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Abstract 

The traditional approach with experimental raindrop size data is to use the method of moments in 
the fitting procedure to estimate the parameters for the raindrop size distribution (RSD) function.  How-
ever, the moment method is known to be biased. Therefore, we investigated the L-moment method, 
which is widely used by hydrologists, as an alternative. We applied the L-moment method, along with the 
moment and maximum likelihood (ML) methods, to simulated samples taken from gamma raindrop popu-
lations. A comparison of the bias and the errors involved in the fitting procedures of moments, ML, and 
L-moments shows that with samples covering the full range of drop sizes, ML and L-moments outperform 
the method of moments, and for small sample sizes L-moments outperforms ML.  

The effects of the absence of small drops in the samples (typical disdrometer minimum size 
thresholds are 0.3-0.5 mm) on the fitting procedures are also analyzed. Our results show that missing 
small drops, due to the instrumental constraint, results in a large bias in the case of the L-moment and ML 
fitting methods; this bias did not decrease with increasing sample size. The very small drops have a neg-
ligible contribution to moments of order two or higher, and the bias in the moment methods seems to be 
about the same as in the case of full samples.  
 
1. INTRODUCTION 

 
Knowledge of the raindrop size distribution 

(RSD) is essential in the retrieval of rainfall proper-
ties utilizing radar remote sensing techniques and 
in the understanding of the microphysics involved 
in formation of precipitation. The RSD is usually 
expressed mathematically in terms of a distribution 
function, which expresses the number of drops per 
unit size interval per unit volume of space. 

  
 The most widely used description for the rain-
drop spectrum in space is the size distribution of 
Marshall and Palmer (1948), which is of exponen-
tial form and has two parameters: 

 )exp()( 0 ΛDnDn −= ,    ( 0≥D ) (1) 

where )(Dn  represents the number of raindrops 
per unit diameter interval and per unit volume of 
air, D is the drop diameter, and n0 is the value of  
n(D) for D = 0. In a semi-logarithmic plot, equation 
(1) becomes the graph of a straight line with the 
size (scale) parameter Λ as slope, and n0 as the y-
intercept.  
  
 Ulbrich (1983) and Willis (1984), among oth-
ers, proposed the use of the gamma distribution, 
since it can give a more appropriate description of 
the natural variations of the observed RSDs; in 
addition, the exponential distribution is a special 

case. In general, a gamma RSD can be expressed 
by 

 )exp()( 1 DDnDn λμ −= ,    ( 0≥D ) (2) 

where n1  is related to the raindrop concentration, 
µ is the dimensionless shape parameter, and λ  is 
the size (scale) parameter. For a gamma distribu-
tion, positive (negative) values of the shape pa-
rameter µ indicate concave down (up) shape of 
the drop spectrum. As can be seen from (2), the 
units for n1 are different for a gamma distribution 
than the units for n0  in the exponential distribution 
(1). This can be somewhat confusing, since the 
same symbol n0  is widely used in both expres-
sions. The gamma distribution has been widely 
accepted by the radar meteorology and cloud 
physics communities (e.g. Wong and 
Chidambaram, 1985; Chandrasekar and Bringi, 
1987; Kozu and Nakamura, 1991; Haddad et al., 
1996; Tokay and Short, 1996; Ulbrich and Atlas, 
1998; Zhang et al., 2003), although measurements 
of RSDs show that even the gamma distribution is 
not general enough to adequately represent the 
full range of observed RSDs.  
 
  Measurements of raindrop distributions have 
suggested that the fitted gamma distributions can 
have a wide range of shape parameter values. 
Goddard and Cherry (1984) suggested shape pa-
rameter μ = 5 to be a better representation than μ 
= 0, while Ulbrich and Atlas (1984) found that μ = 
2 is an appropriate value for the shape parameter 
of their observed distributions. Later on, Ulbrich 
and Atlas (1998) found that the shape parameter 
for the measured RSD can vary from -2 ≤ μ  ≤ 5 
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with a median value of zero and a mean of 1.67. 
Kozu and Nakamura (1991) and Tokay and Short 
(1996) presented distributions of estimated µ val-
ues covering a wide range of values. 
 
 One important limitation of disdrometer in-
struments is the effect of censoring the observed 
raindrop size distributions at lower (e.g. some dis-
drometers cannot respond to drops < 0.3 mm) and 
upper (the upper threshold for one electro-
mechanical disdrometer is 5 mm and for one opti-
cal disdrometer is 10 mm) drop diameters. The 
thresholds imposed by the disdrometers generate 
important questions: Should we be concerned 
about the missing small drops in the samples? Are 
important larger drops missing from the observa-
tions? 
 

The goal of the present work is to investigate 
how the L-moment estimators (Hosking and Wal-
lis, 1997) compare with the moment estimators 
that are known to be biased (e.g. Robertson and 
Fryer, 1970; Wallis, 1974; Smith and Kliche, 2005; 
Smith et al., 2007) and with maximum likelihood 
(ML) estimators that are asymptotically unbiased. 
We also investigate how the moment, ML, and LM 
estimators are affected when small drops are 
missing from the samples. 

 
2.  SIMULATION PROCEDURE 

 
The disdrometer measurements of raindrop 

sizes are numerous. From the statistical point of 
view, these samples provide an approximate de-
scription of the populations from which they are 
taken. The methods of fitting analytical expres-
sions on the sample data provide the mathemati-
cal approach needed to describe the underlying 
populations of raindrops. 

   
 The process has to begin with assuming some 
form for the raindrop size distribution function. For 
example, given a measured sample of raindrops, 
one may assume that a gamma distribution should 
describe analytically the raindrop spectrum. The 
next step is to estimate the parameters for the as-
sumed distribution using the sample data. The 
traditional approach with experimental raindrop 
size data has been the use of the method of mo-
ments to estimate the parameters for the RSD; 
because of its mathematical simplicity this method 
is widely used by cloud modelers and radar mete-
orologists.  However, the moment method is bi-
ased (Robertson and Fryer, 1970; Wallis, 1974; 
Haddad et al., 1996, 1997; Smith and Kliche, 
2005). The outcome of this bias is that the esti-

mated parameters obtained using the moments 
method often tend to differ significantly from the 
true values of the population. The great concern is 
that the biased values can lead to wrong conclu-
sions about the features of the RSD being sam-
pled. Consequently, better parameter-fitting meth-
ods such as maximum likelihood (ML) or 
L-moments may be better suited to this problem. 
 

