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1. Introduction 
 
        Prediction of convective cells is a very 
challenging topic for NWP. Nowcasting 
systems, based on extrapolation of 
observations, do not capture easy this kind 
of weather phenomenon because the 
evolution of convection is too fast.  In data 
assimilation, weather radar can be of use 
because it is the remote sensing tool that 
can sample the structure of individual 
convective cells with high resolution in time 
and space. 

 Both the 4D-Var (with strong constraint) 
and the ensemble Kalman Filter technique 
are computationally expensive systems.  
The McGill radar assimilation system treats 
the model equations as a weak constraint in 
the cost function, so there is no need to 
have an adjoint model for integrating 
backward in time.  This treatment not only 
reduces the computational time to find the 
optimal analysis, but it also includes the fact 
that the numerical model is not perfect.  
Since operational radar networks rarely 
have two radars making observation of the 
same location, the McGill data assimilation 
system assimilates the radial velocity as well 
as the reflectivity from single Doppler radar 
to obtain a set of new analysis fields to 
initialize a regional model.  The goal of the 
present study is to determine how long very 
short term forecasts can be improved at the 
convective scale. 
＊

2. Methodology 
 
2.1 Assimilation system 
 
      Following Caya (2001), the McGill data 
assimilation system is based on the 
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variational formalism, and collects the 
available information from observations and 
backgrounds.  In addition, the cloud- 
resolving model equations, based on the 
MC2 (Mesoscale Compressible Community) 
atmospheric model (Laprise et al. 1997) 
coupled with the Kessler microphysics 
(warm cloud), is taken to be a weak 
constraint.  The form of the cost function is:  
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where , , are the observation, 
background and model terms, respectively.  
The vector x contains the control variables 
correspond to the model trajectory.  The 
vector y represents the observations and H 
stands for the observational operator that 
projects the model space into the 
observational space.  The index n defines 
observational times.  Since the model 
governing equations perform as the weak 
constraint in the cost function, the model 
residuals are represented by the vector

oJ bJ mJ

qε . 
The B, R, and Q operators are the 
background-, observation-, and model-error 
covariance matrices, respectively.  The 
superscripts -1 and T denote the inverse 
and transpose of the matrix.  
        The assimilation system has been 
modified and improved in the background 
term.  First, following Purser et al. (2003), by 
assuming that the error covariance of the 
control variables is isotropic and 
homogeneous the background error 
covariance matrix is modeled by a recursive 
filter.  Furthermore, in order to avoid the 
inverse of the background error covariance 
matrix, , and to speed up the cost 
function achieving the optimal solution of the 
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analysis a preconditioning procedure is done 
in the assimilation system.  Second, a three-
hour prior high resolution (1km) model 
forecasts is used as background fields in the 
background term of the cost function. This 
strategy involves the large-scale analysis 
from the numerical model that plays a 
crucial role in the assimilation system. 
 
2.2 Strategy of cycling process 
 

Since the phenomena at the convective 
scales change rapidly with time, one could 
not expect that one cycle of assimilation is 
enough to capture the temporal change of 
the weather system in convective storms. 
The cycling strategy here is: with an 
assimilation window of 10 minutes, the 
assimilation system obtains a set of analysis 
fields and initializes the MC2 model. The 
model then performs a 30 min forecast 
allowing for spinup adjustments. The 
assimilation system takes the new 
background fields from the model 30-minute 
forecasts, and assimilates another 10-
minute of radar observations. The new 
analysis fields then re-initialize the model 
that performs the forecast forward in time 
again. Fig.1 shows the procedure of the 
cycling strategy. 
 

 
 
First complete cycle 

 
Fig. 1. The scheme of the cycling process. 
 
3. Case Description 
 
    In order to investigate the cycling process, 
the convective storm system on 12th, July 
2004 was selected.  This was a strong, long-
lasting storm with convective scale features.  
The system was developing, growing, and 
dissipating for more than two hours.  The 
convective cells were almost stationary. 
during the life cycle, so the McGill S-band 
radar could keep track of the different stages. 
Figs 2(a)-(e) depict the reflectivity radar 
observed from 1810Z to 2010Z.  As seen 
the evolution of the system was very rapid. 
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Fig. 2. Reflectivity of the convective storms 
detected by McGill S-band radar at (a) 
1810Z; (b) 1840Z; (c) 1910Z; (d) 1940Z; 
(e)2010Z. The red dot indicates the location 
of the radar site. (Unit: dBZ) 
 
4. Results and Verification 
 

Once the new analysis fields are 
obtained by the assimilation system, they 
are used as the initial fields in the MC2 
cloud-resolving model.  The analysis domain 
is 250 x 200 x 25 km3.  The horizontal 
resolution is 1km; in the vertical a stretched 
grid mesh is used; the time step is 6s.  
 
