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THE SHORT VERSION 
  

On the basis that hydrological users need to 
know the event-by-event forecast uncertainty (Fig. 
1), we computed distributions of radar rainfall 
forecast uncertainty as a function of forecast lead 
time, basin size, and forecasted rainfall intensity 
(e.g., Figs. 5 to 7) using data from the U.S. 3-D 
National Mosaic of radar data (Fig. 3). Since these 
uncertainties are also weather dependent, we tried 
to find good predictors (Fig. 4, Table 1) to help 
either reduce the forecast uncertainty or better 
define it (Fig. 2). The value of some predictors was 
significant though modest (Fig. 9), the predictors 
being more skillful at characterizing forecast 
uncertainty than at improving forecast accuracy. 
The value of predictors also depended on forecast 
lead time, basin size, and forecasted rainfall 
accuracy, different predictors performing best in 
different conditions (Fig. 8). For details, read on! 

 
1.   WHY PREDICT FORECAST ACCURACY?  

 
There is always an uncertainty associated with 

every weather forecast issued, even though it is 
rarely mentioned. Sometimes, one is fairly 
confident that the forecast will be accurate; 
sometimes, the forecast is a lot less certain. What 
is true for weather forecasts in general is also true 
for short-term extrapolation forecasts of 
precipitation in particular: not all forecasts have 
the same accuracy. This accuracy decreases with 
the forecast lead time and increases with the scale 
of the forecast region in a way that depends on the 
regional climatology, time of day, and precipitation 
dynamics. 

Operators of flash flood warning systems need 
to take decisions based on the expected level of 
the river and the uncertainty in that expectation. 
Because of this, they do not need to know the 
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expected or climatological uncertainty of radar-
based rainfall forecasts that has been estimated 
over a long period of time as much as the 
uncertainty of the specific forecast that will be 
used as the basis for some decision, for example 
an evacuation order. Still, in general, short-term 
quantitative precipitation forecasts (QPF) made 
using radar data come only with a mean value but 
no uncertainty estimates, let alone an uncertainty 
estimate relevant to the current event and the 
basin of interest (Fig. 1). 
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FIG. 1. Schematic illustration of the probability 
distribution of a rainfall forecast for a specific event, the 
information generally provided by radar-based QPF 
systems (the average expected rainfall), and the 
information usually needed by basin managers (the 
probability that an event exceeds a specific threshold, 
shaded areas). 

 
Yet there has been work to address some of 

these issues. At longer timescales, operational 
methods for producing probabilistic QPF have 
been developed using guidance from ensembles 
of weather prediction models (Krzysztofowicz 
1998). At shorter timescales, efforts have been 
made to characterize the predictability of 
reflectivity patterns as a function of scale (Turner 
et al. 2004), event type (Wilson et al. 1998), and 
geographical location (Germann et al. 2006), itself 
influenced by which precipitation dynamics 
processes affect the most each region. Forecasts 



of average rain rates over a basin (Berenguer et 
al. 2006) and short-term accumulations over 
points and basin locations (Ebert et al. 2004) have 
been evaluated for a variety of radar QPF 
algorithms and lead times. The accuracy of a 
precipitation forecast for a particular location 
based on a particular technique can change 
significantly in time (Turner et al. 2004, Berenguer 
et al. 2006), therefore there remains an unfulfilled 
need to determine as precisely as possible the 
probable accuracy of QPF using information 
available at the time the forecast is issued. A 
space-time model of forecast error that is 
conditioned on the current situation remains 
elusive at this time. 

 
2.    PREDICTING QPF PERFORMANCE 

 
2.1  QPF Uncertainty 

 
Let us consider a QPF issued for a basin B at 

time T and valid over a period between Tstart and 
Tend. The expected standard deviation σQPF of that 
forecast can be written as 
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where σQPE is the expected standard deviation of a 
rainfall estimate using radar over that same basin 
for the forecast period, σR(Z) is the expected 
standard deviation of the radar-based forecast of 
rainfall accumulation over the basin and the 
forecast period, and rQPE,QPF is the correlation 
between the errors in quantitative precipitation 
estimate (QPE) and in the nowcast. Even if one 
could somehow do a perfect forecast of the time 
sequence of reflectivity over a basin, there still 
remains the uncertainty associated with the 
conversion from reflectivity aloft to rainfall at the 
surface. This uncertainty will also depend on the 
type of precipitation, the duration of the rainfall 
accumulation period Tend–Tstart, the basin size, and 
the range of the basin from the radar. The QPE 
uncertainty comes from a variety sources: biases 
for the vertical profile of reflectivity and their 
correction (Bellon et al. 2005), conversions from 