The bias of the method of moments has been 
demonstrated by testing it on known RSD popula-
tions from which repetitive samples are taken 
(Smith and Kliche, 2005; Smith et al., 2007). This 
experiment can be done only through a computer 
simulation of known raindrop populations. There-
fore, we generated simulated gamma raindrop 
populations using a Monte Carlo technique. 

 
In our computer simulation, we defined a di-

mensionless size variable y as the ratio of drop 
diameter over the mass-weighted mean diameter, 
Dm,  

 
mD

Dy =   (3) 

The mass-weighted mean diameter represents the 
mean volume diameter for a raindrop distribution 
and is defined as the ratio between the 4th moment 
and the 3rd moment of the RSD. Dm is a valuable 
quantity for describing RSD, slightly larger than 
the median volume diameter D0, and it also has 
practical uses. For example, Seliga and Bringi 
(1976) showed that differential reflectivity, Zdr, can 
be a function of Dm. This relationship is useful for 
linking an important cloud microphysics quantity, 
Dm, and a measurable radar variable, Zdr. 
 

The normalization (3) is used in the present 
study in order to not be required to keep track of 
the actual raindrop diameters. We classified the 
drop sizes into intervals of Δy = 0.02, which repre-
sents the size classification procedure similar to 
drop-measuring instruments. 

  
Another important step in our computer simu-

lation was to express the gamma RSDs as the 
product between the total raindrop number con-
centration, NT, and the corresponding probability 
density function (PDF) of drop size. In our simula-
tion we also designated NT to be the mean number 
of drops in the sample, so that the results can be 
organized by the value of NT.  The advantage of 
this approach is that it can be interpreted as rep-
resenting an instrument with a sample volume of 
1 m3 (independent of the drop size), and it also 



 

 

applies for a sample volume of α m3 and a mean 
drop concentration of NT /α.  

 
To simulate raindrop sampling for purposes of 

estimating the sampling statistics, we started with 
a Monte Carlo procedure as described for the ex-
ponential case in Smith and Kliche (2005). The 
simulation starts with a selected value of the popu-
lation total number concentration, NT, and draws 
from a Poisson distribution, with that mean value, 
to determine the actual number of drops C in a 
given sample. Then C values of y (normalized 
raindrop diameters) are randomly drawn from the 
population PDF of drop sizes. The sampling from 
any given population and any given sample size 
was repeated for enough trials to obtain useful 
estimates of the sampling distributions of all quan-
tities of interest. The intent is to provide indications 
of the bias and the uncertainty in the estimates of 
the population parameters, based on a single 
sample. A Monte Carlo simulation allows such re-
petitive sampling, and yields the sampling distribu-
tions of the parameter estimates, from which the 
bias and uncertainties can be determined. The 
mean sample sizes we used were 10, 20, 50, 100, 
200, 500 and 1,000 drops. 

 
The size range for the computer-generated 

gamma raindrop populations is 0 < y ≤ 3.0. We 
used about 1,000,000 drops for the simulated 
samples; for example, there were 20,000 samples 
with NT = 50   and 100,000 samples with NT  = 10. 
As the probability of a drop in a gamma PDF with 
shape parameter µ = 2 being larger than y = 3.0 is 
2.76 × 10-6 (and it is even smaller for higher values 
of µ), we are lacking only a few larger drops from a 
full gamma RSD. Two distinct gamma populations 
were generated: one that had the shape parame-
ter equal 2 and another with the shape parameter 
equal 5. Distributions with these two values are 
mentioned in the literature, and it was recom-
mended that the latter one could be even a better 
choice for raindrop samples measured at the 
ground using the disdrometer instruments. 

  
Regardless of the function chosen to repre-

sent the RSD, some means of determining the 
parameters appropriate for any given set of obser-
vations is needed. Apart from fitting by eye, as 
Marshall and Palmer, possibilities include the 
method of moments, the method of maximum like-
lihood (ML), and the L-moment method. 

 
The exponential RSD and the corresponding 

equations for the moment and ML fitting methods 
are discussed in detail in Smith and Kliche (2005), 

Smith et al. (2005), and Kliche et al. (2006). With 
the present paper, we provide the L-moment 
equations and the results for the gamma case. 

 
We applied the moment, ML, and L-moment 

methods for all samples from the computer-
generated gamma raindrop spectra. Since dis-
drometers have instrumental limitations at small 
drop sizes (typically cannot respond to drop sizes 
< 0.3 mm or so), we decided to investigate the 
effect of this problem by withdrawing small drops 
from the simulated samples. We chose to impose 
a threshold and to eliminate from each generated 
sample the drops that have normalized sizes satis-
fying the condition  

 2.0≤=
m

i
i D

Dy   (4) 

In other words, we eliminated drops smaller than 
0.2 mm if Dm = 1 mm or 0.6 mm if Dm = 3 mm. For 
the “censored” samples we applied the same fit-
ting procedure as in the case of full samples.  
  

In the case of the gamma RSD with a shape 
parameter µ = 2, 12% of the drops in the popula-
tion have y ≤ 0.2, so that on average with NT = 50  
six of the drops will be removed from each sample 
by imposing this threshold. For the case of a 
gamma distribution having µ = 5, about 1% of 
drops in the population have y ≤ 0.2, so that on 
average with NT = 50 fewer than one drop is re-
moved from each sample; the samples practically 
remain intact after imposing this threshold. 

 
 The gamma distribution has a more conven-
ient representation in terms of the total drop num-
ber concentration NT (Chandrasekar and Bringi, 
1987). This form was adopted by Smith et al. 
(2005) and Kliche et al. (2006), who also included 
the mass-weighted mean diameter Dm = (μ + 4) /λ, 
as shown below: 
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where the parameters are NT, μ (μ >-1) and 
Dm > 0, and Γ (x) is the gamma function. This form 
can be recognized as the product of the mean to-
tal number concentration, NT, and the gamma 
probability density function (PDF) of drop size. 
Equation (5) is similar to the one recommended by 
Chandrasekar and Bringi (1987), in which we used  
Dm instead of their use of D0. When µ = 0, the 
gamma RSD reduces to the exponential RSD. 
 



 

 

 Another formulation of the gamma RSD involv-
ing NW, which is the concentration parameter nor-
malized with respect to LWC (Bringi and 
Chandrasekar, 2001), is also used by the radar 
community: 
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and NW is an “intercept” or concentration parame-
ter defined by  

 ⎟
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and ρw is the water density. NW is considered to 
have the same meaning as the intercept n0 of an 
equivalent exponential distribution with the same 
water content and same Dm as the gamma RSD 
with form (5) (Bringi and Chandrasekar, 2001). 
Equation (6) changes to the exponential form for 
μ = 0, and NW = n0. 
 
