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1. INTRODUCTION  

Range oversampling followed by a decorrelation 
transformation is a novel method for increasing the 
number of independent samples from which to estimate 
the Doppler spectrum, its moments, as well as several 
polarimetric variables on pulsed weather radars (Torres 
and Zrnić 2003a, 2003b). Range oversampling 
techniques rely on the precise knowledge of the range 
correlation of oversampled signals, which is a function 
of the transmitter pulse envelope, the receiver filter 
impulse response, and the reflectivity field illuminated by 
the radar. Theoretical and simulation studies 
demonstrating the advantages of these techniques have 
been successfully verified on weather data collected 
with a single-transmitter dual-polarization radar (Ivić et 
al. 2002, Torres and Ivić 2005). In contrast, recent 
experimental results on a dual-transmitter system have 
been rather negative; if the amplitude and/or phase 
mismatch between transmission pulses is disregarded 
in the formulation of the decorrelation transformation, 
processing of range oversampled dual-polarization 
signals with the standard whitening transformation can 
produce biased polarimetric variable estimates 
(Choudhury and Chandrasekar 2007). This paper 
demonstrates that, by properly accounting for the 
amplitude and/or phase differences in the two 
polarization channels, it is always possible to obtain 
unbiased polarimetric variable estimates. However, the 
accuracy of these estimators may degrade as the 
degree of mismatch between the horizontally and the 
vertically polarized transmitted pulses increases. 

2. RANGE OVERSAMPLING IN DUAL 
POLARIMETRIC RADARS 

Traditional sampling of weather radar signals (V) 
occurs at a rate of τ −1, where τ is the duration of the 
transmitted pulse. Oversampling in range entails 
acquiring polarimetric time series data at increased 
rates so that L complex samples are collected during 
time τ. This is termed as oversampling by a factor of L 
and has become feasible with the advent of commercial, 
single-board digital receivers (Ivić et al. 2003) and digital 
signal processors (Torres and Zahrai 2002).  

Let ( )m
Hv and ( )m

Vv  be the set of L oversampled 
signals for the horizontal and vertical polarization 
channels for a given sample time m. In vector notation, 
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where the superscript T denotes matrix transposition. 
If the resolution volume is uniformly filled with 

scatterers and the effects of receiver noise are ignored, 
the correlation coefficient of the oversampled range 
samples is solely determined by the transmitted pulse 
shape and the receiver filter impulse response. Let pH 
and pV be the normalized “modified” pulse envelopes for 
the horizontal (H) and vertical (V) channels (i.e., the 
transmitted pulses after each channel’s receiver filter) 

such that 
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coefficient for range samples can be obtained as 
(Torres and Zrnić 2003a) 
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Y Z

R
V V Y Zl p l p lρ ∗= ∗ − , (2) 

where the superscript (R) denotes range-time 
correlation, ∗  is the convolution operation, and the 
superscript * denotes complex conjugation. Y and Z can 
be either H or V (e.g., ( )

H H

R
V Vρ  is the range autocorrelation 

for the horizontal channel, and ( )
V H

R
V Vρ  is the range cross-

correlation between the horizontal and vertical 
channels). Normalized correlation matrices can be 
constructed as 
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,
( )
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j iρ= −C , (3) 

where { } ,i j
C  denotes the element in the i-th row and j-th 

column of the matrix C. 

3. ESTIMATION OF SPECTRAL MOMENTS AND 
POLARIMETRIC VARIABLES 

Oversampled signals in range can be used to 
improve the quality of meteorological variable estimates 
without increasing volume acquisition times. Because 
the objective is to produce better-quality estimates for 
the traditional (non-oversampled) range gate spacing, a 
set of signals at L oversampled range gates are suitably 
combined. With this technique, auto- and cross-
correlations are estimated at each of the L oversampled 
range gates. These L correlation estimates are 
averaged to produce one covariance estimate with 
reduced statistical errors. As with traditional sampling, 
averaged auto- and cross-correlations are used to 
compute the spectral moments and the polarimetric 
variables.   