the reflectivity Z to the rain rate R (Lee and 
Zawadzki 2005), attenuation of radar waves 
(Hitschfeld and Bordan 1954), biases and 
imperfect corrections for beam blockage or radar 
calibration, sampling (Fabry et al. 1994), etc. 
Decades of radar-raingauge comparisons suggest 
that hourly radar and gauge accumulations differ 
by of the order of 50%, but it is not really well 
known how accurate QPE over a basin are 
because of a lack of proper ground truth since it is 
not possible to measure mean areal rainfall 
directly. All that being said, it is likely that the 
second term in the right hand side of (1), due to 
the radar QPF, will dominate the QPE error for 
most basins, forecast durations, and forecast lead 
times. The focus of this work will be on trying to 
determine the magnitude of that QPF term. 

Several approaches can be used to determine 
the QPF term of the error equation (1). A simple 
one is to use radar data to generate forecasts 
using standard extrapolation approaches over a 
variety of basins, verify them using radar 
estimates of rainfall at the verification time, and 
compute the forecast error statistics over a 
number of years, e.g. Bellon and Austin (1978). 
However, it is clear that the QPF error term varies 
substantially around this climatological value so it 
is necessary to estimate or predict the error for the 
current forecast based on the recent past 
performance and other predictors. 

 
2.2 Predictors of QPF performance 

 
What makes a good predictor of QPF and of 

its accuracy? A good predictor has at least one of 
two characteristics (Fig. 2): it can be used to 
improve a QPF thereby reducing the uncertainty 
(case A of Fig. 2), or it can be used to better 
quantify that uncertainty (case B). As a result, it 
must either provide information on future 
precipitation intensity, or on how predictable or 
unpredictable a given weather situation is. 

Classical extrapolation-based forecasts are a 
good example of the use of predictors. Using fields 
of current rainfall intensity and its motion as 
predictors, forecasts are being made that are 
clearly superior to climatology-based forecasts. In 
this work, we do not seek to replace these 
predictors as they are probably hard to supplant, 
but we want to try to find additional predictors that, 
if used in conjunction with traditional extrapolation-
based forecasts, can either improve QPF or 
improve the estimates of its uncertainty. 
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FIG. 2. Curves of the probability P of observing a rainfall accumulation R over a basin in the absence of a predictor 
(thick gray curves) and conditional to three values xlow (dotted line), xmid (dashed line), and xhigh (solid line) of a 
potential predictor x. An excellent predictor (case A, left) would reduce the uncertainty on the forecast; also useful 
would be a predictor (case B, middle) that could be used to better quantify the uncertainty in a forecast; a useless 
predictor (case C, right) would not provide any additional clue about either the forecast outcome or its uncertainty. 

 
It is questionable whether one can find additional 
predictors that will significantly and reliably 
improve QPF accuracy. Several attempts have 
been made to improve extrapolation forecasts by 
trending precipitation intensities (Tsonis and 
Austin 1981) or by smoothing smaller 
unpredictable scales (Bellon and Zawadzki 1994, 
Seed 2003), but gains are limited because of the 
difficulty of the problem. But finding predictors of 
QPF accuracy might be easier. For example, 
some types of weather events such as 
precipitation from large scale systems are bound 
to be more predictable than disorganized air-mass 
convective storms. This paper evaluates several 
possible predictors of the accuracy of advection 
forecasts and draws conclusions on how the 
accuracy of the forecasts may be predicted in real-
time. 
 
