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1. INTRODUCTION1 

Proper censoring of the weather radar data on the 
National Weather Surveillance Radar – 1988 Doppler 
(i.e., WSR-88D) is essential for the forecasters and 
automated algorithms. Presently, spectral moments at 
each range location are censored (i.e., labeled not 
useful) if the Signal-to-Noise Ratio (SNR) is insufficient, 
or the echoes from the subsequent trips are overlaid. 
Current censoring uses power measurements to 
determine if the SNR is above predetermined threshold 
relative to the noise power (e.g., 2 dB for reflectivity, and 
3.5 dB for velocity mesurements). As part of the NPI 
(NEXRAD Product Improvement) the network of WSR-
88D weather surveillance radars (i.e., NEXRAD) is 
expected to be upgraded to include polarimetric 
capability. The dual-polarization research WSR-88D 
(KOUN) radar was upgraded to simultaneously transmit 
and receive horizontally and vertically polarized waves 
effectively sharing the available power from the 
transmitter between the two channels. Consequently, 
the power of the returned echoes in each channel is 
twice less than in the single-polarization system, thus 
resulting in the 3 dB smaller SNR (Scharfenberg et al., 
2005). This loss has two effects on the spectral 
moments.  First is that more data fall below display and 
processing thresholds and hence are lost. Second is the 
inevitable increase in the errors of estimates. It is quite 
clear that the 3 dB SNR loss has significant impact on 
the data and it becomes imperative to find the 
alternative censoring algorithm which would mitigate 
these adverse effects. 

2. CLASSICAL METHODS FOR HYPOTHESES 
TESTING 

 One of the most commonly used approaches 
applicable to the situation at hand is the likelihood-ratio 
test. A likelihood-ratio test is a statistical test in which 
the ratio is computed between the maximum of the 
likelihood function under the null hypothesis and the 
maximum of the likelihood function under the alternative 
hypotheses. This ratio is then compared against some 
threshold to decide which of the two hypotheses should 
be accepted. The threshold value is tied to some 
constraint, usually a requirement that the probability of 
rejecting the null/alternative hypothesis when 
null/alternative hypothesis is true be acceptable. The 
likelihood ratio test criterion for hypotheses testing is 
given as (Neyman and Pearson, 1933): 
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where [x1,…,xn]T is a vector of observations and 
pθ(x1,…,xn|θi∈Ω) is the distribution function having 
parameters belonging to the Ω subset of  Θ. To apply 
the likelihood-ratio principle we must know the joint pdf 
of the elements of the observations vector V = [Vh(0), 
…,Vh(M-1),Vv(0),…,Vv(M-1)]T from the horizontal and 
vertical channels. It is known that each element is a 
complex Gaussian random variable, thus the pdf is: 

( ) ( )π − − −= −1det expMpdf 1HV C V C V , (2) 

where C is the covariance matrix of size 2M×2M defined 
as: 
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Obviously, the parameters of interest are SNR, v, σv, 
ZDR, ρhv, and φdp. If both signal and noise are present 
these parameters are unknown and the maximum of the 
likelihood function must be found by varying these 
parameters. In the absence of signal, though, the 
parameters are known hence the likelihood function can 
be computed. After a bit of algebra the likelihood ratio 
turns out to be: 
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Because of the Neyman-Pearson lemma this approach 
achieves the maximum Probability Of Detection (POD) 
subject to the constraint that Probability of False Alarm 
(PFA) is less than or equal to ε. 
 Apparently, the likelihood-ratio presents a quite 
appealing candidate for signal detection on the 
NEXRAD network. The important aspect however, is the 
computational intensity of this advanced detection 
scheme. It turns out that calculation of (4) for each set of 
parameters requires 0.33 GFLOP. Current NEXRAD 
signal processor is based on the Sigmet RVP8 which 
features “Dual SMP Pentium processors easily 
upgradeable as faster processors become available” 
(RVP8 specifications). To be on the safe side assume 
these two processors are running at 4 GHz each. At 
peak performance (1 FLOP per each cycle) this 
processor would deliver total of 8 GFLOP of computing 
power. Because numerous calculations of (4) would 
need to be performed (i.e., to find inf), we can readily 
see that the likelihood-ratio approach would be 
extremely demanding on the NEXRAD computing 
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resources to the point that its applicability would not be 
feasible. Consequently, we proceed by pursuing an 
alternative approaches based partly on our knowledge 
of the signal features and partly on intuition. This is 
done having in mind the constraints imposed by the 
current NEXRAD signal processing capabilities. 

