
P6B.7                  ESTIMATION OF RAINFALL BASED ON THE  
RESULTS OF POLARIMETRIC ECHO CLASSIFICATION 

 
S. E. Giangrande and A.V. Ryzhkov 

Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma 
 
 

 

1. Introduction 
 

Accurate rainfall estimates are vital for most 
hydrologic applications. The U.S. National Weather 
Service (NWS) requires estimates of rainfall at ranges 
up to 230 km from the radar. However, the quality of 
radar rainfall estimates degrades with distance as a 
result of beam broadening, the effect of Earth curvature, 
and overshooting precipitation. At longer distances from 
the radar, the radar resolution volume is more likely 
filled with mixed-phase or frozen hydrometeors and the 
radar measurements aloft are quite loosely related to 
rainfall near the ground.  

Contamination from nonliquid hydrometeors is 
especially pronounced in colder climates where the 
melting layer (or bright band) is particularly low. Even in 
relatively warm climates, this contamination generally 
occurs over a significant portion of the required NWS 
radar rainfall coverage area. For a typical melting level 
height in central Oklahoma (~3 km AGL), contamination 
of radar rainfall estimates at the 0.5° elevation angle 
due to the presence of mixed-phase and frozen 
hydrometeors  is usually  observed as close as 120 km 
from the radar. As a result, the accuracy of rain 
estimation may be compromised in over two-thirds of 
the radar rainfall coverage area required by the NWS.  

Polarimetric radar provides new opportunities to 
improve the accuracy of rain measurements as 
numerous theoretical and validation studies show. 
Polarimetric rainfall estimation techniques are more 
robust with respect to drop size distribution (DSD) 
variations and the presence of hail than the 
conventional R(Z) relations. The measurements of 
specific differential phase KDP, which is immune to radar 
miscalibration, attenuation, and partial beam blockage, 
benefit precipitation estimation by providing methods to 
correct radar reflectivity biases that result from those 
listed factors or through the direct estimation of rainfall 
using R(KDP) relations.  In addition, polarimetric radar is 
uniquely suited for discriminating between different 
classes of meteorological and nonmeteorological echo, 
which may also benefit estimation of rain. The 
anticipated improvement in quantitative precipitation 
estimation is one of the primary motivations for the 
forthcoming polarimetric upgrade of the Weather 
Surveillance Radar-1988 Doppler (WSR-88D) network. 

This paper assesses the quality of polarimetric 
rainfall estimation for a broad range of distances from 
the radar. The data were collected with the KOUN radar 
in central Oklahoma. Polarimetric echo classification 
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has been integrated to investigate the performance of 
radar rainfall estimation contingent on the type of 
hydrometeors that fill the radar resolution volume. 
Hourly Agricultural Research Service (ARS) Micronet 
and Oklahoma Mesonet rain gage accumulations are 
used to validate conventional and polarimetric radar 
rainfall measurements. ARS and Mesonet gages are 
well calibrated and located at distances between 25 km 
and 250 km from the KOUN radar.  
 
 
2. Radar Dataset and Echo Classification  
 

A total of 46 events observed by the KOUN radar 
between the years of 2002 and 2005 have been 
selected for analysis. The dataset includes gage 
observations from over 100 Oklahoma Mesonet stations 
and comprises 179 hours of radar data. Concurrent 
gage observations were available from the densely-
spaced ARS network stations located at ranges of 50-88 
km from the KOUN radar. The total number of ARS 
gages with an average spacing of about 5 km is 42 (24 
after 2004 when some gages were decommissioned). At 
such distances, the accuracy of radar rain retrievals is 
mainly affected by DSD variability and the possible 
presence of hail rather than ground clutter or 
contamination from melting layer or frozen 
hydrometeors.  

Radar reflectivity factor Z, differential reflectivity 
ZDR, specific differential phase KDP,  and cross-
correlation coefficient ρHV were measured at a radial 
resolution of 0.250 - 0.267 km using a short dwell time 
(48 radar samples) to satisfy NEXRAD antenna rotation 
rate (3 rpm) and azimuthal resolution (1°) requirements. 
Radar rainfall estimates and echo classification results 
were obtained using data collected at the 0.5° elevation 
scan with an update time update varying between 2 and 
6 minutes. Radar reflectivity measured by KOUN was 
matched with Z obtained from the nearby KTLX WSR-
88D radar, which was assumed to be well calibrated. 
ZDR was calibrated using polarimetric signatures of dry 
aggregated snow above the melting level following 
Ryzhkov et al. (2005c). Attenuation correction of Z and 
ZDR was performed using differential phase ΦDP and 
relations: ΔZ(dB) = 0.04ΦDP (degrees) and ΔZDR(dB) = 
0.004ΦDP (degrees) (Ryzhkov and Zrnic 1995). A 
minimum ρhv = 0.85 threshold was applied to filter 
echoes of nonmeteorological origin. Radar reflectivity 
was capped at 53 dBZ to mitigate hail contamination. 
Additional details of radar data processing can be found 
in Ryzhkov et al. (2005a). 