3. PARAMETER-FITTING PROCEDURES  
 

To test the effectiveness of the moment, ML 
and L-moment methods in recovering the parame-
ters of a known gamma RSD, we changed equa-
tion (5) to reflect the normalized drop diameter as 
described in equation (3). The equation used in 
our simulations for gamma RSD is given by 
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3.1 The Moment Method Applied to Gamma 

RSD 
 

The traditional approach with experimental 
RSD data has been to use the method of mo-
ments to estimate the parameters for the RSDs. 
We treat this method first, to provide a basis of 
comparison for the L-moment and ML methods. 
Various combinations of moments calculated 
based on samples from the RSD can be used to 
estimate the parameters of the underlying popula-
tion distributions. For example, in the case of the 
gamma distribution, Szyrmer et al. (2005) used 
zero moment, 3rd moment, and 6th moment in their 
fitting procedure; Smith (1998) suggested the 
combination of 2nd moment, 3rd moment, and 4th 
moment; Ulbrich (1983), Kozu and Nakamura 
(1991), and Tokay and Short (1996) used higher 

moments 3rd, 4th
, and 6th moment, while Ulbrich 

and Atlas (1998) used 2nd, 4th
, and 6th moments in 

their study. 
   
However, the moment method is known to be 

biased (Robertson and Fryer, 1970; Wallis, 1974; 
Haddad et al., 1996, 1997; Smith and Kliche, 
2005; Uijlenhoet et al., 2006), which means that 
the fitted functions often do not correctly represent 
the raindrop populations, and sometimes not even 
the samples. The bias is stronger when higher-
order moments are considered in calculating the 
parameters of the “fitted” functions, and the com-
bination of 2nd, 3rd

, and 4th moments typically gives 
the smallest bias for three-parameter distributions. 
(Although lower-order moments would be desir-
able in such estimations, they can be poorly de-
termined because of instrumental deficiencies.) 

  
 The general form for the moments of a gamma 
RSD (5) can be written as 
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In our simulation we used the normalized form (3) 
for the raindrop diameters, rather than specific 
drop diameters. Therefore, the six sample mo-
ments M1S through M6S  are calculated for each 
sample as normalized sample moments, mi, which 
are defined by 
 i

miiS DmM =  where  

 ∑∑ =⎟⎟
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This format has the advantage of allowing dimen-
sionless expressions for the parameter estimates 
of the RSD, where the actual drop size does not 
have to be included.  The sample values of the 
moments are expected to be unbiased, therefore 
the mean values of the sample moments, MiS, 
should represent the moments of the drop popula-
tion from which we are sampling. 

 The estimated parameters μ̂ ,
λ
λ̂ (or 

m

m
D
D̂ ) and 

TN̂ (or 
W

W
N
N̂ ) - values of dimensional parameters 

normalized by dividing by corresponding popula-
tion value - for the gamma RSD are calculated 
using the expressions given in Appendix A. 
 
 The sampling distributions of sample moments 
from long-tailed RSDs like the gamma are 
skewed; Uijlenhoet et al. (2006) provide details on 



 

 

the mathematical framework to quantify such 
skewness. Figure 1 indicates how this skewness 
varies with the sample size in the case of the me-
dian sample moment M3 and the median sample 
moment M6. The general tendency is for the sam-
ple moments to be lower than the corresponding 
population values, more so for the case µ = 2 than 
the case µ = 5; this behavior is the ultimate cause 
of the bias in the moment methods for estimating 
RSD parameters. The skewness in the sampling 
distributions for the moments increases with the 
order of moment Mi, and decreases with increas-
ing sample size NT and with increasing values of 
µ. With samples of hundreds or thousands of 
drops the skewness may become small enough to 
be negligible.  
 

 
 Figures 2, 3, and 4 show examples of histo-
grams for the estimated gamma parameters, 

mm DD̂ , μ̂ , and WW NN̂ in the case of a gamma 
distribution having µ = 2. Each figure includes re-
sults for both full and censored samples. From 
Figure 2 one can see that Dm tends to be underes-
timated, and the censored case gives essentially 
the same results as the full samples. Figure 3 

shows that the gamma shape parameter (µ) tends 
to be overestimated, and the overestimation for 
the case of censored samples is somewhat larger 
than the case of original samples. 
  

  

 
  

Figure 1: Plot of median values of 3rd sample 
moment M3S (proportional to LWC) and 6th  
sample moment M6S (proportional to Z) versus 
mean sample size; sample moments are nor-
malized with respect to the corresponding 
population value. Gamma µ = 2: black dots 
correspond to M6S values and black squares 
represent M3S values. Gamma µ = 5: red dots 
for M6S and red squares for M3S.  Horizontal 
dashed line indicates the population value. 

Figure 2: Cumulative histograms of normalized 
estimated mass-weighted mean diameter using 
the M2M3M4 set; the censored-sample (red) 
curve is indistinguishable from the full-sample 
curve (black). Population RSD: gamma, µ = 2, 
NT = 50. Vertical dashed line indicates the 
population value. 

Figure 3: Cumulative histograms of estimated 
gamma shape parameter using the M2M3M4 
set; original sample values are shown as a 
continuous black line, and the censored sam-
ple values are shown as a black dotted line. 
Population RSD: gamma, µ = 2, NT = 50. Verti-
cal dashed line indicates the population value. 



 

 

Figure 4 shows the cumulative histogram for 
the normalized values of the concentration pa-
rameter (normalized with respect to LWC) 

WW NN̂ , and demonstrates that it tends to be 
overestimated. The overestimation is essentially 
the same whether full or censored samples are 
considered. 

 
 Table 1 gives the mean, median, and root 
mean square (RMS) error values for each gamma 
estimator using the M2M3M4 set. The values in 
parentheses correspond to the case of censored 
samples. In this table, values for the normalized 
estimated total number concentration, TN̂ , are 
also included, and demonstrate that it tends to be 
underestimated, more so in the case of censored 
samples than in the case of full samples. Normal-
ized mean values different from 1 show that the 

estimated gamma parameters are biased. The 
greatest (relative) bias, and also the largest error, 
occurs for the shape parameter. 
 
