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1. INTRODUCTION

Over the past decade, TASC has pursued applied
research in the areas of cloud detection, simula-
tion, and forecasting (Alliss et al. 2000a,b, 2004;
Kelly et al. 2001; Kemp and Alliss 2005; Link et al.
2005; Wojcik et al. 2005, 2006). This research has
included investigations on how best to use numer-
ical weather prediction (NWP) models in forecast-
ing clouds at select locations out to 48 hours. Be-
cause of the computational cost of running a NWP
model at cloud resolving resolutions (∆x ≤ 4 km) –
as well as the difficulty of correctly initializing such
a model with cloud scale initial conditions – it has
proved necessary to adopt a hybrid approach com-
bining mesoscale NWP output with statistical post-
processing. In this paper we discuss our approach,
which uses the Weather Research and Forecast-
ing (WRF) NWP model (Skamarock et al. 2007), the
Cloud Mask Generator (CMG) developed by TASC
(Alliss et al. 2000a), and a statistical technique
called logistic regression (Hosmer and Lemeshow
2000).

2. FORECAST TECHNIQUE

Figure 1 shows a high level summary of the fore-
cast technique. The procedure begins by collect-
ing the previous 20 days of 0–48 hr NWP forecasts
along with objective cloud analyses. For each NWP
forecast and location, a spatial/temporal cloud frac-
tion is constructed from the cloud analyses over a
400 km × 400 km area centered on the location
of interest, with a time window of ±2 hours from
the NWP forecast valid time. These cloud fractions
are then compared to selected NWP variables to
fit a logistic regression equation for each forecast
hour and location. Once all the equations are fit,
data from a new NWP forecast run is fetched and
passed to the equations. The result is a time se-
ries of mesoscale cloud forecasts that can be inter-
preted either as probabilities or as cloud fraction.
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The training period length, skydome area size,
and time window can easily be modified, and in-
deed these settings have evolved as our technique
has been developed and tested. The 20 day train-
ing period was originally selected to maximize the
number of cloud forecasts available for validation,
with the constraint that TASC-produced NWP simu-
lations only go back to mid-January 2006. In time,
it will be practical to increase the training period
and still have enough validation data to draw con-
clusions from. As for the skydome area and time
window, the current values were selected after early
tests with smaller time windows and areal cover-
ages showed strong sensitivity to NWP propagation
errors.

Figure 2 shows a sample forecast time series for
Washington-Dulles International Airport (KIAD) as
well as a verification using independent cloud anal-
yses. In this example, the forecasts exhibit trend
errors during the first 12 hours, but otherwise are
in reasonable agreement with the observed cloud
fraction. Further discussion of forecast results is
postponed to section 3; below we describe the com-
ponents of the technique in more detail.

a. WRF

The technique uses Version 2.1 of the Ad-
vanced Research WRF model (WRF-ARW) main-
tained by the National Center for Atmospheric Re-
search (Skamarock et al. 2007). This is a 3-D,
fully compressible non-hydrostatic NWP model that
uses a hydrostatic-pressure based vertical coordi-
nate (Laprise 2002) on an Arakawa-C staggered
grid. The model is initialized twice a day at 0000
UTC and 1200 UTC directly from the 40-km (Grid
212) North American Mesoscale (NAM) analysis
produced by the National Weather Service. Lat-
eral boundary conditions are provided out to 48
hours by three-hourly NAM forecasts. WRF-ARW
is configured to use a 36 km horizontal resolu-
tion domain covering all of the continental United
States (CONUS) from the ground up to 50 mb
(∼20 km above mean sea level). Time integra-
tion is performed using a third-order Runga-Kutta
split-time scheme (Wicker and Skamarock 2002)
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Figure 1: Cloud Forecast Algorithm

with a time step of 120 s. The physics selected
are: the WSM5 ice microphysics scheme (Hong
et al. 2004), the updated Kain-Fritsch cumulus pa-
rameterization (Kain 2004), the Noah land surface
model (Ek et al. 2003), the YSU planetary boundary
layer scheme (Hong et al. 2006), the MM5 short-
wave radiation scheme (Dudhia 1989), and the
RRTM longwave radiation package (Mlawer et al.
1997).

