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1. INTRODUCTION∗ 
 Sponsored by multi-government agencies and 
especially by the US Navy, a phased-array weather 
radar has been constructed at NSSL Norman 
Oklahoma. This establishes the first National Weather 
Radar Testbed (NWRT) equipped with the solid-state 
phased-array antenna (Forsyth et al. 2005). One of the 
important and yet very challenging research goals at 
NWRT is to optimally design and utilize the 
electronically-controlled agile beam scans for various 
meteorological applications. This includes assimilating 
phased-array radar observations into mesoscale 
models to improve numerical analyses and predictions 
of severe storms and other hazardous weather 
conditions. To this end, this paper intends to address 
the following two basic issues: (i) how to measure 
information content extracted from radar observations 
by an optimal 4D analysis; and (ii) how to balance 
radar observation accuracy with observation spatial 
and temporal resolutions to optimally design phased-
array scans for a 4D assimilation system. These issues 
are important for measuring and taking the full 
advantages of phased-array rapid and flexible scan 
capabilities in data assimilation. The first issue is 
addressed theoretically in the next section. The second 
issue is examined numerically in section 3. 
 
2. MEASURING INFORMATION FROM OBSERVATIONS 

2.1 Review of Recent Results 
 When observations are assimilated into a 
numerical weather prediction (NWP) model by an 
optimal analysis, the background state is provided by 
the NWP model prediction valid at the analysis time. 
As shown in Xu (2007), the information extracted 
from radar observations by an analysis can be 
measured by the relative entropy defined by R(p, q) = 
∫dxp(x)ln[p(x)/q(x)], where q(x) is the background 
probability density function (pdf), p(x) is the analysis 
pdf and x is the state vector. For Gaussian pdfs, this 
gives 
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  R(p, q) = (a - b)TB-1(a - b)/2  
   + [lnDet(BA-1) + Tr(AB-1) - n]/2,  (1) 
 
where b is the background mean, a is the analysis 
mean, B is the background covariance matrix, A is the 
analysis covariance matrix, ( )T denotes the transpose 
of ( ), Det( ) denotes the determinant of ( ), Tr( ) 
denotes the trace of ( ), and n is the dimension of b. 
The first and second terms on the right-hand side of 
(1) are the signal and dispersion parts of the 
information content, respectively.  
 For an optimal analysis (Jazwinski 1970), a = b + 
BHT(HBHT + R)-1d and A-1 = B-1 + HTR-1H or, 
equivalently, A = B - BHT(HBHT + R)-1HB, where R 
is the observation error covariance matrix, H is the 
tangent-linearization of the observation operator H( ) 
at x = b, d = y - H(b) is the innovation vector; and y is 
the observation vector. Substituting these relationships 
into (1) gives 
 
 R(p, q) = ∑[d’i

2λi
2/(1+λ i

2) 2  

    + ln(1+λ i
2) - λ i

2/(1+λ i
2)]/2.   (2)    

 
Here, d’i is the i-th element of d’ = UTR-1/2d; U is the 
left orthogonal matrix given by the singular value 
decomposition (SVD) of the scaled observation 
operator: M = R-1//2HB1/2 = UΛVT; λi is the i-th 
diagonal element of the diagonal matrix Λ ; and the 
summation is over i from 1 to r = rank(M). In (2), the 
observation space is transformed by UTR-1/2. In this 
transformed observation space, the information 
content becomes separable between components 
associated with different singular values of M. This 
leads to the following two important points:  
 
(a) Observations can be compressed into surper-
observations by applying the truncated transformation 
IsUTR-1/2 to y. The super-observation vector is given 
by ys = IsUTR-1/2y, where Is is the s×s identity matrix 
that projects Rm onto Rs (s < m) and m is the dimension 
of y. This compression causes no information loss as 
long as s ≥ r = rank(M).  
 
(b) If ys = IsUTR-1/2y is further truncated to s < r, then 
the compression will cause an information loss. The 



 

dispersion part of the information loss caused by the 
SVD-based compression is the minimum loss for a 
given truncation number s (< r). The signal part of the 
information loss depends on the truncated non-zero 
singular values and associated components of d’. 
 
 The above results, along with the illustrative 
examples with real radar observations presented in Xu 
(2007), suggest that the information content extracted 
by an optimal analysis from radar observations 
depends on how well the observations are resolved by 
the analysis. If high-resolution radar observations are 
poorly resolved by the analysis (due to lack of fine 
structures in the background covariance and/or 
insufficient resolution in the analysis grid), then there 
can be a significant degree of information redundancy 
(for an optimal lower-resolution analysis in 
comparison with a higher-resolution one) or 
observation resolution redundancy (for an optimal 
analysis with a given background covariance on a 
given grid). However, the above formulations were 
derived for spatial analyses. To measure information 
content gained from phased-array radar rapid scans, 
we need to consider the temporal dimension in 
addition to the spatial dimensions and extend the 
formulations for 4D analyses. Such extensions are 
derived in the next sub-section.  
 