 For each sample we calculated the gamma 
RSD parameters using the three moment combi-
nations listed in Appendix A. Figure 5 shows the 
median estimates of μ for the three-moment com-
binations: M2M3M4, M2M4M6, and M3M4M6, for a 
gamma RSD with shape parameter µ = 2, versus 
sample size.  This figure demonstrates again that 
the gamma RSDs “fitted” this way tend to have 
overestimated shape parameters. Figure 5 also 
illustrates how the increase of the skewness with 
the moment order translates into greater biases for 
the estimated parameters when higher-order mo-
ments are used. In the case of the M2M3M4 combi-
nation, the bias is the smallest; consequently, we 
use only the M2M3M4 moments from here on. As 
further illustrated in Figure 5, in the case of a 
gamma population having µ = 5, the estimated 
shape parameter exhibits a smaller bias than in 
the case µ = 2; with µ = 5 the drop-size spectra 
are narrower, the skewness in the distributions of 
mi is reduced, and the bias is less. 
 
  Table 2 includes the mean and RMS error val-
ues of the estimated shape parameter vs. sample 
size for two different population shape parameters. 
These results show that as the sample size in-
creases, the bias and the errors decrease. Thus 
for samples having hundreds or thousands of 
drops from a gamma RSD, the moment estima-
tors’ bias can be small or negligible; therefore, the 
moment estimators may be sufficiently close to the 
true population values. The values in parentheses 
correspond to the censored samples case; the 
bias is again larger, as are the errors, with the 
wider distribution (µ = 2), and less so with the nar-
rower one (µ = 5). 
 

 

Table 1. Normalized Moment estimators for gamma distribution (µ = 2), in the case of the M2M3M4  set. 
Mean sample size NT = 50. Values in parentheses correspond to censored samples. 

Parameter Mean Median RMS Error 
μμ /ˆ  1.90 (2.05) 1.81 (1.94) 1.39 (1.56) 

mm DD /ˆ  0.96 (0.96) 0.93 (0.93) 0.17 (0.17) 

WW NN /ˆ  1.33 (1.32) 1.29 (1.28) 0.62 (0.62) 

TT NN /ˆ  0.93 (0.90) 0.88 (0.85) 0.60 (0.67) 

λλ /ˆ  1.45 (1.50) 1.37 (1.42) 0.73 (0.80) 
 

Figure 4: Cumulative histograms of normalized 
estimated gamma concentration parameter 

WW NN̂  using the M2M3M4 set; the censored-
sample curve (red) is indistinguishable from the 
full-sample curve (black). Population RSD: 
gamma, µ = 2, NT = 50. Vertical dashed line indi-
cates the population value. 



 

 

Table 2: Mean value and RMS error of the estimated shape parameter vs. sample size for two gamma 
distributions. Values in parentheses correspond to censored samples. 

2=μ  5=μ   
NT 

Mean RMS Error Mean RMS Error 

10 8.99 (10.59) 9.85 (19.21) 12.93 (13.08) 12.68 (12.98) 
20 5.79 (6.37) 5.21 (6.03) 8.99 (9.07) 6.30 (6.39) 
50 3.80 (4.11) 2.78 (3.12) 6.77 (6.82) 3.37 (3.42) 

100 3.08 (3.32) 1.91 (2.14) 5.97 (6.00) 2.28 (2.30) 
200 2.64 (2.85) 1.37 (1.54) 5.56 (5.59) 1.61 (1.63) 
500 2.27 (2.44) 0.86 (0.97) 5.22 (5.25) 1.02 (1.04) 

1000 2.17 (2.33) 0.64 (0.73) 5.14 (5.17) 0.79 (0.80) 

 

Based on the results shown for the moment 
estimators for gamma RSD, we can conclude that:  

(a)  the moment estimators are biased: 
 the shape parameter μ tends to be over-
estimated,  

 the scale parameter λ tends to be over-
estimated,  

 the mass weighted mean diameter Dm  
tends to be underestimated,  

 the concentration normalized with re-
spect to LWC, NW , tends to be over-
estimated,  

 the total number concentration NT tends 
to be underestimated,  

(b) the bias in the moment estimators de-
creases with increasing shape parameter 
of the population gamma distribution, 

(c) the bias in moment estimators decreases 
with increasing sample size, 

(d) the case of missing small drops seems to 
have little effect on these estimators.  
 
 

3.2 The L-moment Method Applied to Gamma 
RSD 
 
The L-moment method has apparently not 

been used by radar meteorologists and cloud 
modelers until recently, when a first attempt to use 
this method was done by Kliche et al. (2006). We 
also applied this method for all the computer-
generated raindrop spectra. In a nutshell, the 
L-moments can be explained as follows: consider 
estimating m parameters p1, p2,…,pm of a probabil-
ity density function. Using the method of moments, 
we set 

 
for m values of i, say i = 1, 2, …, m to get m equa-
tions in m unknowns (C is the number of drops in 
the sample). By way of contrast, L-moments pro-
cedures set for the L-moments li  
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knowns. What makes the L-moments procedure 
attractive is that the (sample) L-moments  
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Figure 5: Variation of normalized estimated 
median value of gamma RSD shape parameter 
(population µ = 2, in black), as estimated from 
the indicated sets of three sample moments 
(dots-M2M3M4, triangles-M2M4M6, squares-
M3M4M6) with mean sample size NT. Corre-
sponding values for population shape parame-
ter µ = 5 in red, for the case M2M3M4. Popula-
tion RSD: gamma; horizontal dashed line indi-
cates the normalized population value. 



 

 

For example, for two parameters we need only the 
first two values, 
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are the probability-weighted sample moments: b0 
is the sample mean; b1 is a measure of the disper-
sion of the data values about their mean. Before 
calculating b1, we first order the observations as 
D(1) < D(2) < … < D(C). Then, the ratio of the two 
estimated L-moments is given by 

 00112 /)2(ˆ/ˆ bbbll −=  (13) 
from which an iterative procedure (Hosking 1990) 
yields estimates for the parameters. 
 

Intuitively, one can see that the L-moments 
should outperform the method of moments proce-
dure when two or more parameters are being es-
timated. When using the method of moments, ob-
servations, and in particular outliers, are being 
raised to powers greater than one, magnifying 
their importance in the obtained sample. There is 
no such “inflation” of observations when estimating 
using L-moments. 