 In this study we compare hourly gage and radar 
rainfall accumulations over gage locations within 250 km 
of KOUN. Hourly radar accumulations are defined as an 
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hourly rainfall estimate averaged over an area centered 
on an individual gage. Radar rainrates are averaged 
using 5 gates centered over the gage location and two 
closest azimuths separated by 1 degree. Such 
averaging produces a radial resolution of 1.0 km and 
transverse resolution that varies with range.      

To establish the quality of the conventional and 
polarimetric radar rainfall algorithms, absolute 
differences between radar and gage estimates 
(expressed in mm) are examined rather than standard 
fractional errors, which are heavily weighted towards 
small accumulations. Rainfall estimates are 
characterized by the bias B = <Δ> and the rms error 
RMSE = <|Δ|2>1/2, where Δ = TR – TG is the difference 
between radar and gage hourly totals for any given 
radar-gage pair and brackets imply averaging over all 
such pairs.  

An objective of this study is to examine the quality 
of radar rain measurements as a function of radar echo 
type and to explore the value of polarimetric 
hydrometeor classification for quantitative precipitation 
estimation. For this purpose, the type of scatterers in the 
radar sampling volume corresponding to a particular 
gage location were identified using a polarimetric 
classification algorithm based on fuzzy logic principles 
following Ryzhkov et al. (2007). The classifier 
distinguishes between 10 classes of radar echo, 
including AP and Ground Clutter (AP / GC), Biological 
Scatterers (BS), Light to Moderate Rain (RA), Heavy 
Rain (HR), Rain/Hail (RH), Big Drops (BD), Graupel 
(GR), Wet Snow (WS), Dry Snow (DS), and Ice Crystals 
(CR). The classification algorithm in this study utilizes 
four radar variables: Z, ZDR, ρHV and a texture parameter 
SD(Z), i.e., the standard deviation of small-scale 
fluctuations of Z along a radial. Melting level height, 
which is required as an input into the classification 
scheme, is determined from the closest available NWS 
sounding in Norman, OK.  

The classification code distinguishes between 4 
types of rain: RA, HR, RH, and BD. The membership 
functions in the fuzzy logic scheme for 4 classes of rain 
overlap significantly in terms of all 4 radar variables and 
are constructed in such a way that distinction between 
light to moderate rain (RA) and heavy rain (HR) is 
primarily based on Z using a 45 dBZ borderline. Rain-
hail mixture (RH), on the other hand, is recognized and 
distinguished from heavy rain (HR) with the same Z by 
significantly lower values of ZDR and ρhv. Rain 
associated with significant presence of big drops and/or 
a relative deficit of small drops is usually characterized 
by anomalously high ZDR (for a given Z) and is identified 
as BD in the echo classifier. Rain belonging to BD 
category is commonly observed in the updraft areas of 
the storms where vigorous size sorting of raindrops 
occurs. 

Echo classification is performed over each gage 
location during every radar scan, whereas radar and 
gage rainfall accumulations are computed for each hour. 
Because classification results generally change from 
scan to scan at the same location, several class 
designations may be associated with a single hourly rain 
total. To quantify the accuracy of hourly rainfall 

estimation for individual echo classes, we prefer to 
assign the hourly rain total to a single, dominant echo 
class for that hour. Such a dominant class should be 
designated for at least 70% of radar scans that 
constitute a particular hour of observations at a given 
gage location.  

Since convective echo detections are relatively 
infrequent, the number of hours and gages over which 
convective signatures are dominant according to the 
previous criteria is too small for obtaining reliable 
statistics. Even after the three convective categories: 
Big Drops, Heavy Rain, and Rain/Hail are combined into 
a single convective rain category, the number of 
“convective” hours remain relatively small. In this study, 
we consider a particular hour as associated with 
convective rain if RA, BD, HR, and RH are detected for 
at least 70% of time and one of the three convective 
categories (i.e., BD, HR, or RH) is identified for no less 
than 20% of time.     
 
