computing of 
passive tracer dispersion above the city in a simple 
two-dimensional (2D) case simulating 24-hour evolu-
tion of the atmospheric boundary layer above the city. 
 
 
6.2.  Turbulent Diffusion Model for Pollution  
Dispersion 
 
 
The baseline mesoscale model of turbulent atmos-
pheric boundary layer is expanded to include atmos-

 



 

pheric dispersion of a passive contaminant by adding 
equations for mean concentration , turbulent 

contaminant flux  and correlation

( , )iC x t

j if u c≡< > θ< >c . 
Numerical results from validations of differential and 
algebraic models for turbulent concentration fluxes 
used in modeling of passive tracer dispersion above 
an urban heat island under conditions of night-time 
atmospheric boundary layer (weak wind, stable strati-
fied atmosphere) have shown (Raupach et al., 1991) 
that the algebraic model for turbulent concentration 
fluxes provides acceptable in accuracy results. Such a 
model is formulated by simplifying closed differential 
transport equation for the turbulent scalar flux iu c〈 〉  
under the same local-equilibrium turbulence assump-
tion applied in section 2. 3 for simplification of equa-
tions for turbulent momentum (Reynolds stresses) 
and heat flux.  
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This approach assumes that the left hand side of 
(13a) can be neglected and the following algebraic 
equation for  is obtained, j if u c≡ 〈 〉
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where ij i j ijb u u (2 / 3)E= 〈 〉 − δ  is the traceless Rey-

nolds stress tensor. 
The closed prognostic equation of (13c) for correlation 

(Enger, 1986) is, c〈 θ〉
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where  is the turbulent transfer term, also re-
duced under the weak-equilibrium turbulence ap-
proach to the algebraic equation, 

cDiff〈 θ〉
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Substituting (13d) into (13b) yields the algebraic equa-
tion for flux concentration  jf
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Anisotropic expressions for vertical  and hori-

zontal 

wc〈 〉
uc〈 〉  turbulent fluxes of concentration are 

derived by means of symbolical algebra from (13e) in 
following form, 
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In From (13g) and (13h) the equation for mean con-
centration 
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is reduced to the closed form after neglecting molecu-
lar diffusion at higher Reynolds numbers. The numeri-
cal constants of diffusion models (13g) – (13i) are: 

1С 3С 3,28α = α = , 2С 0,4α = . 

 

 



 

6.3.  Results of Numerical Modeling of Passive 
Tracer Dispersion above City 

 
The computed tracer concentration in the city centre 
at the lowest modeled level during 48-hour cycle of 
simulating the urban boundary layer evolution is pre-
sented on fig. 16. As expected, the concentrations are 
higher during the night than during the day, because 
the nocturnal boundary layer is much thinner than the  

diurnal one. It should be noted here that the overpre-
diction of primary pollutants during the night in urban 
areas, as compared to the measurements, is fairly 
common for Eulerian photochemical models, espe-
cially under low wind conditions (Moussiopoulos et al., 
1997). This problem can be linked to an inappropriate 
reproduction of the nocturnal urban heat island.  
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Figure 16. Time evolution of passive tracer surface concentration in the centre of the urban area as computed by the 
three-parameter turbulence model. Results are for the case with the geostrophic wind 3 m/s. GU =
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Figure 17.  Passive tracer concentration. At the lowest level at 13:00 a.m. of the second day. The city is located be-
tween 45 km and 55 km. Results are for the case with the geostrophic wind GU = 3 m/s. 

 



 

Thus, influence of the urban surface on the day time 
pollutant concentration away from the city is clearly 
shown. This result is in qualitative agreement with 
calculations (Martilli et al., 2002)]. The above-noted 
behavior of concentration in a vicinity of city’s leeward 
side is caused by the nature of the thermal circulation 
moved by advection downwind to the leeward side 
(see also a Figure 14 showing the isotachs of vertical 
wind speed (arrows show the average wind vector 
field). 

A method of simulating pollutant dispersion in 
mesoscale atmospheric models is presented in this 
section. Influence of the urban roughness (buildings) 
is not explicitly resolved, but their effects on the grid-
averaged variables are parameterized. In Eulerian 
diffusion models, turbulent fluxes of concentration are 
computed from completely explicit algebraic expres-
sions taking into account the anisotropy of transfer in 
vertical and horizontal directions. Numerical results of 
passive tracer dispersion emitted at ground level in 
the centre of the urban area correctly reflect behavior 
of concentration near the surface during the 24-hour 
evolution of the urban boundary layer. Impact of the 
city on day time concentration of pollution away from it 
during the second day is correctly predicted by the 
numerical model. 
 