 
The L-moment method was applied to the 

gamma RSDs. In the case of the gamma distribu-
tion, to estimate the shape parameter μ̂  using this 
method we solve an equation by iteration as de-
scribed by Hosking (1990) and Bowman and 
Shenton (1988), and as shown in Kliche et al. 
(2006). In the case of the gamma distribution 
given  in (5), the work of Hosking (1990) estab-
lishes that  
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where Γ is the gamma function and l1,l2 are the 
first two L-moments as defined above. Equations 
(11) give the estimated first and second 
L-moments (which are unbiased estimates of l1,l2) 
expressed in terms of the probability-weighted 
sample moments b0, b1. This suggests estimating 
μ  by Lμ̂ (the L-moments estimate of μ ) which 
satisfies  
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Using (12),  
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The left side of (15) can be calculated using equa-
tion (16); the middle form is appropriate for ex-
perimental data, while the last form is used in our 
simulations. The shape parameter estimate is then 
calculated from (15) by iteration using recursion. 
Once the shape parameter is determined, the es-
timator for the scale parameter is calculated from  
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The estimated gamma PDF must obey the rela-
tionship ( ) ( )LmLL D̂/4ˆˆ += μλ , so 
 
  ( ) ( ) ( )1ˆ/4ˆˆ ++= LLLm DD μμ  (18) 
 
 In the simulations, we obtain normalized esti-
mates of these dimensional parameters by divid-
ing by the respective population values and using 

( ) mD/4+= μλ  : 
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 Since there is no L-moment estimator for the 
mean total number concentration parameter, we 
used the ML estimator for TN̂ , namely the sample 
size C. 
 
 Figure 6 (left) shows the moment estimator for 
shape parameter μ and (right) the L-moment 
shape parameter estimator for a gamma popula-
tion with μ = 2 and the mean sample size of 
NT = 50.  The original sample case is shown in 
blue and the censored sample case is shown in 



 

 

red. Figure 6 demonstrates that while the moment 
estimator tends to overestimate µ, the L-moment 
estimator gives results close to the true population 
value in the case of original samples. The situa-
tion, however, changes dramatically when the 
case of censored samples is considered: the 
L-moment estimator is substantially overestimating 
the population value. 
  
 Figure 7 shows the corresponding histograms 
for the moments (left) and the L-moment (right) 
shape parameter estimator  for the gamma popu-
lation having μ = 5. The censored samples have 
less effect when the population RSD has a shape 
parameter μ = 5 than in the case of μ = 2.  This is 
due to the fact that for μ = 5 the distribution is nar-
rower and shifted more to the right, which implies 
fewer small drops in this RSD.  

Table 3 gives the normalized estimated mean 
values for the cases shown in Figures 6 and 7, 
and the corresponding values for the normalized 
mass-weighted mean diameter and scale parame-
ter. The values for censored samples are shown in 
parentheses.  

 
Table 4 shows the variation of L-moment es-

timated shape parameter for the gamma RSDs 
studied as a function of sample size. The bias de-
creases with increasing size of the sample, and 
becomes negligible for samples having NT ≥ 100. 
The L-moments biases are smaller, and less sen-
sitive to missing small drops. 

 
 
 
 
 
 
 
 

 
 

Figure 6: (left) Cumulative histograms of esti-
mated shape parameter using the M2M3M4 set: 
original sample values are shown in blue 
(mean = 3.8), and the censored sample values 
are shown in red (mean = 4.1). (right) Cumula-
tive histograms of estimated shape parameter 
using L-moments: in blue (mean = 2.10) for 
original samples, and in red for censored sam-
ples (mean = 3.45). Population RSD: gamma, 
µ = 2, NT = 50. Vertical dashed line indicates 
the population value. 

Figure 7: (left) Cumulative histograms of esti-
mated shape parameter using the M2M3M4 set: 
original sample values are shown in blue 
(mean = 6.77), and the censored sample val-
ues are shown in red (mean = 6.81). (right) 
Cumulative histograms of estimated shape pa-
rameter using L-moments: in blue (mean = 
5.19) for original samples, and in red for cen-
sored samples (mean = 5.48). Population RSD: 
gamma, µ = 5, NT = 50. Vertical dashed line 
indicates the population value. 



 

 

Table 3. Comparison of moment and L-moment normalized mean estimator values for two gamma RSDs 
(NT = 50).Values in parentheses correspond to censored samples. 

μ = 2 μ = 5  
Parameter 

432 MMM  L-moment 432 MMM  L-moment 

μμ /ˆ  1.9 (2.05) 1.05 (1.72) 1.35 (1.36) 1.04 (1.1) 

mm DD /ˆ  0.96 (0.96) 1.01 (0.94) 0.98 (0.98) 1.01 (1.0) 

λλ /ˆ  1.45 (1.50) 1.04 (1.36) 1.26 (1.26) 1.0 (1.08) 

  
Table 4. L-moment estimated shape parameter mean, median and RMS error values for the two gamma 
RSDs as a function of the sample size. Values in parentheses correspond to censored samples. 

2=μ  5=μ   
TN  

Mean Median RMS Error Mean Median RMS error 

10 2.26 (3.76) 2.01 (3.35) 1.32 (2.63) 6.51 (6.84) 5.11  (6.35) 6.18 (5.71) 

20 2.26 (3.76) 2.01 (3.35) 1.32 (2.63) 5.52 (5.84) 5.01 (5.32) 2.57 (2.73) 

50 2.10 (3.45) 2.01 (3.32) 0.68 (1.76) 5.20 (5.49) 5.01 (5.30) 1.36 (1.47) 

100 2.04 (3.36) 2.00 (3.29) 0.45 (1.51) 5.09 (5.38) 5.00 (5.30) 0.91 (1.01) 

200 2.03 (3.34) 2.01 (3.32) 0.31 (1.42) 5.05 (5.33) 5.03 (5.30) 0.61 (0.71) 

500 2.01 (3.30) 2.00 (3.28) 0.19 (1.33) 5.01 (5.29) 5.00 (5.28) 0.39 (0.49) 

1000 2.00 (3.29) 2.00 (3.29) 0.14 (1.31) 5.01 (5.29) 5.00 (5.28) 0.27 (0.40) 

 
 
These results demonstrate that   

a)  the L-moment estimators are biased, but 
their bias is smaller than the bias of the 
moment estimators (and also, from com-
parison with Table 5, smaller than that of 
the ML estimators): 
 the L-moment shape parameter is 
slightly overestimated; 

 the L-moment mass-weighted mean di-
ameter and scale parameter are also 
slightly overestimated; 

b) the L-moment estimator’s bias decreases 
with increasing shape parameter for the 
population RSD; 

c) the L-moment estimator’s bias decreases 
with increasing sample size; 

d)  the case of missing small drops affects the 
L-moment estimators by showing an in-
crease in the bias of the estimators, but to 
a lesser extent than the ML estimators. 