2.2 Extended Formulations For 4D Analyses 
 The time window for a 4D analysis can cover, 
say, J observation time levels (at tj for j = 1, 2, … J) 
between the initial time level (at t0) and ending time 
level (at tJ). For simplicity, the forward prediction 
model is assumed to be linear (or tangent-linearized) 
and is given by  
 
 xj = Fjxj-1 + qj  for j = 1, 2, … J,  (3) 
 
where Fj is the forward operator, xj is the state vector 
at tj, and qj denotes the integrated model error from tj-1 
to tj. The tangent-linearized observation model is 
given by  
 
 dj = HjΔxj + ej  for j = 1, 2, … J, (4) 
 
where dj = yj - H(bj), Δxj = xj - bj, yj is the observation 
vector at tj, bj is the background forecast mean state 
vector at tj, Hj is the tangent-linearization of Hj( ) at xj 
= bj, Hj( ) is the observation operator at tj, and ej 
denotes the observation error at tj. 
 The state vector for the 4D state fields over the 
analysis time window can be represented by the 
extended state vector: xo = (x0

T, x1
T, … xJ

T) T. With this 
extension, (1) and its initial condition can be written 
into xo = Foz, where z = (x0

T, q1
T, … qJ

T)T and Fo is a 
(J + 1)×(J + 1) lower-triangle block matrix operator 

with the jth diagonal block given by In (the identity 
matrix in Rn) and the jkth block (at the jth row and kth 
column) given by FjFj-1… Fk for k < j (below the 
block-diagonal) and by zero for k > j (above the block-
diagonal). Without the initial condition, (1) can be 
written into x = Fz, where x = (x1

T, x2
T,… xJ

T) T and F 
is a J×(J + 1) block matrix operator reduced from Fo 
by removing the first row of blocks. The background 
covariance for z is a block diagonal matrix given by Q 
= diag{B, Q1, … QJ}, where Qj is the covariance 
matrix of qj and the vector components of z = (x0

T, q1
T, 

… qJ
T)T are assumed to be not cross-correlated. The 

background covariance for x is then given by FQFT. 
 Similarly, the background forecast mean vector 
and mean vector can be extended and denoted by b = 
(b1

T, b2
T, … bJ

T) T and a = (a1
T, a2

T, … aJ
T) T, 

respectively. The extended innovation vector is d = 
(d1

T, d2
T, … dJ

T) T. The extended observation error 
covariance matrix is R = diag{R1, R2, … RJ}. With the 
above extensions, the costfunction and related 
solutions for an optimal 4D analysis can be cast into 
the same matrix forms as for an optimal 3D analysis 
(Courtier 1997; Lorenc 2003), so similar information 
entropy formulations can be derived for an optimal 4D 
analysis as the above (1) and (2). If x is taken to be the 
control vector, then the extended tangent-linear 
observation operator is given by H = diag{H1, H2,… 
HJ}. If z is taken to be the control vector, then the 
extended tangent-linear observation operator is given 
by HF. In either case, the extended form for the scaled 
observation operator [used in the derivation of (2)] is 
always given by  
 
 M = R-1//2HFQ1/2. (5) 
 
Thus, by using the SVD of the extended M in (5), the 
singular-value form of the relative entropy in (2) can 
be similarly derived and used to measure the 
information extracted from 4D observations by an 
optimal 4D analysis.  
 
2.3 Remarks  
(a) According to (1), the information content extracted 
from observations by an optimal analysis can be 
measured only indirectly in terms of the analysis 
increment (defined by a – b) and pdf changes (from q 
to p) produced by the analysis, so the information 
content depends on both the observation and 
background pdfs. 
 
(b) In 3D variational data assimilation, B and R are 
pre-estimated and not updated with assimilation 
cycles. If the estimation problem is nearly linear and 
the observation operator H is also fixed in time, then 
as pointed out by Sean Healy (private communication 



 

from ECMWF), the expectation of the signal term 
(computed by averaging in time) reduces to [n - 
Tr(AB-1)]/2. Thus, on average, the signal term cancels 
the last two terms in the second (dispersion) part on 
the righthand side of (1) and the relative entropy 
reduces to the Shannon entropy difference: S(q) - S(p) 
= (1/2)lnDet(BA-1). In this case, the relative entropy 
provides no advantage in measuring the averaged 
information content. However, for each individual 
batch of observations (used in each data assimilation 
cycle), the relative entropy can have some advantages 
in measuring the information content (as shown in Xu 
2007), especially if the background covariance is flow-
dependent (as in the Kalman filter).  
 