 
7.  CONCLUSIONS 

 
A three-parameter mesoscale model of explicit 

anisotropic turbulent fluxes of momentum and heat 
has been developed in this paper for modeling at-
mospheric flows over an inhomogeneous underlying 
surface. An important property of the model lies in the 
improvement of estimating the processes of transfer 
in the vertical and horizontal directions under different 
stratification conditions, which are usually observed in 
an urban boundary layer. A simple two-dimensional 
numerical test on the influence of mechanical factors 
(urban roughness) and thermal factors (effect of an 
urban heat island) on a global structure of the atmos-
pheric boundary layer has been implemented. This 
test has shown that the results of numerical simulation 
are in good qualitative and quantitative agreement 
with the data of field measurements. The model is 
able to reproduce turbulent processes within the ur-
ban canopy layer and above it with satisfactory accu-
racy. The formulated model of turbulent fluxes with 
closure level 3.0 can be potentially used to model the 
atmospheric boundary layer within the “urban” scale 
and “mesoscale.” The improvement of the model re-
quires a more accurate calculation of heating proc-
esses in the urban canopy layer, and this modification 
of the model is regarded as the aim of our further 
study. Note that the description of a detailed pattern of 
urban climate requires measurement data on turbu-
lent quantities within the urban canopy layer. Such 
data allow a more accurate specification of the de-
sired functions of the three-parameter model at the 
lower boundary near the surface (at the first computa-

tion level), because the use of the approximations of 
constant fluxes in the surface layer that are based on 
the Monin–Oboukhov theory does not allow an ade-
quate (to the data of field measurements; see, for 
example, Rotach, 1993) reproduction of the vertical 
structure of turbulent fields in the urban canopy layer 
(from the level of the urban street canyon to heights of 
50–100 m). It is clear that a realistic modeling of the 
dispersion of urban pollutants requires an accurate 
knowledge of meteorological parameters for this re-
gion of the urban ABL, where the pollutants are emit-
ted and where people live. An efficient use of this 
model for the turbulent ABL requires the specification 
(from measurement data) of “input” parameters such 
as the vertical distributions of the three base functions 
of the model, E, ε, and 2θ〈 〉  (for example, in the 
morning hours for a stably stratified ABL). Testing the 
potentials of the RANS turbulence model for an urban 
ABL requires the measurement data on the distribu-
tions of a number of quantities, such as the variance 
of the vertical component of turbulent velocity and the 
boundaries of surface and raised inversions (including 
those under the conditions of weakened ABL turbu-
lence in the night and early-morning hours, measure-
ment data on vertical distributions of temperature, 
turbulent heat flux, TKE, and other parameters).  
 
 
8.  APPENDIX 
 
 

The Appendix presents the governing system of 
equations of a turbulent horizontally inhomogeneous 
thermally stratified ABL for the two-dimensional test 
under study. Explicit analytic expressions are given 
for the turbulent momentum and heat fluxes, and nu-
merical values are presented for the constants of the 
modified three-parameter model of turbulence. De-
tailed expressions are presented for the parameteriza-
tion of the effects of urbanized-surface roughness. 

8.1.  Governing System of Equations for the Tur-
bulent ABL 
 
 

For flows in a planetary boundary layer, some ap-
proximations can be used in the governing equations. 
In (1a), the rotation term can be approximated with 
the expression  

32ε Ω ε− =ijk j k c ij jU f U  

where the axes x, y, and z are directed eastward, 
north-ward, and upward, respectively, and fc = 2Ωsinφ 
is the Coriolis parameter with the angular velocity of 
the Earth’s rotation Ω and latitude φ. The buoyancy 
effects are taken into account in the Boussinesq ap-
proximation, and, for a two-dimensional flow, the sys-
tem of equations (1a) and (1b) is written as  
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The dependent variables in (14a)–(14e) are the mean 
(time averaged) flow velocitiesU ,V  and W  in the 
directions of the x , y  and  axes, respectively, the 
mean pressure , and the mean departure of poten-
tial temperature  from a reference temperature T

z
P
Θ̂ 0. 

The parametric quantities in (14a)–(14e) include the 
volumetric expansion rate of air β  (3.53 ×10

–3 
K

–1
), 

the mean air density 0ρ . The lower case letters de-
note turbulent fluctuations of the corresponding quan-
tities. The Reynolds turbulent stresses τ ij  and the 

turbulent heat flux vector jh  in equations (14a)–(14e) 

requires modeling. Explicit algebraic models for the 
Reynolds stresses and the turbulent heat flux are for-
mulated in the next section.  