b. CMG

The CMG (Alliss et al. 2000a) is designed to ob-
jectively classify the presence or absence of cloud
along various lines of site between the Earth’s sur-
face and a weather satellite. This is accomplished
by comparing multispectral satellite imagery and
derived products with clear sky background fields
created from the previous thirty days of satellite
data. Typically the CMG is run using four chan-
nels and two derived products from the Geosta-
tionary Operational Environment Satellites (GOES):
visible (0.6 µm), shortwave infrared (3.9 µm), long-
wave infrared (10.7 µm), the split window channel
(11.2 µm), the nighttime multispectral fog product
and the daytime shortwave reflectivity product (Lee
et al. 1997). Each channel and product has its

own strengths and weaknesses in discriminating
between clouds and other phenomena (e.g., snow-
pack, extreme cold surface temperatures, etc.);
therefore, a series of single and multispectral tests
are performed and intercompared before making a
final cloud determination. See Alliss et al. (2000a)
for more details. GOES-derived cloud masks have
been generated for the entire CONUS from 1995 to
present, with a temporal (spatial) resolution of 15
min (4 km). More limited cloud masks for other
parts of the globe have also been created using
GOES and Meteosat data (Alliss et al. 2004; Link
et al. 2005; Wojcik et al. 2005, 2006).

c. Logistic Regression

Logistic regression is a procedure for fitting one
or more predictors to a binary outcome (in this case,
“cloud” or “no cloud”). The function that is fit is an
“S-shaped” or sigmoid function constrained to lie in
the range (0,1). The logistic equation is defined as:

ln
[

π

1− π

]
= α + β1x1 + · · ·+ βpxp
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Figure 2: 00–48 hr cloud fraction forecasts (blue) and analyses
(green) for KIAD, beginning at 0000 UTC 12 May 2007.

or equivalently:

π =
exp(α + β1x1 + · · ·+ βpxp)

1 + exp(α + β1x1 + · · ·+ βpxp)

Here π is the probability of a cloud occurring, xi is
the value of the ith predictor x, βi is the associated
weight given to the predictor, and p is the total num-
ber of predictors. α is a constant term that accounts
for “persistence” , i.e., the average amount of cloud
coverage that occurred throughout the training pe-
riod. An example logistic equation, using a single
predictor and giving no weight to persistence, is
plotted in Figure 3.

The α and β terms are fit to maximize the log-
likelihood function L, which is defined as:

L =
n∑

i=1

{yi ln[πi] + (1− yi) ln[1− πi]} .

Here yi represents the presence (1) or absence (0)
of cloud at pixel i, πi is the corresponding forecast
from the logistic regression model, and n is the to-
tal sample size of pixel forecasts. An exact ana-
lytic solution for this problem does not exist; how-
ever, the α and β terms can be fit using the Miller
(1992) iterative weighted least squares algorithm
(see http://users.bigpond.net.au/amiller/ for Fortran
90 source code).

There are two major advantages to using logis-
tic regression instead of the more traditional linear
regression (Hosmer and Lemeshow 2000). First,

Figure 3: Example logistic function with p = 1,
α = 0, and β1 = 1.

linear regression assumes that errors are normally
distributed with a constant variance. However, bi-
nary outcomes require binomial error distributions
with a π[1 − π] variance, and this is assumed with
logistic regression. Second, output from a linear re-
gression equation is not guaranteed to remain be-
tween 0 and 1, violating the definitions of probabil-
ity and cloud fraction. In contrast, logistic regres-
sion constrains the output to lie between 0 and 1

3



(although outcomes of exactly 0 or 1 are not per-
mitted, as this would cause L = ∞).

The number of regression predictors (excluding
so-called “interaction terms”) is determined from the
length m of the training period through the m/10
rule (Harrell 2001). Thus the current training set
length of 20 days is used to fit two independent re-
gression predictors. The first predictor x1 is always
the maximum relative humidity w.r.t. ice (RHI), and
relates cloudiness to model resolved moisture. The
second predictor x2 is a function of the north-south
wind component v, and apparently relates cloudi-
ness to the presence of a trough west of the loca-
tion of interest. The specific function used for x2

(e.g., v at the level of maximum RHI, cosine of 700
mb wind, cosine of 300 mb wind, etc.) varies by
forecast hour, and is based on early test results for
KIAD. For some forecast hours an “interaction term”
of x3 = x1 × x2 is also included, again based on
early testing.