Auto- and cross-correlation estimation from 
oversampled signals is given in general by 

 
1 1

( ) ( )

0 0

1ˆ ( ) ( ) ( )
( )Y Z

L M k
m m k

V V Y Z
l m

R k V l V l
M k L

− − − ∗ +

= =

⎡ ⎤= ⎣ ⎦− ∑ ∑ , (4) 



where k is the correlation lag, M is the number of 
samples in the dwell time, and again, Y and Z can be 
either H or V. Equation (4) can be rewritten as 
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where it is more evident that it is possible to produce 
correlation estimates with smaller errors by reducing the 
errors of the range averaged correlations ˆ

Y ZV Vℜ . In other 
words, we would like to transform the range 
oversampled signals to produce uncorrelated data that 
can be exploited to maximize the variance reduction 
through averaging (Torres and Zrnić 2003a).  

Assuming stationarity and using the vector 
representation of the signals, the expected value of (5) 
is 
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where R is the correlation matrix with no normalization 
(e.g., (0)

H H H HV V H V VS=R C , where SH is the signal power in 
the horizontal channel) and tr(.) is the trace of a matrix. 

4. TRANSFORMATION OF RANGE 
OVERSAMPLED DATA 

A whitening transformation on range oversampled 
time-series data can be used to decorrelate these 
signals before averaging. That is, through a linear 
transformation, a set of L correlated complex samples is 
transformed into a set of L decorrelated (or whitened) 
complex samples. Because data are uncorrelated, 
averaging covariances from whitening oversampled 
signals reduces the variance of estimates by a factor of 
L (Torres and Zrnić 2003a). 

The whitening transformation W can be constructed 
as 

 1−=W H , (7) 
where 

H H

T
V V

∗=C H H . Then, transformed oversampled 
data are obtained as 

 , ,H V H V=x Wv . (8) 
Range correlations for the transformed data (x) can 

be derived as follows: 

 

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )  ,

Y Z

Y Z Y Z Y Z

Tk m m k
X X Y Z

Tm m k T
Y Z

k T T
V V V V V V

E

E

R k R k

∗ +

∗∗ +

∗ ∗

⎡ ⎤= ⎢ ⎥⎣ ⎦
⎡ ⎤= ⎢ ⎥⎣ ⎦

= =

R x x

W v v W

W R W W C W

 (9) 

where again, Y and Z can be either H or V. 

4.1. Matched Channels 

For a radar system with perfectly matched 
channels, pH = pV. This is not an unrealistic assumption 
for dual polarization radars with one transmitter. In this 
situation, the normalized auto- and cross-correlation 
matrices are the same; i.e.,  

H H V V V HV V V V V V= =C C C . 

4.1.1 Autocorrelation Estimation 

Analogous to (6), the expected value of the 
autocorrelation estimator on transformed data is 
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Hence, the autocorrelation estimator on transformed 
data is unbiased with the transformation defined by 
equation (7). The same is true for the V channel 
autocorrelation estimator on transformed data, since 

H H V VV V V V=C C and W also whitens the data in the V 
channel. 

4.1.2  Cross-Correlation Estimation 

Again, from (6), 
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The cross-correlation estimator on transformed data 
with the transformation defined by (7) is also unbiased 
since 

H H V HV V V V=C C . 

4.2. Mismatched Channels 

For a radar system with mismatched channels, pH ≠ 
pV. This is more likely to occur in dual polarization 
radars with dual transmitters. In this case, auto- and 
cross-correlation matrices are generally different. 
Therefore, a whitening matrix that works for the H 
channel may not work for the V channel, and vice versa. 
Then, it makes sense to consider two independent 
transformations, WH and WV, one for each channel. 
Transformed data (x) are obtained as [c.f. (8)] 

 , , ,H V H V H V=x W v , (12) 



and range correlations are [c.f. (9)] 
 ( ) ( ) ( )  

Y Z Y Z Y Z

k T
X X V V Y V V ZR k R k ∗=R W C W . (13) 

4.2.1 Autocorrelation Estimation 

Repeating the process in 4.1.1, the expected value 
of the autocorrelation estimator on transformed data is 
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hence, the estimator is unbiased with WH defined by (7). 
The same is true for the V channel autocorrelation 
estimator, with WV derived from an analogous 
decomposition of 

V VV VC . 

4.2.2  Biased Cross-Correlation Estimation 

Repeating the process in 4.1.2, 
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Hence, the cross-correlation estimator is biased 
because, in general, ( ) / 1

V H

T
H V V Vtr L∗ ≠W C W  and 

ˆ ( ) ( )
V H V HX X V VE R k R k⎡ ⎤ ≠⎣ ⎦ . 