 
 
8.2. Algebraic Expressions for Turbulent  
Momentum and Heat Fluxes  

 
 

From Eq. (9a) with consideration for 
2
3

δ= 〈 〉 −ij i j ijb u u E  and from Eq. (10a) for the vec-

tor of turbulent heat flux θ= 〈 〉i ih u  the following im-

plicit system of equations for the turbulent momentum 
and heat fluxes is written in the boundary-layer ap-
proximation:  
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Equations (15a)–(15i) were solved via symbol al-
gebra. Below, we present expressions for those turbu-
lent momentum and heat fluxes that were used in a 
numerical test to solve system of equations (14a) – 
(14e):  
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is the countergradient term, which is absent in models 
with closure levels 2.0 and 2.5 (Cheng et al., 2002). 

The quantities GH and GM are defined as  

( )2τ≡HG N ,  ,           (16g) ( )2τ≡MG S

2 β ∂Θ
=

∂
N g

z
,  

2 2
2 ∂ ∂⎛ ⎞ ⎛ ⎞≡ +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

U VS
z z

 

and, for Eqs. (16a)−(16f), we have 
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The variance of the vertical turbulent velocity and the 
horizontal heat fluxes are determined from the ex-
pressions 

( ) ( )22
6 3 5

1 2 4{ 1
3 3

α α τβ θ= + +Hw E s G g
D

2 ×  

2 5 6
11
2
α α⎛ ⎞− +⎜

⎝ ⎠
M HG s G }⎟ ,          (16j) 

2 2 5 6
1

1 2 1{ [ ( )
3 θ

θ τ α α α= + + Hu E s G
D c

+  

5 ] }α τ ∂ ∂Θ
+ −

∂ ∂
U
z z

 

2 2
5 5 2

1 2( ) 1
3

τ α τβ θ α α∂ ⎧ ⎛ ⎞− + +⎨ ⎜ ⎟∂ ⎝ ⎠⎩
M

U g G
D z

 

5 2 6
4
3

α α⎛ ⎞− +⎜ ⎟
⎝ ⎠

Hs G  

2 2
6 2 3 6 2

2 4
3 3

α α α ⎫+ − ⎬
⎭

M H Hs G G s G2 ,         (16k) 

2 2 5 6
1

1 2 1{ [ ( )
3 θ

θ τ α α α= + + Hv E s G
D c

+  

5 ] }α τ ∂ ∂Θ
∂ ∂
V
z z

2
5

1 ( )τ α τβ θ∂
− ×

∂
V g

D z
 

2
5 2 5 2 6

2 4{ (1 ) ( )
3 3

α α α α+ + −M HG s +G  

2 2
6 2 3 6 2

2 4 }
3 3

α α α+ − 2
M Hs G G s GH .         (16l) 

8.3.  Constants of the Three-Parameter Model of 
Turbulence 

 
For the correlations with pressure fluctuations of 

the dynamic turbulent field, the ‘standard’ models are 
used (Launder et al., 1975; Launder, 1996). These 
models were successfully applied in solving different 
problems; therefore, the values of the numerical coef-
ficients in the model expressions for these correla-
tions have been approved sufficiently well. These 
coefficients are presented (Launder, 1996) as the 
graphical dependence 

(1 − c2)/c1 = 0,23.                (16m) 

For the relaxation coefficient in the model of the 
slow part of pressure-strain correlation  (7b), the 

value: c

(1)
ijП

1 = 2.0 is taken from the commonly used 
range between 1.5 and 2.0. For c1 = 2.0, the numeri-
cal value of the coefficient c2 found from (16m) is 
0.54. When selecting the value of the coefficient c3 in 
the buoyancy terms  in (7b), one can use the 

solution of simple problems with allowance for buoy-
ancy effects (Gibson and Launder, 1978; Lumley and 
Monsfield, 1984), c

3α ijB

3 = 0.776. Here, for this coefficient, 
the value 0.8 is taken, which corresponds to the value 
obtained by Cheng et al. (2002) via the renormaliza-
tion-group technique. Numerical values of the coeffi-
cients in the pressure-temperature correlation θ

iП  in 

(7c) are 1θc =3.28 and 2θc = 3θc =0.5. These values 
are calibrated during modeling of different turbulent 

 



 

stratified flows, both homogeneous and inhomogene-
ous (Kurbatskii, 2001; Sommer and So, 1995). We 
note that the numerical value coefficient  calculated 
by Cheng et al. (2002) with use of the renormaliza-
tion-group technique turned out to be 2.5. At the same 
time, it should be remembered that, for example, for 
the widely used 

1c

ε−E  model of turbulence, this tech-
nique yields the values of the constants appearing in 
the ε - equation that are noticeably different from the 
values calibrated with the database of measurements 
and commonly used in computations. Numerical coef-
ficients in the diffusion terms have the following val-
ues: σ E =1.2, εσ =1.2, and θσ =0.6. In Eq. (5a) for 

the TKE dissipation rate, we have 0ψ =3.8, 

1ψ = 2ψ =2.4, and 3ψ =0.3 (Andren, 1990). 