3.    APPROACH 
 
3.1 Data and Baseline QPF Calculations 

 
The data from two particularly rainy weeks at 

the end of a summer (19–31 August 2006) from 
the U.S. National 3-D Mosaic of radar data (Zhang 
et al. 2004; Zhang et al. 2006) were used in this 
analysis. We focused on four of the eight tiles 
covering the center of the country (Fig. 3), and that 
“limited” our evaluation region to approximately 
5000000 km2. Reflectivity data from the 3.5-km 
MSL reflectivity CAPPIs from tiles 2, 3, 6, and 7 
were remapped onto a Gnomonic projection at 

2.5-km resolution. Every half hour, maps of 
accumulations of precipitation for the past hour 
were generated using the 5-min data. These were 
made by tracking the motion of reflectivity patterns 
using the Bowler et al. (2004) tracking algorithm, 
converting the reflectivity Z into rainfall rates R 
using 5.1300RZ = , and accumulating rainfall 
over hourly periods. Six forecasts of hourly rainfall 
accumulations were generated at 30-minute  

Coverage of radar data from 3D mosaic tiles 2,3,6,7
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FIG. 3. Coverage of the radar data used in this study. 
Areas shaded in gray are beyond radar range and do 
not contain valid data. 
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FIG. 4. The two conceptual approaches used to guide the choice of potential predictors as applied to forecasts for the 
next hour. 

 
intervals, the first one valid from the current time t 
to t+1 hr, and the last one valid from t+5 hrs to t+6 
hrs. The various forecasts and the computed 
accumulations valid for the same time period were 
compared, and statistics of QPF accuracy were 
generated as a function of forecast lead time and 
basin size, with the size of hypothetical square 
basins varying from 5 km by 5 km to 160 km by 
160 km. 

 
3.2  Choice of Predictor Candidates 

 
A variety of predictors were tested in this 

study. They were selected for their potential to 
provide clues about forecast uncertainty using two 
distinct conceptual models as basis (Fig. 4). The 
first conceptual model is based on classical 
nowcasting and Lagrangian persistence 
approaches: If the previous forecast was accurate, 
then there is a good chance that the next forecast 
should also be accurate, and conversely. Fields of 
accuracy of past QPF of hourly accumulations are 
hence computed, advected following the echo 
motion, and tested as a predictor of future QPF 
accuracy. In the same vein, the cross-correlation 
of dBZ patterns between the present time and half 
an hour before was also tested, on the grounds 
that the magnitude of the correlation in time of the 
reflectivity field in the past should provide clues 
about the reliability of extrapolation forecasts for 
these echoes in the future. 

The second conceptual model used to select 
predictors that are based on considerations of  
precipitation dynamics. Namely, rainfall patterns 
are likely to be predictable if they are forced by a 

single, slowly-evolving, larger scale process and 
not by multiple interacting, fast-evolving, small 
scale triggers. Clues that the former is the case 
would include a low mean rain rate, slow changes 
in time of that rain rate, and either large stratiform 
precipitation patterns or linear patterns arising 
from a single dominating forcing process such as 
a front. Conversely, disorganized patterns and 
small intense cells especially during daytime hours 
would arise from unsettled conditions that, by the 
very nature of their complexity, would be difficult to 
forecast. A variety of predictors possibly capable 
of detecting one or more of these characteristics 
were tested, and Table 1 lists them along with the 
rationale for their choice. All of them were 
computed on the latest radar image available. In 
order to get predictors relevant to the mesoscale 
weather condition at hand, all predictors were 
calculated over regions of 160-km by 160-km and 
not on smaller sub-regions. These predictors were 
then also advected with the precipitation field and 
tested for each basin and forecast lead time. 

 
3.3  Predictor Evaluation 

 
Individual predictors may have value both by 

improving the QPF and by helping to characterize 
its accuracy. In both cases, a predictor is useful if 
the distribution of QPF conditioned on one value of 
a predictor is different from the distribution of that 
QPF conditioned on another value of that 
predictor. As seen in Fig. 2, if conditional QPFs 
have large overlaps for different values of a 
predictor, then that predictor does not provide 
much information. Based on this, we can compute 



the value V of a predictor x by testing the extent 
with which the curves of probability of rainfall 
amounts conditional on different values of the 
predictor do not overlap, e.g., 

( ) ( ) ( ) ( )[ ]∫ ∫ ∫ ==−= '""|,'|min"'1 dxdxdRxxRPxxRPxPxPV   (2) 

where P(x) is the probability distribution of the 
predictor x itself and ( )'| xxRP =  is the 
probability of observing a rainfall amount R given a 
value x’ of a predictor x. Equation (2) computes for 
each possible pair of values of a predictor x the 
extent with which the probability distributions of 
rainfall overlap. In practice, ( )'| xxRP =  was 
calculated over intervals of R and x large enough 
for the probability distributions to converge 
(hundreds of data points per interval). Also note 
that the usefulness of a predictor may be a 
function of basin size, and will depend on the 
forecast lead time. 