(c) M in (5) has J×m columns and (J + 1)×n rows. 
This matrix operator is much larger than the already 
very large m×n matrix operator M in the original (2). 
The rank of M in (5) is also enlarged, so more 
information can be extracted from the 4D 
observations. However, if the model is perfect (with qj 
= 0 for j = 1, 2, … J), then M reduces to its first block 
column of sub-matrices in which the jth sub-matrix is 
given by Rj

-1//2HjFjFj-1…F1B1/2. In this case, rank(M) 
can become too low to extract additional information 
from the 4D observations. Equivalently and 
intuitively, we can envision that the perfect model 
operator maps the 4D observations into 3D 
observations with much enhanced density in 3D, so 
the information redundancy or observation resolution 
redundancy can be easily revealed in the 3D space.  
 
(d) When the model errors are correlated in time, a 
decrease (or increase) in model error correlations will 
increase (or decrease) the information extracted from 
the 4D observations. This property is envisioned based 
on the point made and scenario discussed in (c).  
 
(e) Information from observations can be redundant 
(or insufficient) for an optimal analysis if the 
observations have excessive (or inadequate) spatial 
and/or temporal resolutions and coverage. According 
to (2) and (5), an increase in observation accuracy 
should increase the information content for an optimal 
analysis. This, however, is not always true and the 
impact of observation accuracy can even become 
negative for analyses produced by a practically used 
sub-optimal assimilation system (such the ensemble 
Kalman filter) in which the background covariance is 
not accurately estimated. This problem is examined 
numerically in the next section.  
 
3. EXPERIMENTS ON OPTIMAL SCAN CONFIGURATIONS 
 One of the major advantages of the phased array 
radar is the capability to adaptively scan weather 
phenomena at high temporal resolution (1 min or less 

per volume scan). Regardless this and other possible 
gains, there is always a limit on the number of 
independent samples acquirable per unit time for a 
given phased array radar (or any other radar). This 
imposes an overall constraint on radar observation 
accuracy and resolutions. Under this constraint, an 
increase in accuracy (or resolution) will cause a 
decrease in resolution (or accuracy) and, by the same 
token, a resolution increase in one spatial or temporal 
dimension will cause a resolution decrease in another 
dimension (without compromising the accuracy). 
Because of this, there should be a proper balance or 
trade-off between observation accuracy and 
resolutions when radar scans are configured to 
improve storm-scale radar wind analyses and data 
assimilation. This problem will be studied by 
performing assimilation experiments with model 
simulated radar radial-velocity observations of a 
supercell storm. In particular, we will examine the 
impacts of observation accuracy and resolutions on the 
assimilated storm winds by the ensemble square-root 
filter (EnSRF) (Whitaker and Hamill 2002). The 
quality of the assimilation will be evaluated by the 
root mean square (RMS) error of the analyzed wind 
field. 
 
3.1 Simulated Radar Observations and Assimilation System 

a. Prediction model and simulated storm 
 The Advanced Regional Prediction System 
(ARPS, Xue et al. 2001) is used for both simulation 
and analysis. The ARPS contains 12 prognostic 
variables plus the turbulent kinetic energy (TKE) used 
by the 1.5-order subgrid-scale turbulent closure 
scheme. All of these prognostic state variables except 
for TKE are subject to updating at each analysis step 
of assimilation.  
 The physical domain is 64×64×16 km3 for all 
experiments. The model grid for the “true” comprises 
of 131×131×35 grid points (with horizontal grid 
spacing ∆x = ∆y = 0.5 km and vertical grid spacing ∆z 
= 0.5 km), while the grid is coarsened to 35×35×35 
grid points (with ∆x = ∆y = 2 km and ∆z = 0.5 km) for 
all the assimilation experiments. Thus, the forecast 
model is imperfect. The “true” state is generated by a 
model simulation initialized from a modified Del City 
sounding for the classic May 29, 1977 Del City, 
Oklahoma supercell storm case as in Tong and Xue 
(2005, referred to as TX05 hereafter).  
 
b. Simulated radar observations 
 Simulated radar radial-velocity observations are 
produced by interpolating the simulated “true” 
velocities to observation points, projecting along radar 
beams and then adding with random errors to drawn 
from a normal distribution with zero mean and a 



 

specified standard deviation. All the observation 
points are in the radar polar coordinates, and each 
volume scan contains 14 tilts at the elevation angles of 
0.48, 1.45, 2.4, 3.3, 4.3, 5.2, 6.2, 7.5, 8.7, 10.0, 12, 
14.0, 16.7 and 19.5 degree. On each tilt, the 
benchmark horizontal resolutions are 1o in the 
azimuthal direction and 0.5 km in the radial direction. 
The benchmark temporal resolution is 5 min per 
volume. The radial-velocity data are assumed to be 
available only in the precipitation regions, where the 
reflectivity exceeds 10 dBZ. The reflectivity is 
calculated from the hydrometeor mixing ratios from 
the ‘true’ simulation as in TX05. The ground-based 
radar is located at the southwest corner of the 
computational domain, that is, at the coordinate origin, 
for all experiments.  
 Assume that the gross errors (due to by range 
folding, velocity aliasing, and non-meteorological 
clutters) are removed by data quality controls (e.g., 
Gong et al. 2003; Zhang et al. 2005; Liu et al. 2005), 
so random errors in radar radial-velocity 
measurements (level-II data) are caused mainly due to 
inhomogeneities of velocity and reflectivity within 
each sampling volume. The error standard deviation 
may have a lower bound of about σ = 1 m s-1 in a fair-
weather turbulent boundary layer (see section 9.1.1.2 
of Doviak and Zrnic 1993). By reformulating the 
conventional innovation method, Xu et al. (2007) 
estimated radar radial-velocity observation error and 
background velocity error covariance from time series 
of radar radial-velocity innovation (observation minus 
independent background), and the estimated 
observation error standard deviation is σ = 4 m s-1. 
This estimate (σ = 4 m s-1) will be used with the above 
lower bound (σ = 1 m s-1) to examine how the EnKF 
analysis is impacted by a change in observation 
accuracy. 
 