 
3. Rainfall Associated With Different Echo Types 
 

The performance of different rainfall relations is 
investigated contingent on the results of polarimetric 
echo classification. It is known that conventional radar 
rainfall estimates obtained from R(Z) relations 
deteriorate in the presence of mixed-phase and frozen 
hydrometeors. Previous studies have shown that the 
R(Z, ZDR) relation is less prone to DSD variability, but it 
is not immune to hail contamination and is not efficient 
in situations of melting layer contamination and 
precipitation overshooting (e.g., Giangrande and 
Ryzhkov 2003, Ryzhkov et al. 2005b). Rainfall 
algorithms based on KDP are more robust in the 
presence of hail, but are not optimal for light rain. 
Giangrande and Ryzhkov (2003) demonstrate that 
R(KDP) outperforms R(Z) in melting layer regions, but 
the improvement may be fortuitous and requires further 
clarification. The results of polarimetric echo 
classification can be utilized to further investigate the 
nature of the errors inherent to all three types of rainfall 
relations depending on the type of radar echo. This 
section highlights the performance of different rainfall 
relations separately in rain below the melting layer and 
within the melting layer where wet snowflakes are the 
dominant scatterers. Similar analysis has been 
performed for echo classifications observed above the 
melting layer (e.g., Graupel, Dry Snow, Crystals, not 
shown in this manuscript).   
 
a. Rainfall Relation Comparisons in Rain 

Rain is most often classified at relatively close 
distances from the radar. Both Oklahoma Mesonet and 
ARS Micronet gage network accumulations are 
available to validate radar rainfall algorithms in rain. In 
this paper, we highlight ARS gage comparisons in rain 
due to the improved spatial resolution of KOUN radar 
measurements over these gages. The following R(Z), 
R(KDP) and R(Z,ZDR) relations have been selected for 
analysis: 

 



R(Z) = 1.7 ×10-2 Z0.714, (1) 
 

R(KDP) = 44.0|KDP|0.822sign(KDP), (2) 
and 

R(Z,ZDR) = 1.42 ×10-2  Z0.770 Zdr
-1.67

. (3) 
 

 
Figure 1: Hourly radar-gage rainfall accumulation 
scatterplots for Light/Moderate Rain echo over ARS 
network gage locations: (a) R(Z), (b) R(KDP), (c) 
R(Z,ZDR). 
 
The conventional R(Z) relation in (1) is the inversion of 
the standard NEXRAD formula Z = 300 R1.4,where Z is 

expressed in mm6 m-3 and R in mm hr-1. KDP in (2) is 
expressed in ° km-1 and the sign(KDP) term allows 
negative values of R. Lowercase subscript in Zdr in (3) 
indicates linear units as opposed to uppercase subscript 
which denotes logarithmic scale. Polarimetric relations 
(2) and (3) are selected because of their optimum 
performance in rain for central Oklahoma during the 
JPOLE field campaign (e.g., Ryzhkov et al. 2005a).   

Scatterplots of hourly rainfall totals obtained from 
the radar relations (1) - (3) versus hourly gage 
accumulations are displayed in Figs. 1 and 2. Fig. 1 
illustrates radar – gage comparisons using ARS gages if 
rain is classified as Light/Moderate Rain as specified in 
section 2. A plot showing the performance of the three 
rainfall relations in convective rain (as determined in the 
previous section) is provided in Fig. 2. 

In Light/Moderate Rain, the tested relations show 
similar performance. The R(Z,ZDR) relation is relatively 
unbiased and has the lowest rms errors for both gage 
networks. The improvement in R(Z,ZDR) rainfall 
estimation is more pronounced over the ARS network 
than over the Oklahoma Mesonet (not shown). 

There is a clear benefit in polarimetric rainfall 
estimation within convective echo. Accumulation 
comparisons in Fig. 2 indicate that polarimetric relations 
are less susceptible to hail contamination and DSD 
variability and exhibit a sizable reduction in rms errors. 
The conventional R(Z) relation overestimates convective 
rainfall even after Z is capped at the 53 dBZ level to 
mitigate hail contamination. This overestimation is 
attributed to large raindrops and/or melting hailstones, 
typical for convective storms during warm season in 
Oklahoma.  