 
Possible predictors Rationale 

Previous QPF and its 
accuracy 

Past performance may be a 
good indicator of future 
performance 

Mean rain rate (overall 
and of rainy areas only) 
and their standard 
deviations 

Light or heavy rain 
environment? Stratiform or 
convective? 

Fractional coverage of 
precipitation (>15 dBZ) 
and of convective echoes 
(>35 dBZ) 

Less predictable isolated 
patches or wide coverage? 
Stratiform or convective? 

Lagrangian correlation 
between dBZ(t) and dBZ(t 
– ½ hr); 30-min mean rain 
rate trend 

Is the weather evolving 
rapidly or not? 

Mean autocorrelation of 
dBZ fields after a 20 km 
displacement 

Large-scale or small-scale 
patterns dominate? 

Energy of power spectrum 
of rain at 5 km scale; 
slope of power spectrum 
at scales larger than 40 
km 

Stratiform or convective? 

Echo motion velocity and 
direction 

A clue of the strength of 
large scale forcing? 

Time of day Stabilizing or destabilizing 
conditions? 

TABLE. 1. Possible predictors of QPF performance 
tested. 
 
 
 
 

4.  BASELINE QPF ACCURACY 
 
Three hundred sixty probability distributions of 

forecast accuracy were computed as a function of 
forecast time, forecasted rainfall intensity range, 
and basin size. For obvious reasons, only a few 
will be shown here. Figure 5 explores how forecast 
accuracy varies as a function of forecast time for a 
10-km by 10-km basin and a moderate rainfall 
intensity range. 

First, please note that all the distributions were 
plotted in terms of the ratio between the 
verification and the forecast (QPE/QPF), and not 
the other way around. This was done because, at 
forecast time, the only data that is available is the 
forecast. The information of interest to a potential 
real-time user is not “given a verification, what was 
the forecast”, but rather “given a forecast, what 
can the likely outcomes be”. Probabilities of 
QPE/QPF less than 1, on the left side of the 
curves, correspond to overforecasts or false 
alarms, while probabilities of QPE/QPF greater 
than 1 correspond to missed severe events. 
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FIG. 5. Probability distributions of QPE/QPF ratio for 10-
km by 10-km basins and basin hourly forecasts between 
2 mm and 5 mm for the first hour (solid line), second 
hour (long dashes), third hour (short dashes) and sixth 
hour (dotted line). The y-axis was chosen so that a unit 
area anywhere in the plot corresponds to a fixed 
probability of occurrence. In addition, the probability that 
a forecast verified with almost no rainfall (verification 
smaller than 3% of the forecast) is indicated next to the 
legend. 

 



As forecast time increases, forecast accuracy 
rapidly diminishes (Fig. 5). For 10-km by 10-km 
basins and moderate rainfall, one hour forecasts 
have a 40% uncertainty that increases to 100% by 
hour 2. A less obvious result is the gradual shift of 
the distributions towards lower values of 
QPE/QPF. As forecast uncertainty increases, the 
likelihood that a mistaken moderate or intense 
rainfall forecast verifies as an even rarer more 
intense rainfall accumulation is smaller than the 
likelihood that it will verify as a more common 
weaker rainfall. As a result, uncertain forecasts of 
moderate to heavy rainfall tend to overpredict the 
severity of the rainfall. In this case, by the sixth 
hour, almost two thirds of the forecasts of 
moderate rainfall will actually verify as negligible 
rain or no rain at all (verification smaller than 3% 
of the forecast), and only 3% of the forecasts 
underpredict rainfall intensity. This pattern of 
shifting distributions towards low QPE/QPF ratios 
as forecast uncertainty increases will reappear in 
many of the other results. 