c. Data assimilation procedure 
 The observation errors are assumed to be 
uncorrelated (or de-correlated), so the serial algorithm 
of EnSRF (Whitaker and Hamill 2002) can be used 
conveniently. In this EnSRF, the Kalman gain matrix 
reduces to a column vector (for single-observation 
analysis). A simple trilinear interpolation is used in the 
observation operator H. The ensemble has 40 members 
(N = 40). As in TX05, the initial ensemble forecasts 
are started at the 20 min of model time by adding 
random noises to a prior background state which is 
horizontally homogeneous and described by the 
environmental sounding in the vertical. The random 
noises are sampled from normal distributions with 
zero mean and standard deviation of 3 m s-1 for u, v 
and w, and 3 K for potential temperature. The 
pressure, moisture and microphysical variables are not 
perturbed initially. The observations are assimilated 

every τ = 5 minutes. The first analysis is performed at 
t = 25 min. After 15 more assimilation cycles, the last 
analysis is performed at the end (t = T = 100 min) of 
the last (16th) cycle. In all the experiments, the 
covariance localization radius is set to 8 km and the 
inflation factor is set to β = 1.07. 
 
3.2 Experiments with Different Observation Accuracies 

a. Experiment design 
 In this section, two (one control and one test) 
EnSRF assimilation experiments are designed and 
performed with simulated high-resolution radial-
velocity data (0.5 km in radial range and 1o in 
azimuth) of different accuracies. The model error is 
not estimated or treated explicitly except that the 
inflation factor is set to β = 1.07 to partially account 
for the enhanced forecast error due to the imperfect 
model. By settings the error standard deviations to (i) 
σ = 1 m s-1 and (ii) σ = 4 m s-1, two sets of 
observations are generated. These two sets are denoted 
by Oτ1 and Oτ4, respectively (see the first two rows of 
Table 1). As explained earlier, σ = 1 m s-1 is an 
estimated lower bound of σ, while σ = 4 m s-1 is a 
statistical estimate obtained by Xu et al. (2007). The 
Oτ4 will be used in the control experiment, denoted by 
Eτ4. The Oτ1 will be used in the test experiment, 
denoted by Eτ1.  
 
Table 1. Observation error variances and resolutions 
for six sets of model-simulated radar radial-velocity 
data. All the data contain 14 tilts at the elevation 
angles of 0.48, 1.45, 2.4, 3.3, 4.3, 5.2, 6.2, 7.5, 8.7, 
10.0, 12, 14.0, 16.7 and 19.5 degree. 
 

data set 
σ 2 

(m/s)2 
Radial 
(km)  

Azimuth 
(degree)  

Temporal 
(min) 

Oτ1  1  0.5 1 5  
Oτ4  42  0.5  1 5  

O2km5min  22 2  1 5  
O4km5min  1  4  2 5  
O2km2min  10 2  1 2  
O2km1min  20 2  1 1  

 
 
b. Evaluation parameters 
 (i) The analysis quality is evaluated by the RMS error 
of the ensemble mean velocity field. For the ith model 
variable, denoted by xi, the analysis RMS error is 
defined by  
 
 σi ≡ {| x 

i  - xi
t|2}p

1/2,  (6) 

where x 
i  denotes the ensemble mean background 

forecast (or analysis) of xi before (or immediately 



 

after) each analysis time, xi
t denotes the “true” value of 

xi, and { }p denotes the average over the grid points 
covered by the observations (where the reflectivity > 
10 dBZ).  
(ii) The RMS error averaged for the three velocity 
components at the end (t = T = 100 min) of the 
assimilation is denoted and defined by 
 
 σv ≡ {σi|t=T}3, (7) 
 
where { }3 denotes the average over i (= 1, 2, 3) for the 
three velocity components (u, v, w).  
(iii) To quantify the accuracy of the ensemble mean in 
the test experiment relative to that in the control 
experiment, it is convenient to introduce and define 
the relative RMS error (RRE) as follows: 
 