The performance of the R(KDP) and R(Z,ZDR) 
relations in convective rain is comparable. At closer 
distances from the radar, where the radar estimates are 
validated against ARS rain gages, the relations yield 
slightly smaller bias and rms errors than over Oklahoma 
Mesonet gages (not shown). In Fig. 2, the R(Z,ZDR) 
rainfall estimates outperform R(KDP) estimates. The 
opposite is true for the Oklahoma Mesonet dataset. We 
also note that the R(Z,ZDR) relation cannot be applied in 
rain / hail mixture (RH) once the increase in Z is not 
compensated by the proportional increase of ZDR in Eq 
(3). 

The choice between R(KDP) and R(Z,ZDR) in heavy 
rain and “big drops” is affected by the quality of absolute 
calibration of Z and ZDR, severity of the nonuniform 
beam filling (NBF) effects, and required spatial 
resolution of rain estimates. Specific differential phase is 
immune to radar miscalibration and attenuation. 
Because estimates of KDP are noisier and more prone to 
NBF, the fields of R(KDP) and even corresponding hourly 
totals may contain spurious perturbations and “holes” 
associated with unphysical negative rain rates or 
accumulations. The R(Z,ZDR) relation generally 
produces less noisy, “hole-free” fields of rain totals and 
may be favorable for operational forecast/warning 
applications, which require high spatial and temporal 
resolution. The R(KDP) relation may be preferred in 
hydrological applications, which need unbiased 



estimates of rain integrated over large spatial / temporal 
domains.  

 

 
b. Rainfall Relation Comparisons in Wet Snow 

Wet Snow echoes are associated with (but not 
limited to) locations of pronounced bright band 
signatures in Z. Wet snow is identified with greater 
confidence if Z is supplemented with polarimetric 
variables ZDR and ρhv. For the KOUN radar, Wet Snow 
echoes are best characterized by values of ρhv between 
0.90 and 0.97 and ZDR values exceeding 0.7 dB.  

The comparison between hourly rain totals obtained 
from Eq (1) – (3) and Oklahoma Mesonet gages in the 
cases when the radar samples Wet Snow above the 
gages is illustrated in Fig. 3. At elevation 0.5º, Wet 
Snow is usually classified at distances beyond 80 km 
from the radar and beyond the ARS Micronet gage 
network.  

As expected, the conventional R(Z) relation 
overestimates rain within the melting layer (Fig. 3a). A 
modest improvement in terms of the bias and rms error 
is observed if polarimetric relations are used. Because 
ZDR is high in wet snow, the combined use of Z and ZDR 
helps to partially mitigate the overestimation inherent to 
R(Z). However, the peaks in the vertical profiles of Z 
and ZDR through the bright band generally do not 
coincide in height and Z and ZDR do not correlate to the 
extent typical for ordinary rain. In addition, ZDR is quite 
prone to the NBF effects in the presence of very strong 
vertical gradients in the melting layer (Ryzhkov 2007) 
and is rather noisy due to low ρhv. Thus, the use of Eq 
(3) in Wet Snow is not as beneficial as in rain.  

The R(KDP) relation yields slightly better statistical 
results than the other two algorithms in Wet Snow, 
which is consistent with earlier findings by Giangrande 
and Ryzhkov (2003). The reason for this is not well 
understood. Although the KDP-based algorithm might 
work well in Wet Snow after extensive averaging in 
spatial / temporal domain, the corresponding fields of 
rain rates and accumulations look much noisier than the 
ones retrieved from Z. The reasons for this are the 
same as in rain: inherent noisiness of KDP 
measurements and the impact of the NBF effects. In 
Wet Snow, both factors are further exacerbated by 
lower ρhv and stronger vertical gradients. 

In view of these considerations, we recommend 
using a modified R(Z) relation if the radar echo is 
classified as Wet Snow. Such a modification implies 
multiplying the right side of Eq (1) by a factor that can 
be determined empirically by minimizing the bias and 
rms error in the rain estimate. In the case of Wet Snow, 
this factor was determined to be 0.6, i.e., the relation R 
= 0.6 R(Z) works the best (Fig. 3d).  

Figure 2: As in Fig. 1, for convective echo gages. 
 
 

 



 
Figure 3: As in Fig. 1, but for Wet Snow: (a) R(Z), (b) R(KDP), (c) R(Z,ZDR), and (d) 0.6*R(Z) that minimizes bias. 
 