4.2.3 Unbiased Cross-Correlation Estimation 

The result in (15) is useful for constructing 
transformations that lead to unbiased cross-correlation 
estimates. As suggested before, the condition for 
unbiased estimates is given by 

 ( )V H

T
H V V Vtr L∗ =W C W , (16) 

and this is easily achieved by properly scaling the H and 
V transformation matrices. That is, let a new set of 
scaled transformation matrices be , , ,H V H V H Vγ=W W . With 
these new transformations, (16) becomes 

 ( )V H

T
H V H V V Vtr Lγ γ∗ ∗ =W C W , (17) 

and the scaling factors have to be chosen such that 
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A solution to this equation is 
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Note that with this formulation, the transformation 
matrices used in the autocorrelation estimators are 
different from the ones used in the cross-correlation 
estimator.  

4.2.4 General Unbiased Correlation Estimation 

In the general case, we would like to determine the 
best transformation matrices for any given situation 
without being constrained to choosing a whitening 
transformation. For example, pseudowhitening has been 
proposed as a way to increase the effective number of 
independent samples while minimizing the noise 
enhancement effects inherent to the whitening 
transformation (Torres et al. 2004). Hence, we need a 
general formulation that produces unbiased auto- and 
cross-correlation estimates for any transformation matrix 
structure. 

Let, ,
A
H VW be the set of transformations for the 

autocorrelation estimator, and ,
C
H VW the one for the 

cross-correlation estimator, where the basic structure of 
each matrix can be determined using different criteria 
(e.g., ,

A
H VW can be chosen as the whitening matrices for 

the H and V channel data, while ,
C
H VW can be chosen as 

the matrices that diagonalize the range cross-correlation 
matrix  

V HV VC ). To produce unbiased estimates, these 

four matrices require scaling given by ,
,

A C
H Vγ  as 
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and 
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Note that with the scaling in the previous three 
equations auto- and cross-correlation estimates are 
always unbiased. However, the variance of these 
estimators depends on the basic structure chosen for 
each transformation matrix.  

5. SIMULATION RESULTS 

Simulated polarimetric time-series data were used 
to validate the unbiasing scaling presented in the 
previous section. Signals are simulated as described by 
Torres and Zrnić (2003a, b) using varying degrees of 
mismatch between the modified pulses of the H and V 
channels. The modified pulse for the H channel was 
fixed with rectangular amplitude and zero-phase  
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−⎧ ≤ <⎪= ⎨
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, (23) 

whereas the one for the V channel was varied to obtain 
different degrees of mismatch as 
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Note that the phase of pV is linear with slope α, and the 
amplitude function ‘a’ was chosen as either a linearly 
increasing function from A to 1:  

 1( ) (1 )  , 0,..., 1l
La l A A l L−= + − = − , (25) 

or as a “raised” triangular function1: 
 ( )2 1 1

1 2 2( ) (1 )  , 0,..., 1L L
La l A A l l L− −

−= + − − − = − . (26) 

The pattern for these mismatches was based on 
Choudhury and Chandrasekar’s work (2007) on the 
Colorado State University’s CHILL radar and on our 
observations from the National Severe Storms 
Laboratory’s NEXRAD polarimetric prototype (Ivić et al. 
2003). An amplitude mismatch could be due to 
miscalibrated pulse-forming networks or different overall 
gains in each channel. A phase mismatch might be 
attributed to a known effect with klystron amplifiers. It 
has been observed that these devices exhibit an AM-to-
PM conversion whereby voltage variations in the 
transmitted pulse envelope are converted into phase 
variations of the carrier (Ivić et al. 2003).  

Amplitude and phase mismatches were evaluated 
independently. Figures 1 and 2 show the magnitude and 
phase of the H and V channel autocorrelation functions 
for only a phase mismatch and only an amplitude 
mismatch, respectively.  

 

 
Fig. 1. Magnitude and phase of the H and V channel 
normalized autocorrelation functions for a(l)=1, and 
α=50 deg. The oversampling factor L is 5. Note that 

magnitude curves are on top of each other.  
 