 
3.3 The Maximum Likelihood (ML) Method 

 
Another approach with experimental RSD data 

would be to use the maximum likelihood (ML) 
method to estimate the parameters for the RSDs. 
The likelihood function represents a fundamental 
concept in statistical inference, and it indicates 
how likely a particular population is to produce an 
observed sample. Mathematically speaking, ML 
estimators are expected to be asymptotically unbi-
ased. Thom (1958) included the approximate solu-
tions of the maximum likelihood equations for the 
gamma distribution using an asymptotic approach. 
Choi and Wette (1969) published a numerical 
technique using the maximum likelihood method to 
estimate the parameters of the gamma distribution 
and did the first published test of the bias of the 
ML estimates.  Mielke (1976) introduced a rapidly 
converging iterative procedure to determine the 
ML parameter estimates for the gamma distribu-



 

 

tion.  The ML method advocated by Haddad et al. 
(1996, 1997) should provide more accurate esti-
mates of the RSD parameters than the moment 
estimators, even though the ML estimators have 
some bias (Choi and Wette, 1969). Nevertheless, 
its use by the radar community and cloud model-
ers seems to be quite limited (Haddad et al., 1996, 
1997; Cho et al., 2004; Smith et al., 2005; Kliche 
et al., 2006).   

 
 The ML method was applied for the two 
gamma populations of µ = 2 and µ = 5, for various 
sample sizes. Appendix B gives the steps and the 
equations used in estimating the gamma parame-
ters. Table 5 shows the ML estimated shape pa-
rameter mean, median and RMS error values for 
the two gamma RSDs studied as a function of 
sample size. The ML estimator shows some bias 
for small samples, but the bias diminishes with 
increasing sample size to become essentially neg-
ligible for large samples (NT > 100). In the case of  

censored samples, however, the ML estimator 
values have large biases which decrease little with 
increasing sample size. This effect is less serious 
for the narrower distribution (μ = 5) containing 
fewer very small drops. 

Based on the results shown in Table 5 and 
others not shown here, we can conclude that:  

a)  the ML estimators have some biases, with 
complete samples 
 the shape parameter is slightly overes-
timated; 

 the scale parameter is slightly overesti-
mated.  

 the mass-weighted mean diameter is 
slightly underestimated; 

b)  the ML estimator’s bias decreases with in-
creasing population RSD shape parame-
ter, and with increasing sample size; 

c) in the case of full samples, the bias of the 
ML estimators is smaller than the bias of 
the moment estimators, but a bit greater 
than that of the L-moment estimators. 

d)  the case of missing small drops seems to 
strongly affect the ML estimators, showing 
a marked increase in the bias of the esti-
mators. 

 
 
 
 
 

 
 

Table 5. ML estimated shape parameter mean, median and RMS error values for the two gamma RSDs 
as a function of the sample size. Values in parentheses correspond to censored samples. 

2=μ  5=μ   

TN   
Mean 

 
Median 

 
RMS Error 

 
Mean 

 
Median 

 
RMS Error 

10 3.43 (6.13) 2.56 (4.69) 4.25 (6.88) 7.94 (8.26) 6.19 (6.62) 7.93 (7.01) 

20 2.53 (4.57) 2.26 (4.13) 1.45 (3.34) 6.04 (6.52) 5.48 (5.95) 2.87 (3.12) 

50 2.18 (3.97) 2.09 (3.84) 0.67 (2.20) 5.37 (5.82) 5.19 (5.63) 1.40 (1.59) 

100 2.08 (3.80) 2.04 (3.74) 0.43 (1.91) 5.17 (5.62) 5.08 (5.54) 0.90 (1.09) 

200 2.04 (3.75) 2.02 (3.73) 0.30 (1.81) 5.09 (5.54) 5.07 (5.50) 0.60 (0.81) 

500 2.01 (3.69) 2.01 (3.67) 0.18 (1.71) 5.02 (5.47) 5.01 (5.45) 0.37 (0.60) 

1000 2.00 (3.67) 2.00 (3.67) 0.13 (1.68) 5.01 (5.50) 5.01 (5.45) 0.26 (0.56) 



 

 

4.   COMPARISON OF ESTIMATORS  

 
4.1 Complete Samples (samples have the full 
range of drop sizes) 

 
Cumulative histograms of the estimated shape 

parameter for original samples using the moment, 
ML and L-moment fitting methods for the case of 
μ = 2 and small sample sizes (NT = 10) are shown 
in Figure 8. The moment estimator gives the 
greatest bias (overestimation); the ML estimator is 
also biased, but not as much as the moment esti-
mator; the L-moment estimator gives the smallest 
bias of the three.  

 

Figure 9 shows the cumulative histograms of 
estimated shape parameter for complete samples 
using the three fitting methods in the case of me-
dium sample sizes, NT = 50. The moment method 
still gives the greatest bias (overestimation); ML 
and L-moment estimators give the closest results 
to the population value, both slightly overestimat-
ing. The L-moment method again gives the best 
estimation.  

 
Figure 10 shows the same graph as in Figure 

9, but in the case of a gamma distribution having 
μ = 5. From comparing Figures 9 and 10, it is ob-
vious that the results for the two gamma distribu-
tions studied are comparable. Table 6 gives ex-
amples of the mean estimated shape parameter 

values for the three fitting procedures in the case 
of the two gamma distributions studied. Normal-
ized values different from 1 indicate biased esti-
mates. 

 

 Figure 8: Cumulative histograms of the esti-
mated gamma shape parameter using the 
moment, ML and L-moment methods in the 
case of small sample sizes: moments in black 
(mean = 8.98); ML in red (mean = 3.43); 
L-moment in blue (mean = 2.73). Population 
RSD: gamma, μ = 2, NT = 10. Vertical dashed 
line indicates the population value. 

Figure 9: Cumulative histograms of the esti-
mated gamma shape parameter using the 
moment, ML and L-moment methods in the 
case of medium sample sizes: moments in 
black (mean = 3.80); ML in red (mean = 2.18); 
L-moment in blue (mean = 2.09).  Population 
RSD: gamma, μ = 2, NT = 50. Vertical dashed 
line indicates the population value. 

Figure 10: Cumulative histograms of the esti-
mated gamma shape parameter using the 
moment, ML and L-moment methods in the 
case of medium sample sizes: moments in 
black (mean = 6.77); ML in red (mean = 5.37); 
L-moment in blue (mean = 5.19).  Population 
RSD: gamma, μ = 5, NT = 50. Vertical dashed 
line indicates the population value. 



 

 

 

Table 6. Mean estimated shape parameter values for the gamma RSDs studied (NT = 50). 