4. Rainfall Algorithms and Their Performance as a 
Function of Range 
 

As highlighted in the previous section, different 
rainfall relations should be utilized for different classes 
of radar echo. The idea of using multiple relations to 
optimize rainfall estimation was explored by Ryzhkov et 
al (2005a). According to the “synthetic algorithm” 
developed in that study, the choice between various 
polarimetric rainfall relations is determined solely by the 
radar reflectivity Z or R(Z), i.e., rain rate computed from 
Z using Eq (1). Ryzhkov et al. (2005a) recommend 
using a R(Z, ZDR) relation in light rain (R(Z) < 6 mm/h), 
R(KDP, ZDR) relation in moderate-to-heavy rain (6 < R(Z) 
< 50 mm/h), and R(KDP) relation in heavy rain (R(Z) > 50 
mm/h). The three relations were optimized based on the 
comparison with the ARS gages for rain events during 
JPOLE in 2002 – 2003. In Ryzhkov et al. (2005a), the 
“synthetic algorithm” was validated only at distances 
less than 90 km from the radar, where the 
contamination from mixed-phase and frozen 

hydrometeors is minimal. Note that the R(Z, ZDR) 
relation in the “synthetic algorithm” is different from the 
one given by Eq (3).  

We suggest another version of the “synthetic 
algorithm” which is based on the results of polarimetric 
classification rather than on Z and is applicable for a 
wide range of distances from the radar. This algorithm is 
constructed as follows: 

  
R  =  0               -- if nonmeteorological echo is 
classified. 
R  =  R(Z, ZDR)   -- if Light/Moderate Rain is 
classified 
R  =  R(Z, ZDR)   -- if  Heavy Rain or Big Drops 
are classified 
R  =  R(KDP)       -- if  Rain/Hail is classified   
R  =  0.6*R(Z)    -- if Wet Snow is classified 
R  =  0.8*R(Z)    -- if Graupel or Rain/Hail 
classified above the freezing level 
R  =  R(Z)         -- if Dry Snow is classified. 
R = 2.8*R(Z)    -- if Crystals or distant Dry Snow   

 
 
 
(4) 



where the R(Z), R(Z, ZDR), and R(KDP) relations are 
specified by (1) – (3),  Z values are capped at 53 dBZ 
and rain rate is set to zero if ρhv < 0.85 to ensure 
minimal contamination from nonmeteorological echoes. 
To select an appropriate relation for Dry Snow, the 
algorithm compares echo height to the geometrical 
projection of the freezing level onto the base tilt. The 
algorithm (4) based on echo classification (EC – 
algorithm herein) as well as the old “synthetic algorithm” 
by Ryzhkov et al. (2005a), and relations (1) – (3)  were 
tested on the entire dataset containing all 179 hours of 
data.  
 

 
Figure 4:  Mean bias (top) and RMS error (bottom) of 
different radar estimates as a function of range (44 rain 
events, 174 hours of observation).   
 

The mean biases and RMS errors for 5 algorithms 
are plotted as functions of range for the entire dataset in 
Fig. 4. The distances from gauges have been 
partitioned into 50 km wide range bins to smooth the 
plotting. Due to significant radar rainfall accumulations 
associated with intense convective lines and hail-
producing storms, convective warm season events 
dominate the overall performance statistics. Separate 
statistics were obtained for widespread “stratiform” 

events for which the bright band played a significant role 
(Fig. 5). The stratiform subset includes 26 hours of 
Oklahoma Mesonet gage observations during 10 
widespread cold-season precipitation events. A small 
number of hours featuring very low freezing level 
heights were removed from the statistics.  
 

 
Figure 5: As in Fig. 4, but for pure stratiform events (10 
rain events, 26 hours of observation). 
 

As was claimed by Ryzhkov et al. (2005b) and 
Giangrande and Ryzhkov (2003), the conventional 
WSR-88D algorithm tends to overestimate rainfall in a 
wide range of distances up to 200 km from the radar 
and underestimate it beyond 200 km because of the 
progressive overshooting of precipitation at longer 
ranges. The overestimation at ranges below 100 km is 
primarily due to the impact of large drops and melting 
hail, which are very common in Oklahoma storms. At 
ranges between 100 and 200 km, contamination from 
the bright band is another factor contributing to the 
positive bias of the conventional rainfall estimate. 
Depending on the height of the freezing level, the 
impact of the bright band is strongest in the range 
interval 130 – 180 km. Conclusions regarding the 
performance of the conventional WSR-88D R(Z) relation 
in this paper are consistent with the results of 



independent statistical study by Krajewski and Ciach 
(2005), who examined a massive amount of radar data 
collected by the operational KTLX WSR-88D radar in 
the same region, i.e., central Oklahoma. 