 RRE ≡ σv/σvEτ4, (8) 
 
where σvEτ4 denotes the values of σv in the control 
experiment Eτ4.  
(iv) The spatially averaged ensemble spread of xi is 
defined by  
 
 si ≡ { | x

i
- x 

i
|
2 }p

1/2, (9) 
 
and si

2 is the spatially averaged ensemble variance of xi 
over the regions covered by the observations.  
(v) Ideally, the ensemble spread in each variable 
should satisfy a consistency relationship with the 
ensemble-mean RMS error. This consistency relation 
requires the ratio between the ensemble spread and the 
ensemble-mean RMS error to be statistically equal to 
[N/(N + 1)]1/2 (Murphy 1988). For the ith variable xi, 
this ratio is defined and denoted by 

  
 ri ≡ si/σi. (10) 

  
We call it the consistency ratio (the ith variable). For 
the ensemble size (N = 40) used in this study, the ideal 
value for the consistency ratio is [N/(N + 1)]1/2 = 
0.988. 
(vi) The consistency ratio averaged for the three 
velocity components at the end (t = T) of the 
assimilation is defined and denoted by 
 
 rv ≡ {ri|t=T}3,  (11) 
 
 If the uncertainty of the ensemble mean is well 
quantified by the ensemble spread, then ri should be 
statistically equal to [N/(N + 1)]1/2 according to the 
consistency relationship. Since the initial ensemble 
members are generated in the same way at the 
beginning of the assimilation in all the experiments, 
the consistency ratio is initially the same for each 

variable in all the experiments. After the initial time, 
however, the ratio will undergo different variations 
over the assimilation period in different experiments.  
 
 
Table 2. σv RRE and CPU time ratios from five test 
experiments with respect to those from the control 
experiment Eτ4. 
 

Experiment σv (m/s) RRE rv 
CPU 
ratio 

Eτ1 4.04 1.08 0.08 1.00 
Eτ4 3.73 1 0.23 1 

E2km5min 3.56 0.95 0.31 0.24 
E4km5min 4.35 1.17 0.31 0.06 
E2km2min 3.36 0.90 0.62 0.66 
E2km1min 4.35 1.17 1.08 1.12 

 
 

 
 
Fig. 1. The RMS errors of ensemble mean forecasts 
and analyses (a)-(c), and the consistency ratios (d)-(f) 
for u, v and w in Eτ4 (black lines) and Eτ1 (red lines). 
Units are shown in the plots. The ideal value for the 
consistency ratio, that is [N/(N + 1)]1/2 = 0.988 for N = 
40, is marked by the straight horizontal lines in (d)-(f). 
 
 
c. Results and discussions 
 The computed values of σv, RRE and rv from the 
test experiment Eτ1 are listed in the first row of Table 
2 in comparison with those from the control 
experiment Eτ4 (in the second row). As listed, when 
the observation error is reduced from σ = 4 m s-1 (in 
Eτ4) to 1 m s-1 (in Eτ1), the RRE is increased by 8% 
and the averaged consistency ratio rv is decreased 
dramatically from 0.23 to 0.08. The ensemble mean 
RMS errors σi and consistency ratios ri are plotted as 
functions of time over the 16 assimilation cycles in 
Figs. 1a-c and 1d-f, respectively, for (u, v, w) from the 
two experiments. As shown, Eτ1 (red lines) performs 



 

worse than Eτ4 (black lines) although the data set Oτ1 
is more accurate than Oτ4. Figures 1d-f show that the 
consistency ratios in Eτ1 are initially the same as in 
Eτ4 but decrease in the first few assimilation cycles 
and then stay far below the ideal value (0.988) during 
the subsequent assimilation cycles. This indicates that 
the ensemble spread in Eτ1 is too small to quantify the 
uncertainty of the ensemble mean, and the insufficient 
spread is responsible for the poor performance of Eτ1 
relative to Eτ4.  
 The “true” fields of vertical velocity and 
horizontal perturbation wind at z = 6 km are plotted in 
a time series in the first row of Fig. 2 against the 
ensemble mean analyses from Eτ1 (the second row) 
and Eτ4 (the third row). As shown, the gross pattern of 
the true wind field is reasonably well assimilated (after 
five cycles) in these two experiments. However, since 
the model is imperfect and has a coarsened resolution 
from the “true”, the assimilated updrafts in Eτ1 and 
Eτ4 are slightly weaker than the “true”. The major 
updraft patterns in Eτ4 are closer to the “true” pattern 
than in Eτ1. This result shows again that the analysis is 
not improved but becomes slightly worse as the 
observation error is reduced from σ = 4 m s-1 (in Eτ4) 
to 1 m s-1 (in Eτ1). 
 

 
 
Fig. 2. Vertical velocity (contours and colors at 
intervals of 5 m s-1 and ≥ 5 m s-1) and horizontal 
perturbation wind (vectors plotted every other grid 
point) at level z = 6 km: (a)–(d) “true” simulation; and 
analyses from (e)–(h) Eτ1, (i)–(l) Eτ4, (m)–(p) 
E2km5min, at the 5th, 7th, 11th and 16th cycle during the 
assimilation period. The vector scale for the horizontal 
wind is shown by the arrow (5 m s-1) at the lower-left 
corner. 