3. METHOD EVALUATIONS 

 Main idea behind the approaches investigated in 
the subsequent text is to utilize the weather signal 
coherency in sample-time and across channels to 
improve its detection. Each approach essentially 
consists of comparing the output of some f(Vh(0,τs),…, 
Vh(M-1,τs), Vv(0,τs),…, Vv(M-1,τs)) against a threshold to 
decide if signal is present at range location τs. Complex 
random variables Vh(m,τs), and Vv(m,τs) are obtained by 
sampling voltage echoes in horizontal and vertical 
channels, respectively. Each function f is a combination 
of several core functions that are actually estimates of 
powers, autocorrelations, and cross-correlation in 
horizontal and vertical channel. Because the calculation 
of these functions is needed for generation of spectral 
moments and polarimetric variables, computational 
impact on existing resources is minimal. 
 Numerous combinations of the core functions were 
evaluated through Monte Carlo simulations and the one 
that yielded the best POD vs. PFA is: 

( )ˆ ˆ ˆ ˆ ˆ( ) ( ) (0)h v h v hvP P R T R T R THR+ + + + >  (5) 

It is dubbed the optimal sum. To quantify the 
improvement in signal detection PODs are examined for 
varied SNR, σv and ZDR. Monte Carlo simulations were 
used and the detection threshold was set so that the 
PFA is 10-5. The rationale for choosing this value for the 
PFA stems from the fact that on the average a PPI has 
360*1000 = 360000 points, if PFA is taken to be 10-5 
that would yield only 3.6 false detections per sweep. It is 
important to note, though, that in case of NEXRAD 
surveillance mode (i.e., PRT 1, M = 17) the power 
detection threshold is set to 2 dB above the noise power 
level which yields the PFA of 1.17×10-6. Nonetheless, 
this increase in the PFA, as will be shown later, does 
not obscure the significant weather returns. 

4. COMPARISON WITH THE LIKELIHOOD-RATIO 
HYPOTHESIS TESTING 

 So far, it has been shown that the optimal sum 
yields significant improvement in signal detection 
compared to the standard power based approach. The 
question which naturally arises is that of the maximum 
POD that can be achieved subject to the condition of the 
predetermined PFA. 
 When the distribution parameters are known, 
hypothesis testing using the likelihood-ratio provides the 
most powerful test according to the Neyman-Pearson 
lemma. Consequently, the likelihood-ratio can be used 
as a good benchmark test to evaluate how close the 
detection scheme approaches the maximum detection 
rate. This comparison is shown in Figure 4. Apparently, 
the optimal sum in the current setting does not achieve 
the maximum possible detection rate. Thus, there is a 
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Figure 1. POD for varied SNR. For comparison, the 

optimal sum curve is plotted against the case with no 3 
dB loss, and the 3 dB loss with the threshold 2 dB 

above noise. 
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Figure 2. POD for varied σv. For comparison, the 

optimal sum curve is plotted against the case with no 3 
dB loss, and the 3 dB loss with the threshold 2 dB 

above noise. 
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Figure 3. POD for varied ZDR. 

possibility for further improvement by, for example, 
multiplying the terms with weights (to be found) that 
depend on signal parameters, that is  



( )ˆ ˆ ˆ ˆ ˆ( ) ( ) (0)h v h v hvP P R T R T R THRα β γ+ + + + > .     (6) 
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Figure 4. ML vs optimal sum comparison. 

5. TIME-SERIES IMPLEMENTATION 

 Real data evaluation of the optimal sum was 
performed using the set of dual-polarization time series. 
This set was collected at a PRT of 3.1 ms, with M = 17, 
and at elevation of 0.48 deg. In standard operation, this 
corresponds to surveillance scan with the threshold set 
to 2 dB above noise power. Consequently, this 
threshold will be used in subsequent analysis. To 
simulate the effect of the 3 dB power loss, the noise 
power was doubled in each channel by adding the noise 
samples as follows: 

( ) ( ) ( ) and ( ) ( ) ( )h h h v v vV n V n N n V n V n N n= + = + .    (7) 

Threshold for each approach was set so that the PFA is 
10-5. The original “single-polarization” reflectivity field is 
plotted in     Figure 5. 

 
    Figure 5. The original “single-pol” reflectivity field. 