2=μ  5=μ   
Estimated parameter Mean 

Value 
Normalized 

Mean 
Mean 
Value 

Normalized 
Mean 

Moment μ̂  3.8 1.9 6.77 1.35 

ML μ̂  2.18 1.09 5.37 1.07 

L-moment μ̂  2.09 1.05 5.19 1.04 
 
 
Comparing the normalized values of the 

means for the three estimators as shown in Table 
6, one can see that L-moment and ML methods 
give superior results to moment estimators, with 
slightly better results given by the L-moment 
method in the case of medium sample sizes. 

For large sample sizes (NT = 1000), Figure 11 
shows the cumulative histograms of the estimated 
shape parameter for the original samples. All three 
fitting methods give essentially correct results, with 
the moment method slightly overestimating. The 
L-moment and ML estimators give the best esti-
mation with smaller scatter.  

 

 
Figure 12, taken from Kliche et al. (2006), 

shows the variation of median value of the gamma 
RSD shape parameter with mean sample size for 
the three fitting methods analyzed. Superiority of 
the L-moments and ML methods is evident. One 

important feature shown is that the L-moment 
method gives superior results to the ML method 
for small sample sizes, and it is not much influ-
enced by the sample sizes. 

 
 

In addition, Figure 13 shows the variation of 
the median value of the second parameter for the 
gamma distribution, i.e., mass-weighted mean di-
ameter mD̂ , with NT, for the case of the three fit-
ting methods analyzed. Several features are sig-
nificant in this figure:  

• The moment estimated mass-weighted 
mean diameter mD̂   has a strong tendency 
to underestimate; this tendency decreases 
with the increase of the sample size.  

Figure 11: Cumulative histograms of the esti-
mated gamma shape parameter in the case of 
large sample size: moments in black (mean = 
2.17); ML in red (mean = 2.00); L-moments in 
blue (mean = 2.00). Population RSD: gamma, 
μ = 2, NT = 1000. Vertical dashed line indicates 
the population value. 

Figure 12: Variation of median value of 
gamma RSD estimated shape parameter using 
the method of moments (in black) for the case 
of M2M3M4 combinations, the method of maxi-
mum likelihood (in red) and the method of L-
moments (in blue). Population RSD: gamma, 
μ = 2, case of original samples. Horizontal dash 
line indicates population value. 

NT 



 

 

• L-moment and ML estimators also tend to 
underestimate for small sample sizes, but 
the bias decreases rapidly for medium and 
large sample sizes (NT ≥ 50).  

• The L-moment estimator gives the best 
results and seems to not be affected as 
much as the ML and moment estimators 
by the sample size. 

 

 

 
4.2 Censored samples (small drops missing in 

the samples) 
 

The case of missing small drops from the 
samples was also investigated. The same mini-
mum drop-size threshold (Equation 4) was applied 
to all original samples and smaller drops were dis-
carded. In this case, a comparison of the gamma 
shape parameter estimators for medium sample 
sizes (NT = 50) is shown in Figure 14. As noted 
earlier, the L-moment and ML estimators are 
strongly affected by the absence of small drops. 
All the estimators now tend to overestimate the 
shape parameter, but the moment method is still 
inferior.  For the gamma distribution with μ = 5, a 
similar comparison is shown in Figure 15. Here the 
effect on the L-moment and ML estimators is less 
pronounced, because there are fewer small drops 
in the narrower distribution. 

Figure 13: Variation of median value of gamma 
RSD normalized estimated mass-weighted mean 
diameter using the method of moments (in black) 
for the case of M2M3M4 combinations, the method 
of maximum likelihood (in red) and the method of 
L-moments (in blue). Population RSD: gamma,     
μ = 2, case of complete samples. Horizontal dash 
line indicates population value. 

Figure 14: Cumulative histograms of the 
gamma shape parameter estimators in the 
case of censored samples for medium sam-
ple size; moments in black (mean = 4.11); 
ML in red (mean = 3.97); L-moments in blue 
(mean = 3.45).  Population RSD: gamma,  
μ = 2, NT = 50. Vertical dash line indicates 
the population value. 

Figure 15: Cumulative histograms of the esti-
mated gamma shape parameter in the case of 
censored samples: moments in black (mean = 
6.81); ML in red (mean = 5.82); L-moments in 
blue (mean = 5.48). Population RSD: gamma, 
μ = 5, NT = 50. Vertical dash line indicates the 
population value. 



 

 

The mean shape parameter values for the 
three fitting methods are provided in Table 7 below 
for the sample case having NT = 50. As shown by 
the normalized values in this table, all the estima-
tors are biased in the case of censored samples. 
However, the largest bias is still given by the mo-
ment method, followed by ML and L-moments re-
spectively. This bias decreases with increased 
value of the shape parameter of the raindrop 
population. 

 
From these results one can conclude: 
a) the L-moment and ML methods are very 

sensitive to small drops missing from the 
samples for the gamma μ = 2 distribution; 
the bias in this case is comparable to the 
bias in the moment method. 

 
b) For the gamma μ = 5 distribution, which is 

narrower, none of the estimators are as 
much affected by the small drops missing; 
in this case both L-moments and ML give 
superior results to the moment method, 
with L-moments giving slightly better re-
sults than ML. 
 

Figure 16 illustrates the changes for the me-
dian estimated shape parameter μ̂  with increas-
ing sample size, while Figure 17 shows the varia-
tion of median estimated mass-weighted mean 
diameter mD̂  with increasing sample size. The 
mean values for the two parameters follow similar 
tendencies. 

 
 

Figure 17: Variation of normalized median 
estimated mass-weighted mean diameter 
using the method of moments (in black) for 
the case of M2M3M4 combinations, the 
method of maximum likelihood (in red) and 
the method of L-moments (in blue). Popu-
lation RSD: gamma, μ = 2, case of cen-
sored samples. Horizontal dash line indi-
cates population value. 

Table 7. Mean estimated shape parameter values for the gamma RSDs studied in the case of cen-
sored samples and NT = 50. 