 Figures 3 and 4 show the bias and standard 
deviation of the spectral moments corresponding to 
varying degrees of phase and amplitude mismatch (only 
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the case in (25) is shown here), respectively. Figures 5 
and 6 depict the same for the polarimetric variables. To 
generate these figures, range oversampled data were 
processed using four matrix transformation sets:  

 
1. Matched filtering (MFB), in which range 

oversampled signals are run through a 
matched filter and decimated to simulate the 
standard, non-oversampling processing, 

2. Oversampling and averaging (OAB), in which 
oversampled signals are not transformed; i.e., 

, ,
A C
H V H V= =W W I , 

3. “Biased” whitening (WTB), in which the same 
whitening transformation (the one for the H 
channel) is used disregarding channel 
mismatch; i.e., 1

, ,
A C
H V H V

−= =W W H  (where 

H H

T
V V

∗=C H H ), and 
4. Unbiased whitening (UWTB), in which the 

proper scaling factors are applied, ,
A
H VW are the 

whitening transformations for each channel, 
and ,

C
H VW diagonalize the normalized range 

cross-correlation matrix 
V HV VC . 

 
Fig. 2. Magnitude and phase of the H and V 

channel normalized autocorrelation functions for 
a(l)=0.8+0.05l and α=0. The oversampling factor L is 5. 

Note that phase curves are on top of each other. 
 

Fig. 3 and 4 show that spectral moments (which are 
based on the H channel autocorrelation function) are 
unbiased, and the performance of the different range 
oversampling techniques is independent of the degree 
of mismatch between the H and V channels (which is 
obvious since the estimates are computed from signals 



in only one channel.) Performance of both WTB and 
UWTB are the same; both of these are much better than 
MFB or OAB, as predicted by the theory. 

Fig. 5 and 6 show that although WTB has the 
lowest errors, it produces biased estimates of all 
polarimetric variables as the degree of mismatch 
between the H and V channels increases. On the other 
hand, UWTB has almost the same variance reduction 
as WTB but produces unbiased estimates irrespective 
of the degree of mismatch between the H and V 
channels. Notice however that the errors of estimates 
with UWTB (and WTB) increase relative to those of 
OAB or MFB as the degree of mismatch between the H 
and V channels increases. Indeed, for large degrees of 
mismatch (mainly observed for phase mismatches with 
α larger than about 5) UWTB performs worse than OAB! 
In such cases, we argue that we could use a different 
structure for the transformation matrices (based on the 
proper optimum criterion to achieve maximum variance 
reduction of cross-correlation estimates). This, however, 
is beyond the scope of this work and is the subject of 
ongoing research. 

6. CONCLUSIONS AND FUTURE WORK 

This paper demonstrates that, by properly 
accounting for the amplitude and/or phase differences in 
the transmission channels (i.e., by proper scaling of the 
transformation matrices), it is always possible to obtain 
unbiased spectral moment and polarimetric variable 
estimates. However, as shown by the simulations, the 
accuracy of these estimators degrades as the degree of 
mismatch between the horizontally and the vertically 
polarized transmitted pulses increases. 

We are currently investigating other transformation 
structures that result in unbiased auto- and cross-
correlation estimates and at the same time achieve 
maximum variance reduction. The fact that this is 
always possible for the autocorrelation and for the 
cross-correlation with matched channels suggests that 
by properly accounting for the mismatch in the two 
polarimetric channels, it might be possible to produce 
optimum cross-correlation estimates. 
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Fig. 3. Bias (left) and standard deviation (right) of spectral moment estimates for oversampled data processed using: 

(1) a matched filter (MFB), (2) oversampling and averaging (OAB), (3) biased whitening (WTB), and  
(4) unbiased whitening (UWTB). H and V channels exhibit a progressively increasing phase mismatch  

with α varying from 0 to 15.  
 

 
Fig. 4. Bias (left) and standard deviation (right) of spectral moment estimates for oversampled data processed using: 

(1) a matched filter (MFB), (2) oversampling and averaging (OAB), (3) biased whitening (WTB), and  
(4) unbiased whitening (UWTB). H and V channels exhibit a progressively increasing amplitude mismatch  

with A varying from 0.8 to 1. 



 
Fig. 5. Bias (left) and standard deviation (right) of polarimetric variable estimates for oversampled data processed 

using: (1) a matched filter (MFB), (2) oversampling and averaging (OAB), (3) biased whitening (WTB), and  
(4) unbiased whitening (UWTB). H and V channels exhibit a progressively increasing phase mismatch  

with α varying from 0 to 15. 

 
Fig. 6. Bias (left) and standard deviation (right) of polarimetric variable estimates for oversampled data processed 

using: (1) a matched filter (MFB), (2) oversampling and averaging (OAB), (3) biased whitening (WTB), and  
(4) unbiased whitening (UWTB). H and V channels exhibit a progressively increasing amplitude mismatch  

with A varying from 0.8 to 1. 
 