 The above results show that when the radar data 
spatial resolution is excessively higher than the grid 
resolution, an increase in data accuracy does not 
necessarily improve the EnSRF analysis. When the 
observations are significantly more accurate than the 
ensemble mean, further increasing the true observation 
accuracy (without inflating the estimated σ) can 
actually deteriorate the EnSRF analysis. This negative 
impact is counter-intuitive but not surprising, because 
the background covariance is not accurate as it is 
estimated from an ensemble of merely 40 imperfect-
model predictions.  
 The negative impact of the increased data 
accuracy on the assimilation in Eτ1 is caused by errors 
and noises in the covariance (estimated from an 
ensemble of 40 imperfect-model predictions) and the 
smallness of σ2 in the denominator of the Kalman gain 
(not shown). As the observations are much denser than 
the model grid at least in the radial direction along 
each radar beam, the analysis (applied serially to all 
the observations) tends to excessively reduce the 
spread without adequately reducing the mean RMS 
error in observation-covered regions. This causes the 
poor performance of Eτ1. The problem cannot be 
alleviated by the convention inflation of covariance (or 
spread) because the excessively reduced spread is 
caused by the smallness of σ2 and the reduced spread 
is localized mainly in observation-covered regions. 
Note that the inflation factor is already set to 1.07 in 
Eτ1. A further increase of this factor can only worsen 
the situation according to our additional experiments 
(not shown). On the contrary, the problem can be 
actually alleviated when the inflation factor is reduced 
from 1.07 to 1 (that is, with no inflation). In this case, 
the RRE in Eτ1 is reduced by 8% (from 1.08 to 1.00).  
 The background variance (estimated by the 
ensemble spread) and observation error variance are 
two competing terms in the Kalman gain and β factor 
(not shown). This implies that the above problem can 
be alleviated by inflating the observation error 
variance. This is indeed true as indicated by our 
additional experiments. For example, when σ is 
inflated from 1 to 4 m s-1 in the Kalman gain and β 
factor (but the true observation error standard 
deviation remains to be σ = 1 m s-1), the RRE in Eτ1 is 
reduced by 15% (from 1.08 to 0.93) and the spread is 
also improved (since the averaged consistency ratio rv 
is increased from 0.08 to 0.25). This inflation is 
approximately optimal for Eτ1, and it changes the 
impact of observation accuracy from negative (-8%) to 
positive (7%) in reducing the analysis RRE. Thus, 
when observations are excessively accurate and dense 
while the background covariance is not accurately 
estimated (from a small ensemble of imperfect-model 
predictions), the EnSRF analysis becomes not really 
sensitive to the true observation error but sensitive to 



 

how σ is specified and inflated. In this case, how to 
optimally inflating σ will depend on the observation 
resolutions and the excessiveness of the observation 
accuracy versus the inaccuracy of the estimated 
background covariance. The problem, however, is not 
further explored here, because inflating σ is not the 
best choice as long as the radar scans can be 
configured (or re-configured) to avoid (or eliminate) 
excessive measurement accuracy. For this reason, we 
will consider Oτ4 only and use it as a benchmark data 
set to study trade-offs between observation accuracy 
and resolutions in the next section. 
 
3.3 Trade-Offs Between Observation Accuracy & Resolutions  

a. A idealized simple rule for trade-offs  
 The number of acquirable samples of weather 
echoes per unit time always has a limit for a given 
radar, especially if the radar performs multifunction 
tasks (such as the phased array radar does). 
Constrained by this limit, if the observation resolution 
is increased, say, by n times in one spatial or temporal 
dimension, then the observation error variance will 
increase likely also by about n times (because the error 
variance of an estimate is inversely proportional to the 
number of independent samples used to yield the 
estimate according to the well-known central limit 
theorem in statistics). Therefore, as a simple rule for 
considering trade-offs between observation accuracy 
and resolutions in our experiment design, the 
observation error variance σ2 will decrease (or 
increase) by n times if the observation resolution is 
decreased (or increased) by n times in any spatial or 
temporal dimension.  
 Using the above rule, radar scans can be 
configured with different trade-offs between accuracy 
and resolutions from the benchmark data set Oτ4. As 
we have seen in the previous section, Oτ4 has the 
same spatial resolutions as Oτ1 and thus may also 
have excessive spatial resolutions as Oτ1 does. Based 
on this consideration, four sets of observations 
(denoted by O2km5min, O4km5min, O2km2min and 
O2km1min) are generated from Oτ4 by reducing the 
spatial resolutions in favor of increasing the accuracy 
and temporal resolution. Their observation error 
variances and resolutions are listed in the last four 
rows of Table 1. 
 It is necessary to point out that the above simple 
rule for trade-offs between observation accuracy and 
resolution is an idealized situation. In reality, radar 
sampled (level I) velocities are not truly independent, 
and the statistical properties of random meteorological 
scatterers are not precisely stationary in each 
resolution volume. Consequently, when the 
observation resolution increases (or decreases) in a 
single spatial or temporal dimension, the trade-off will 

yield a smaller increase (or decrease) in the true 
observation error variance than estimated by the 
simple rule. These complications are not considered in 
this study. 
 