 
But not in the dependence of forecast 

accuracy with rainfall intensity (Fig. 6): Here, the 
poorer forecasts were for weaker rain 
accumulations, and they were mostly under-
predictions. Distributions of QPE/QPF ratios were 
narrowest for the heavy rainfall forecasts, but 
almost all of those were overpredictions. The 
explanation for the biases is the same as in the 
previous paragraph: missed forecasts of rare 
events will verify as more common events, and 
this brings QPE/QPF ratios down for heavy rain 
predictions and up for very light rain ones. Very 
light rain forecasts were the most uncertain 
percentage-wise because they occurred on the 
edges of precipitation systems, and small errors 
on the forecasted motion of these systems 
resulted in large forecast accumulation errors. 

As basin size increases, forecast accuracy 
improves. But for the smallest basins, forecast 
accuracy is identical irrespective of basin size, and 
QPE/QPF distributions for the 5-km by 5-km and 
10-km by 10-km are so identical that the two 
curves can hardly be distinguished in Fig. 7. This 
is due to the fact that hourly accumulations and 
QPF errors have correlation distances exceeding 
the size of the basins. At the large basin end, 
accuracy improves rapidly as independent QPF 
errors are combined. 

We are currently trying to fit curves with two or 
three parameters through the many probability 
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FIG. 6. Probability distributions of QPE/QPF ratio for 1-hr 
forecasts over 10-km by 10-km basins for very light rain 
(0.1 to 0.2 mm forecast for the basin, dotted line), light 
rain (1 to 2 mm forecasts, short dashes), moderate rain 
(5 to 10 mm, long dashes), and heavy rain (20 to 50 
mm, solid line). 
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FIG. 7. Probability distributions of QPE/QPF ratio for 1-hr 
forecasts and basin hourly forecasts between 2 mm and 
5 mm for basin sizes of 5 km by 5 km (solid line), 10 km 
by 10 km (long dashes), 40 km by 40 km (short dashes), 
and 160 km by 160 km (dotted line). 
 
distribution curves we have computed. Stay tuned 
for the results of that exercise (look for a likely 
journal paper by Fabry and Seed 2008 or 2009). 

 



 
 
5.    PREDICTORS AND THEIR VALUE 
 

The probability distributions in Section 4 were 
computed without using predictors. To test the 
usefulness of potential predictors, one needs to 
recompute them conditional to different values of 
all the potential predictors, and compute the value 
of predictors using (2). This was completed, and 
Fig. 8 summarizes our findings. 

Unsurprisingly, no predictor greatly improved 
forecast quality. But several of them helped to 
separate somewhat forecast outcomes and more 
certain from less certain forecasts. Some like the 
verification for the basin one hour upstream (1-hr 
old QPE) proved to be better for the first hour, 
while others such as echo coverage or the 30-min 
change in area rain rate proved more useful for 
longer forecasts.  We are still processing the data 
for larger basins and will soon determine the 
extent with which value depends on basin size and 
which predictor is stronger under which 
circumstances. The value of all predictors 
decreases with time beyond three hours, except 
for time of day because of its consistency and its 
large scale effect. Echo coverage (Fig. 9) and 
mean rain rate at the mesoscale seem to provide 
the most information, especially on forecast 
quality. In all cases, predictors help a bit to 
separate more certain forecasts from less certain 
ones. 

What if one combines more than one 
predictor? The computation of the value using (2) 
is sensitive to noise in the probability distribution; if 
one uses more than one predictor, one must split 
the forecasts in many more categories, each with 
much fewer samples. Hence, the possibility of 
combining multiple predictors was not explored 
here. Different predictors have different strengths 
and their skill peaks at different forecast times, so 
they must have some complementary information. 
But additional gains will probably be smaller than 
those obtained using the first predictor, except 
perhaps if a potentially good predictor has strong 
geographical dependence such as the effect of 
time of day on precipitation, in which case 
important gains may be possible. 

That’s all for now… 
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FIG. 8. Value of 14 potential predictors as computed 
from (2) as a function of forecast time for moderate 
rainfall for 10-km by 10-km basins. To help locate the 
many curves, the value computed for the 1-hr forecast is 
indicated on top of the legend for each curve. 
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FIG. 9. Probability distributions of QPE/QPF ratio for first 
hour forecasts for 10-km by 10-km basins and forecasts 
between 5 mm and 10 without and with the use of the 
raining fraction as a predictor. 
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