Note that the improved three-parameter anisot-
ropic model for the turbulent ABL includes eight base 
constants ( , , ,1c 2c 3c 1c θ , 2c θ = 3c θ , 0ψ , 1ψ = 2ψ , 3ψ ) 

and three Prandtl numbers ( Eσ , εσ , θσ ), which enter 
into the models of processes of turbulent diffusion of 
the transfer equations for the functions ,E ,ε  and 

2θ〈 〉 . The calibrated numerical values of these con-
stants remain invariant during the solution of any 
problems of atmospheric turbulent flows with calcula-
tion of not only the distributions of average hydro-
thermodynamic fields but also the distributions of ani-
sotropic turbulent momentum fluxes (normal and tan-
gential turbulent stresses) and components of the 
vector of turbulent heat flux. The invariance of nu-
merical values for the set of constants is a natural 
requirement that must be satisfied in any model that is 
constructed on the basis of the RANS (Reynolds Av-
erage Navier–Stokes) approximation and that claims 
to obtain results consistent with the data of measure-
ments and observations for a wide class of problems 
of stratified atmospheric flows. 
 
 
8.4.  Calculation of the Effects of Urban Rough-
ness on a Flow in the ABL  
 
 

In this numerical test, the urban heat island is 
modeled through specification of the temperature dif-
ference between the urbanized surface and its vicini-
ties and the time-dependent boundary condition for 
the temperature models a 24-h cycle of heating the 
Earth’s surface by the Sun. For this reason, the me-
chanical factors are implemented by the parameteri-
zation scheme completely, whereas the contribution 
to the balance of potential temperature is imple-
mented only approximately (heating/cooling of the 
surfaces of buildings). The urban roughness effects 
are calculated according to the scheme of Martilli et 
al. (2002). 
 

8.5.  Boundary Conditions for System of Equa-
tions of the ABL (14a)–(14e)  
 
 

Following by Yamada and Mellor (1975)], one can 
find an expression for the ratio of the horizontal wind 
speeds at the first two computational nodes above the 
surface (z2 > z1 > 0). This expression represents the 
finite-difference boundary condition for the wind speed 
at the lower boundary and is written as  

1 01 1

2 2 2 0

( / )
( / )

ln z zU V
U V ln z z

= = .            (18а) 

In our numerical test, the temperature measured at 
the ground surface is interpolated with dependence 
(11a). Therefore, according to Yamada and Mellor 
(1975), the boundary condition in a finite-difference 
form is also used for the temperature:  

2 3
ˆ ˆ ˆ (1 )g= + −θ θΘ Δ Θ Θ Δ , 2 0

3 0

ln /
ln /

t

t

z z
z z

=θΔ ,    (18b) 

where z0t = 0.6z0 (z0 = 0.1 m in calculations).  

In order to calculate turbulent fluxes near the sur-
face, the MOST is used to relate vertical gradients in 
the surface layer and the empirical functionΦ , ob-
tained from the data of the Kansas experiment, is 
taken from Andre et al. (1978). The boundary condi-
tions are specified at the first (from the surface) com-
putational node and have the form  

 
2

1 *0 /E u c= μ ,                 (18c) 

3
1 *0 1( / 0, 41 1/ 0,41 )u z= −ε Φ L ,        (18d) 

2/3
2 2

*0
4(1 8,3 ) , 0
4, 0

−⎧ − ≤⎪〈 〉 = ⎨
>⎪⎩

ζ ζθ θ
ζ

,     (18e) 

*0 1
ˆ ˆ( )

Pr g
t

k z⎡ ⎤= − ×⎣ ⎦θ Θ Θ  

[ ] 1
1 0 0 0ln( ) / ln( / )t otz z z z z −+ + −Φ ,     (18f) 

1/ 4(1 15 ) , 0
1 5 , 0

−⎧ − ≤⎪= ⎨
+ >⎪⎩

ζ ζΦ
ζ ζ

 

/z L=ζ , 2
*0 *0/(0,41 )L u g= β θ .       (18g) 

The frictional velocity  and frictional temperature *0u

*0θ  are computed using MOST and the no iterative 
scheme of Louis (1979). 
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