b. Trade-offs between accuracy and spatial resolutions  
 Two test assimilation experiments are performed 
with O2km5min and O4km5min, and these 
experiments are denoted by E2km5min and 
E4km5min, respectively. The control experiment is 
Eτ4. The parameter values of σv, RRE and rv from 
E2km5min and E4km5min are listed in the third and 
fourth rows of Table 2, respectively, in comparison 
with those from Eτ4 (in the second row). In addition, 
the CPU time ratios (with respect to the CPU time 
used by Eτ4) are listed in the last column. As listed in 
Tables 1 and 2, when the radial resolution is coarsened 
from 0.5 to 2 km and thus σ is reduced from 4 m s-1 (in 
Eτ4) to 2 m s-1 (in E2km5min), the RRE is decreased 
by 5% (from 1 to 0.95), the averaged consistency ratio 
rv is increased from 0.23 to 0.31, and the CPU time 
ratio is reduced from 1 to 0.24. However, when the 
radial resolution is further coarsened to 4 km, and the 
azimuthal resolution is coarsened from 1 to 2 degree in 
E4km5min (and thus σ is further reduced to 1 m s-1), 
the analysis becomes worse and the RRE is increased 
by 17% (from 1 to 1.17) although the averaged 
consistency ratio rv remains to be 0.31 and the CPU 
time ratio is further reduced to 006. The worsened 
analysis accuracy in E4km5min is caused by the 
excessively coarsened spatial resolutions. Judging 
from the analysis accuracy, E2km5min outperforms 
Eτ4 and E4km5min, and the observation set 
O2km5min provides the optimal trade-off among the 
three. 
 The ensemble mean RMS errors σi and 
consistency ratios ri are plotted as functions of time 
over the 16 assimilation cycles in Figs. 3a-c and 3d-f, 
respectively, for (u, v, w) from the two test 
experiments E2km5min and E4km5min versus those 
from the control experiment Eτ4. As shown in Figs. 
3a-c, E2km5min (pink lines) performs better than Eτ4 
(black lines) and E4km5min (green lines) performs 
significantly worse than Eτ4. Figures 3d-f show that 
the averaged consistency ratios in E2km5min and 
E4km5min are initially the same as in Eτ4 but become 
higher than that in Eτ4 during the subsequent 
assimilation cycles. This indicates that the ensemble 
spreads are improved in E2km5min and E4km5min 
although their averaged consistency ratios are still 
significantly below the ideal value (0.988). These 
results are consistent with those in Table 2. 
 The ensemble mean fields of vertical velocity and 
horizontal perturbation wind from E2km5min are 
plotted at z = 6 km in a time series in the last row of 
Fig. 2 in comparison with the “true” fields (in the first 



 

row) and from Eτ4 (the third row). As shown, after the 
5th analysis cycle, the locations and gross patterns of 
the two main updrafts are better retrieved in 
E2km5min and closer to the “true” than those in the 
control experiment Eτ4. This result shows again that 
the analysis is improved by the trade off that coarsens 
the radial resolution from 0.5 km (in Oτ4) to 2 km (in 
O2km5min) in favor of increasing the observation 
accuracy. 
 As we have seen, by assimilating O2km5min 
instead of the original Oτ4 which has quadruply higher 
radial resolution than O2km5min, the computational 
cost can be reduced quadruply. This trade-off also 
improves the analysis accuracy in addition to the 
computational efficiency. After the spatial resolutions 
are optimally selected, the EnSRF analysis can be 
further improved by a proper trade-off between the 
accuracy and temporal resolution. This problem is 
explored in the next subsection. 
 

 
Fig. 3. As in Fig. 1 but for Eτ4 (back lines), 
E2km5min (pink lines) and E4km5min (green lines).  
 

 
Fig. 4. As in Fig. 1 but for E2km5min (black lines), 
E2km2min (pink lines) and E2km1min (blue lines).  