4.1 Initialization  
 

Fig. 3. shows the difference before and 
after the assimilation in the horizontal wind.  
When the reflectivity and radial velocity are 
assimilated, the horizontal wind shows that 
the increment based on the background 
fields modified the winds in the observed 
areas. The analysis from assimilation 
reveals that the adjustments within the 
observed areas help to trigger the 
convective cells in the right place. 

 

 
 

 
 

 
 

 
 
Fig. 3.  Analysis field of (a) u component 
from background; (b) u component from 
assimilating system; (c) v component from 
background; (d) v component from 
assimilating system. (Unit: m/s) 
 
4.2 First complete cycle 
 

Fig. 4. presents the forecast of the 
precipitation rate.  Fig 4(a) shows that the 
analysis fields from the assimilation system 
successfully trigger the convective storms in 
radar observed regions.  Without data 
assimilation, the modeled storms did not 
occur at the right time and the right place. 
The precipitation on the surface reveals the 
feedback of assimilation rain mixing ratio 
from radar observations, the location and 
the pattern are consistent to what radar 
observed at that moment.  The discrepancy 
between forecasts and radar observations 
are manifest in one hour forecast (Fig. 4(b)), 
the location of the precipitation no longer 
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match to what radar observed at 1910Z (Fig. 
2(c)). 
 
4.3 Cycling process 

Fig. 5. displays the forecasting 
prec

.4 Verification 

Radar observations are still the only 
ava

 

ipitation rate after the cycling process. 
Compare the 1-hour forecast of the 
precipitation rate between Fig 4(b) and Fig 
5(a), the cycling process really improves the 
forecast. With only one complete cycle, the 
observation in Fig 2(c) and the model 
forecast in Fig 4(b) imply that the ability of 
the prediction is limited to 1 hour.  The 1-
hour forecast after cycling process (Fig 5(a)) 
is compatible with radar observation (Fig 
2(d)), not only in the location, but also in the 
intensity. However, the 1.5-hour forecast 
indicates that the system moved away from 
the radar-detected location although the 
prediction could capture the intensity of the 
system.  
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ilable type of precipitation data, which 
covered the analysis domain, so the data is 
going to be used in the verification. Since 
model outputs include three-dimensional 
winds, these control variables are used to 
verify the model forecasts in time.  By using 

the equation:
r
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where r is the distan
tV  is the fall speed of rainwater from the 

del.  One can compare the difference 
between the observed radial velocity and the 
“simulated radial velocity” from the model 
output. In this study, normalized root mean 
square error is calculated defined by:  
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where N is the total number of analysis 

result from first 

ig. 4. The first complete cycle process: The 

points,  the subscript of “obs” and “simu” 
indicates the observed and simulated radial 
velocity, respectively.  
       Fig 6(a) shows the 
complete cycle forecast.  The comparison 
between initial time 1810Z (pink line, with 
data assimilation) and the model 
background field (blue line, without data 

assimilation) indicates that the analysis from 
the assimilation is better in all vertical layers.  
In addition, the errors of the radial 
component are smaller in the lower levels 
than at the higher levels.  The error of the 
radial component after the cycling process is 
demonstrated in Fig 6(b).   The conclusion is 
consistent with Fig 6(a). The errors in the 
higher levels are larger than the first 
complete cycle.  This larger error in the high 
levels may explain why the forecasting 
system moves away from the radar 
observation.  However, one should notice 
that the verification here only examines the 
radial component, and the tangential 
component cannot be analyzed.  Since the 
assimilation of radial velocity only adjusts 
the radial component, the forecast errors 
may also come from poor quality of the 
tangential component. 
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precipitation rate from the model forecasts: 
(a) 1815Z, 5-min forecast; (b) 1910Z, 60-min 
forecast. (Unit: mm/hr) 
 
 
 
 
 
 
 
 
 
 

(a) 

(b) 

(a) 



 
 

 
 
Fig. 5. The cycling process: The 
precipitation rate from the model forecasts: 
(a) 1940Z, 60-min forecast; (b) 2010Z, 90-
min forecast. 
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Fig. 6. (a

e result from only one cycle forecast; (b

 study, the McGill radar 
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the result from cycling process. X-axis is the 
vertical height in different layers. 
 
5. Conclusion 
 
    In this case

ssimilation sya
the convective storms at the right time and 
place with a single assimilation cycle and 
based on single Doppler radar observations. 
By using the previous forecast from large-
scale analysis as the background fields, the 

results indicate that the environment did 
have potential to maintain the convective 
activity. 
     The cycling process helps to capture the 
evolution

(b) 

and the location of the precipitation.  The 
results displayed indicate that the 
predictability of the very short-term forecast 
can be achieved up to 1.5-hour. After 1.5-
hour, the environmental flow caused the 
forecasting system to drift away from the 
radar observations.  The verification of the 
radial component in time reveals that the 
errors are larger in the high levels, and this 
may explain why the predicting system 
displaced away from the real location. 
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