Adding the additional noise (i.e., doubling the noise 
power), but not changing the threshold, yields the 

reflectivity field as shown in Figure 6. This case is 
equivalent to setting the threshold to -1 dB below the 
total noise power. It is noticeable that many spurious 
speckles have emerged. This is because the PFA has 
increased from 1.17×10-6 to 0.003 (which amounts to 
1080 false detections per scan on the average). 

 
Figure 6. Reflectivity field obtained after doubling the 

noise power, but keeping the same threshold level with 
respect to the original noise power. 

In the reflectivity field for which the threshold is elevated 
to 2 dB above the composite noise level (Figure 7) a 
significant portion of the features on the rim of the 
phenomena has been lost compared to the original field 
(Figure 5).  

 
Figure 7. Reflectivity field obtained after doubling the 

noise power, and increasing the threshold to 2 dB above 
the doubled noise power. 

Application of the optimal sum produces the field in 
Figure 8. Note that most of the low reflectivity perimeter 
features have been recovered. 



 
Figure 8. Reflectivity field obtained after doubling the 
noise power, and using the optimal sum for detection. 

To quantify the performance, various ratios of detections 
are compared in Table 1. These ratios are explained 
next. Let us view the field (in polar coordinates) as a 
matrix of size 360×NRL, where NRL stands for the 
Number of Range Locations. Let MZ stand for the 
original reflectivity matrix where each matrix entry is 
power value at a given location. Let MN(D) stand for the 
matrix with doubled noise power in which each matrix 
entry is 1 if the decision that the signal is present is  
positive, otherwise it is 0. D in the brackets denotes the 
decision test used in determining the matrix entries. 
Then the values in the row termed as the Ratio of total 
detections are calculated as: 
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Greater than operator is binary (1 if true, and 0 if false) 
and is applied to each matrix entry yielding new matrix 
with 0, 1 entries. The operator .* acts as an element-
wise matrix multiplication (same as in MATLAB). The 
num operator gives the total number of 1s in the matrix. 
The Ratio of bounded detections is obtained as: 
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This ratio essentially gives the portion of locations that 
fall below the 2 dB threshold due to the 3 dB loss in 
power, but are still detected using each of the three 
evaluated approaches. The Ratio of additional 
detections is: 
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This ratio gives the portion of bins that are originally 
censored, but are detected as signals using each of the 
three approaches. 
   

D P≥Nh-1dB P≥Nh+2dB OPTIMAL 
SUM 

Ratio of total 
detections 0.982045 0.912165 0.989966 

The Ratio of 
bounded 
detections 

0.800269 0.141154 0.884036 

Ratio of 
additional 
detections 

0.029869 0.000143 0.032996 

Table 1. Time-series statistics. 

 
Figure 9. Reflectivity field when the threshold is lowered 

to -1 dB of the noise power with data previously 
censored in the original field highlighted in white. 

 
Figure 10. Reflectivity field when the optimal sum is 

used for detection with data previously censored in the 
original field highlighted in white. 

 Notice that if the power threshold is -1 dB below 
noise and the optimal sum is used approximately 3% of 
the data that initially were censored are detected as 



signals. In Figure 9 and Figure 10 these additional 
detections are highlighted in white for both cases. 
Observe that additional detections made by the optimal 
sum are predominantly located at the rim of the weather 
system. This gives an additional assurance that the 
majority of these detections are indeed valid weather 
returns. 
6. SUMMARY 

Methods to threshold polarimetric weather radar 
data were investigated. Motivation comes from the 3 dB 
SNR loss in radars that transmit (and receive) 
simultaneously electro magnetic waves at horizontal 
and vertical polarizations. It is very likely that the 
forthcoming dual polarization upgrade of the WSR-88D 
network will employ this technique. Thus it is desirable 
to mitigate the effects of this loss in sensitivity.  It was 
established that the classical likelihood-ratio test (which 
yields the best possible detection rate) is not practical 
for implementation in real-time due to excessive 
computational requirements on the existing signal 
processor. Therefore alternative approaches based on 
combinations of terms needed for estimation of Doppler 
spectral moments and polarimetric variables were 
investigated. A promising one that linearly combines 
powers and auto and cross correlations was chosen for 
evaluation. It is termed the “optimum sum” and its 
performance was compared to the likelihood-ratio and 
was evaluated on radar data. The analysis shows 
satisfactory performance. In addition, it implies that 
better results could possibly be achieved by 
appropriately weighting the terms in the optimal sum. 
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