c. Trade-offs between accuracy & temporal resolution 
 In this subsection, two test experiments are 
performed with O2km2min and O2km1min, and these 
experiments are denoted by E2km2min and 
E2km1min, respectively. Because O2km2min and 
O2km1min have the same spatial resolutions as 
O2km5min, comparisons will be made with respect to 
E2km5min instead of Eτ4 [although the RRE is still 
computed relative to Eτ4 according to the definition in 
(8)]. The parameter values of σv, RRE, rv and CPU 
time ratio from E2km2min and E2km1min are listed 
in the last two rows of Table 2 in comparison with 
those from E2km5min. As listed in Tables 1 and 2, 
when the temporal resolution is refined from 5 to 2 
min and thus τ is increased from 2 to 101/2 m s-1 in 
E2km2min, the RRE is decreased by 5% (from 0.95 to 
0.90) and the averaged consistency ratio rv is doubled 
to 0.62, but the CPU time ratio is increased from 0.24 
to 0.66. When the temporal resolution is further 
refined to 1 min and thus σ is increased to 201/2 m s-1 in 
E2km1min, the CPU time ratio is further increased to 
1.12. The analysis, however, becomes worse and the 
RRE is increased by 27% (from 0.90 to 1.17), 
although the averaged consistency ratio rv is increased 
to 1.08.  
 The ensemble mean RMS errors σi and 
consistency ratios ri are plotted as functions of time 
over the 16 assimilation cycles in Figs. 4a-c and 4d-f, 
respectively, for (u, v, w) from E2km2min and 
E2km1min versus those from E2km5min. As shown in 
Figs. 4a-c, E2km2min (pink lines) outperforms 
E2km5min (black lines) and E2km1min (blue lines) 
significantly underperforms E2km5min. Figures 4d-f 
show that the averaged consistency ratios in 
E2km2min and E2km1min are initially the same as in 
E2km5min but become much higher than those in 
E2km5min during the subsequent assimilation cycles. 
Although the consistency ratios become close to the 
ideal value, the analysis is worsened in E2km1min. 
Judging from the analysis accuracy, E2km2min 
outperforms E2km5min and E2km1min, and the 
observation set O2km2min provides the optimal trade-
off among the three (O2km5min, O2km2min and 
O2km1min). As the observation accuracy is reduced in 
favor of enhancing the temporal resolution in 
O2km2min, inflating σ become more harmful to the 
assimilation in E2km2min than in E2km5min. 
 Note that the consistency relationship can be used 
to evaluate only a part of the quality of the estimated 
covariance. Moreover, the consistency ratio defined in 
(10) is merely a ratio averaged over regions covered 
by the observations. When this ratio is close to the 
ideal value of [N/(N + 1)]1/2, the averaged variance part 
of the estimated covariance is close to the averaged 
RMS error of the ensemble mean. However, the 
covariance is not free of spurious noisy structures 



 

when it is estimated from a small ensemble of 
imperfect-model predictions. The covariance 
localization can suppress distant spurious structures 
but it will also suppress the true structures and cause 
some imbalances in the EnSRF analysis with respect 
to the model dynamics and physics. If the observations 
are made and assimilated into the model at an 
excessively high frequency, then the ensemble 
integration will be interrupted by the analysis and thus 
contaminated by the analysis-introduced spurious 
structures and imbalances too frequently to stay the 
correct trajectories and faithfully represent the 
evolution of the true prediction probability 
distribution. In this case, the averaged spread can be 
close to the ideal value but the covariance is poorly 
estimated. This explains the worsened analysis in 
E2km1min.  
 
3.4 Summary  

 The results of the assimilation experiments are 
summarized as follows:  
(a) The EnSRF analysis can be negatively impacted if 

the true observation error is overly reduced (say, 
from σ = 4 to 1 m s-1 for level-II velocity data) but 
the estimated observation error is not inflated in 
the EnSRF. This negative impact occurs when the 
observations have excessive accuracy and 
resolutions while the background covariance is 
not accurately estimated (from 40 imperfect-
model predictions in this study). In this case, 
unless the estimated observation error is properly 
inflated, the analysis (applied serially to all the 
observations) tends to excessively reduce the 
spread without adequately reducing the ensemble 
mean error in regions densely covered by the 
observations. This causes the negative impact. 

(b) When the true observations have no excessive 
accuracy, the analysis can be improved by 
properly reducing the observation resolution (to 2 
km in the radial direction) in favor of increasing 
the observation accuracy, and there is an optimal 
trade-off between the accuracy and spatial 
resolutions.  

(c) When the spatial resolutions are optimally selected, 
the analysis can be further improved by properly 
enhancing the temporal resolution of radar 
volume scans (from every 5 to 2 min) at the price 
of reducing the observation accuracy, and there is 
an optimal trade-off between observation 
accuracy and temporal resolution.  

 
 The above summarized results should be useful 
for optimally configuring radar scans (especially 
phased-array radar scans at the NWRT) to improve 
storm-scale radar wind assimilation, although the 

trade-offs between observation accuracy and 
resolutions considered in this study is based on an 
idealized rule (see section 3.3a). The quantitative 
aspects of the results will likely change if the model 
grid resolutions become significantly different from 
those used in this study. For example, if the horizontal 
grid spacing is reduced further (say, from ∆x = 2 to 0.2 
km for the purpose of resolving and analyzing tornadic 
vortices within a storm), then the optimal trade-off 
will likely be balanced at higher spatial and temporal 
resolutions but lower observation accuracy than shown 
in this study, provided that the trade-off is made with 
respect to the same benchmark observations (that is, 
Oτ4 to the full capabilities of the radar) as considered 
here. In this case, the EnSRF may behave quite 
differently than shown in this study. This speculation 
needs to be verified by future studies.  
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