3. EVALUATION

In this section we validate 00-hr, 06-hr, 12-hr, 18-
hr, and 24-hr forecasts for KIAD from early February
2006 to mid May 2007. (Forecasts beyond 24 hours
have only been recently attempted and will be val-
idated in future work.) The relevant validation met-
rics depend on whether we interpret the output as
forecast probabilities or as forecast cloud fractions.
Both approaches will be summarized below.

a. Probabilistic Validation

If we interpret the forecasts as probabilities, an
appropriate validation metric is the Relative Operat-
ing Characteristic (ROC) curve (Mason 1982). The
ROC curve shows the relationship between Proba-
bility of Detection (POD; ratio of correct cloudy fore-
casts to all cloudy events) and Probability of False
Detection (POFD; ratio of incorrect cloudy forecasts
to all clear events) as a function of forecast thresh-
old. Figure 4 shows the ROC curves for the KIAD
forecasts. All the forecast hours exhibit the de-
sired behavior of POD > POFD for nearly all thresh-
olds, evidence that the forecasts can discriminate
between cloudy and clear events.

More information can be found by calculating the
area under the ROC curve (AUC). The AUC is in-
terpreted as the likelihood that, for a randomly se-
lected “yes” (cloudy) event and “no” (clear) event,
the forecast probability for the “yes” event will be
higher than that for the “no” event (Mason and Gra-
ham 2002). Perfect discrimination is represented by
an AUC of 1.0, while an AUC of 0.5 indicates no dis-

Figure 4: ROC curves for KIAD 00, 06, 12, 18,
and 24 hour forecasts.

crimination. The KIAD forecast AUCs – calculated
analytically following Mason and Graham (2002) –
are displayed in Figure 5. These plots indicate a
fair amount of discrimination in the forecasts, with
AUCs close to 0.8.

Figure 5: Area Under ROC Curves for KIAD 00,
06, 12, 18, and 24 hour forecasts.

In addition to the ROC curves, reliability diagrams
can be used to evaluate probability forecasts (Wilks
1995). A reliability diagram illustrates the rela-
tionship between forecast probability (π) and con-
ditional observed probability (also called the ob-
served relative frequency); the latter is the prob-
ability of cloud being observed given a particular
value (or range of values) of forecast probability.
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As its name implies, this diagram summarizes the
reliability of a forecast system, by showing how
closely particular forecast values correspond to ac-
tual events. Perfectly reliable forecasts lie on the
y = x line, while points above (below) that line indi-
cate a clear (cloudy) conditional bias.

Figure 6 shows the reliability diagram for the
KIAD forecasts. Most of the points are rather close
to the y = x line, but the 6 hr forecasts exhibit a
clear bias of about 15% when forecasting proba-
bilities of 0.25–0.35. Also, the 18 hr forecasts for
the range 0.45–0.55 are too cloudy by a little over
10%, while all forecasts above 0.85 are likewise too
cloudy.

Figure 6: Reliability diagram for KIAD 00, 06, 12,
18, and 24 hour forecasts. Forecast probabil-
ity bins are 0.0–0.05, 0.05–0.15, 0.15–0.25, ...,
0.85–0.95, 0.95–1.0.

b. Cloud Fraction Validation

If we interpret the forecasts as cloud fraction, the
accuracy can be summarized using the absolute
skydome error, defined here as:

A =

∣∣∣∣∣π − (1/n)
n∑

i=1

yi

∣∣∣∣∣
where a perfect forecast yields A = 0. The errors
for each forecast hour can then be summarized by
plotting the empirical cumulative distribution func-
tions (CDF), allowing for determination of any quan-
tile (e.g., the median) from visual inspection.

Figure 7 summarizes the CDF of absolute sky-
dome errors, and depicts considerable accuracy
from the technique: 50% of the forecasts have ab-
solute skydome errors of 15% or less; 75% of the
forecasts have A of 25% or less; and extreme er-
rors of 50% are restricted to less than 5% of the
forecasts.

Figure 7: Plots of the empirical cumulative density
functions of absolute skydome errors with KIAD
00, 06, 12, 18, and 24 hour forecasts.

4. SUMMARY

A forecast technique combining NWP data, ob-
jective cloud analyses, and logistic regression has
been developed to produce cloud forecasts for se-
lect locations. The forecasts can be interpreted
as cloud probabilities or alternatively as cloud frac-
tions. Forecasts for Washington-Dulles Interna-
tional Airport have been compared with indepen-
dent cloud analyses, and show considerable dis-
crimination, reliability, and accuracy. Future work
will include forecast production and validation for
other regions in CONUS, increasing the training pe-
riod and number of predictors, and validating fore-
casts past 24 hours.
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