The performance of rainfall relations at close 
distances from the radar (< 100 km) reaffirms initial 
JPOLE findings, which suggest that polarimetric 
methods and the “synthetic algorithm” in particular 
outperform the conventional R(Z) relation for most 
precipitation regimes. Three polarimetric algorithms: 
“synthetic”, EC, and R(KDP) demonstrate similar 
performance at the ranges up to 130 km with the EC 
algorithm producing the lowest bias and the “synthetic” 
one yielding smallest rms errors for all rain events 
combined (Fig. 4). The EC algorithm significantly 
outperforms others in the range interval between 130 
and 200 km in terms of the rms error.  

Utilizing the classification-based polarimetric 
algorithm (EC) instead of the conventional R(Z) relation 
results in an impressive reduction of the bias and rms 
errors of hourly rainfall estimates. At distances within 50 
km, the rms error is reduced by roughly a factor of 2 in 
convective rain. Ryzhkov et al. (2005a) report a 1.7 
times reduction for the cases observed during JPOLE. 
The improvement gradually phases out with increasing 
distance from the radar. The degree of the rms error 
reduction exceeds 50% at ranges up to 140 – 150 km 
and drops to about 20% at 200 km. In stratiform rain 
typical for colder season, the EC-algorithm also 
outperforms the conventional one, but to a lesser 
degree. The most tangible improvement is achieved at 
longer distances from the radar where the impact of the 
bright band is maximized (Fig. 5). 

It is important that the EC-algorithm is designed to 
use specific differential phase KDP more sparingly 
compared to the “synthetic algorithm” which implies 
more aggressive use of KDP. This is dictated by the need 
to mitigate noisiness in rain fields and the appearance of 
negative accumulations related to noisy and negative 
KDP. However, in some instances the KDP-based 
algorithms may produce less bias if substantial 
averaging over time and space is performed. For 
example, the “synthetic algorithm” shows slightly smaller 
bias at shorter distances in stratiform rain than the EC-
algorithm. Nevertheless, we believe that the overall 
performance of the EC-algorithm is better and this 
algorithm is the better suited for implementation on 
polarimetric NEXRAD. 
 
 
Summary 
 

The performance of the conventional and various 
polarimetric algorithms for rainfall estimation has been 
validated at a wide range of distances from the radar. 
This was accomplished using a large dataset that 
included radar data collected with polarimetric prototype 
of the WSR-88D radar and gage data from the ARS 
Micronet and Oklahoma Mesonet networks in 
Oklahoma. The type of radar echo in the radar 
resolution volume over gage locations was identified 
using the polarimetric classification algorithm. The 

accuracy of rainfall estimation was assessed separately 
for different classes of radar echo including liquid, 
mixed-phase, and frozen hydrometeors. 

A new algorithm that utilizes multiple polarimetric 
relations and modified R(Z) relations depending on a 
radar echo class has been developed. According to this 
strategy, quantitative precipitation estimation should be 
preceded by and contingent on results of hydrometeor 
classification. The R(Z, ZDR) relation is utilized if the 
radar echo is classified as rain and R(KDP) relation is 
used if large hail is mixed with rain. At longer distances, 
where the radar resolution volume is filled with mixed-
phase and frozen hydrometeors, the polarimetric radar 
is primarily used as a classifier. R(Z) relations with 
additional multiplicative factors (or intercept parameters) 
are applied if the radar scatterers are identified as wet 
snow, dry snow, crystals, graupel, and hail. The 
multiplicative factors for each of these classes are 
determined empirically using rain gage data. 

A validation study that incorporates a 4-year 
polarimetric dataset containing 46 rain events and 179 
hours of observations demonstrates that the 
performance of the suggested algorithm, which is based 
on echo classification (EC-algorithm), is superior in 
terms of both bias and rms error. The most impressive 
improvement, as compared to the conventional WSR-
88D algorithm, is found in convective storms where the 
rms error of hourly rain estimate is reduced by a factor 
of 2 at distances less than 50 km from the radar. The 
degree of improvement gradually decreases with range 
and becomes insignificant at distances beyond 200 km. 
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