2=μ   (y > 0.2) 5=μ   (y > 0.2)  
Estimated parameter Mean 

Value 
Normalized 

Mean 
Mean 
Value 

Normalized 
Mean 

Moment μ̂  4.11 2.05 6.81 1.36 

ML μ̂  3.96 1.98 5.82 1.16 

L-moment μ̂  3.45 1.73 5.48 1.10 
 

Figure 16: Variation of the median estimated 
shape parameter values using the method of 
moments (in black) for the case of M2M3M4 
combinations, the method of maximum likeli-
hood (in red) and the method of L-moments 
(in blue). Population RSD: gamma, μ = 2, 
case of censored samples. Horizontal dash 
line indicates population value. 
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From both figures and Table 7 one can con-
clude that, in the case of censored samples,  

• the bias in the L-moment and ML estima-
tors is large and does not decrease much 
with increasing sample size;  

• the moment method, although it has much 
stronger bias at small and medium sample 
sizes than the L-moment and ML, actually 
gives superior results as the sample size 
increases into hundreds of drops. This be-
havior for the case of the moment method 
is not surprising, since the moments used 
in the estimation of the gamma parame-
ters (M2M3M4) are not sensitive to very 
small drops. Also, as the sample size in-
creases, the probability of having larger 
drops in the sample increases, and these 
larger drops are the ones that contribute 
the most to the higher moments used in 
such estimations (M2M3M4). 

 
 

5. CONCLUSIONS FOR THE GAMMA  
DISTRIBUTIONS 
 

The main goal for the present work was to 
evaluate the biases and uncertainties in estimating 
the parameters of population raindrop size distri-
bution functions from individual samples drawn 
from those populations using the L-moment 
method. The populations of raindrops from which 
samples are collected are unknown; therefore, it is 
hard to estimate which fitting method gives the 
best results based on direct disdrometer meas-
urements. Therefore, the present attempt used the 
approach of building computer-simulated raindrop 
populations and then randomly extracting samples 
from these populations. Various fitting procedures 
were applied to estimate parameters for the two 
gamma distributions studied (μ = 2) and (μ = 5). 
The L-moments method was applied for the first 
time, and the results were compared to the ones 
obtained with the moment method and the maxi-
mum likelihood method. The resulting sampling 
statistics provided the basis for our comparison 
and estimation of biases and uncertainties. 

 
The L-moment parameters for gamma distri-

butions have the smallest bias of the three fitting 
methods studied (moments, ML, L-moments). In 
the case of the gamma RSDs, the L-moments es-
timator’s bias is small and decreases with increas-
ing shape parameter (narrower) for the population 
RSDs; it does not seem to be much affected by 
the sample size, outperforming the ML estimators 
for all cases studied.  

 In the case of censored samples, the 
L-moment method has strong sensitivity (compa-
rable to the ML method) for all raindrop popula-
tions studied. The bias in the L-moment estimated 
parameters remains small for small samples, and 
is practically zero for larger sample sizes, in the 
case of the narrower RSDs, but the bias is sub-
stantial for all sample sizes in the case of the 
wider RSDs. 
 

When samples covering the complete range of 
drop sizes are available, the best fitting method is 
the L-moment method, followed closely by the ML 
method, with moment methods being the last one 
on the performance scale. The bias is practically 
zero using the L-moment method for the original 
samples, and it is not dependent on the sample 
size. The moment approach is acceptable only 
when large sample sizes (order of 1000 drops or 
more) are available.  

 
A different picture for the L-moment and ML 

estimators emerges when small drops are not in-
cluded in the samples (censored samples). Our 
results show that both methods are very sensitive 
to the missing small drops, and that their results 
are not reliable in such applications, especially for 
the case of wider RSDs. This behavior does not 
change even with increasing size of the samples. 
However, in the case of some narrower RSDs, the 
L-moment and ML methods can still give results 
sufficiently close to the population values. Overall, 
in the case of censored samples, the moment 
method gives the best results for all RSDs studied, 
especially when large sample sizes are available. 

 
These results are applied to real data col-

lected with instrumentation on board the T-28 re-
search aircraft and discussed in Kliche et al. 
(2007b). 
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APPENDIX A – Moment Method Estimators 
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APPENDIX B – Maximum Likelihood Method 
 

With the general form of the gamma distribu-
tion given in equation (5), the gamma PDF can be 
represented as a two-parameter density function: 
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The ML method is described below as it is shown 
in Smith et al. (2005) and Kliche et al. (2006). If we 
consider the above gamma PDF and recall that 

( ) mD/4+= μλ , then the likelihood function is 
given by: 
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where C  is the number of drops in the sample. 
 
 First we calculate the natural log of the 
likelihood function: 
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The scale parameter λ  for the gamma RSD is 

estimated by taking the derivative 0ln
=

∂
∂
λ
L , from 

which we obtain ( )
D
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λ  where 

D is the arithmetic mean of the drop diameters. 



 

 

Using ( ) mD4+= μλ to express the population 
value of λ , and taking note of (3) we get the nor-
malized ML equation for the scale parameter: 
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Using ( ) ( )MLmMLML D̂4ˆˆ += μλ  we obtain the nor-
malized mass-weighted mean diameter’s equa-
tion: 
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Maximizing with respect to μ, 0ln
=

∂
∂
μ
L , the follow-

ing expression for the shape parameter is ob-
tained: 
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where ψ  is the “psi” or “digamma” function defined 

by
)(
)(')(

x
xx

Γ
Γψ = . The denominator on the right-

hand side of (24) can be recognized as the geo-
metric mean diameter. By substituting (3), equa-
tion (24) can be rewritten for the simulations as 
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where iy  is the corresponding dimensionless size 
for each drop in the simulated sample and y is the 
arithmetic mean. The maximum likelihood esti-
mate for the shape parameter is then obtained by 
solving (25) by iteration using recursion, as de-
scribed in Bowman and Shenton (1988): 
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with starting value  
z

z
4

3/411
1

++
=α  where 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛= ∏ =

CC

i iyyz
/1

1
/  until the sequence con-

verges to α. Then the maximum likelihood value 
for the shape parameter is given by 1ˆ −= αμML .  

 
 However, to implement the iterative pro-
cedure it is necessary to evaluate the digamma, or 
“psi”, function in the equation (26). For this task we 
use a method proposed by Moody (1967), and 
follow the steps: 
 
 a. Apply the identity 

 )(1)1( x
x

x ψψ +=+  

(repeatedly if necessary) to reduce the digamma 
calculation to computing )1( +xψ  with x between 
0 and 1. 
 
 b.  Then use 
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where 
 

i 
ic  

1 +0.64493313 

2 -0.20203181 

3 +0.08209433 

4 -0.03591665 

5 +0.01485925 

6 -0.00472050 
 
and ...01532860615772156649.0=γ  is Euler’s 
constant. This approximation is good to within 

8103.1 −×  for .10 ≤≤ x  
 
 The ML estimator of the third parameter 
for the gamma distribution, NT, is given by the total 
number of drops in the sample, C. 
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