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Abstract 
 The parameter-fitting method of L-moments is applied to measurements of raindrop sizes collected 
with the two-dimensional cloud probe (2D-C) instrument on the T-28 research aircraft. We consider expo-
nential, gamma, and lognormal approximations of the observed size distributions. The results for the fitted 
parameters obtained from these observations are compared with results from the alternative methods of 
moments or maximum likelihood, and with computer-simulated results. 
 
1.  Introduction 
 

To describe analytically a raindrop spectrum 
collected, one has to assume first a certain 
mathematical distribution that could be appropriate 
to describe the raindrop population from which the 
sample was taken. The raindrop size distribution 
(RSD) is expressed in terms of a distribution func-
tion n(D), which represents the number of drops 
per unit size interval per unit volume of space. 

  
 The most used description for the raindrop 
spectrum in space is the size distribution of Mar-
shall and Palmer (1948), which is of exponential 
form and has two parameters: 
 

 )exp()( 0 ΛDnDn −= , ( 0≥D ) (1) 

 
where D is the drop diameter,  n0 is the value of 
n(D) for D = 0 and Λ is the scale (size) parameter. 
In a semi-logarithmic plot, equation (1) becomes 
the graph of a straight line with Λ as slope and n0  
as the y-intercept.  However, the exponential dis-
tribution is not able to describe the variety of the 
observed spectra (Waldvogel and Joss, 1970; 
Waldvogel, 1974; Joss and Gori, 1978; Ulbrich, 
1983; Steiner and Waldvogel, 1987; Tokay et al., 
2002; Lee and Zawadzki, 2005). Use of the 
gamma distribution (Ulbrich, 1983; Willis, 1984), 
which seemed to give a more appropriate descrip-
tion of the natural variations of the observed 
RSDs, was therefore proposed (the exponential 
distribution is a special case). A gamma RSD can 
be expressed by 

 )exp()( 1 DDnDn λμ −= ,    ( 0≥D ) (2) 

 
where n1  is related to the raindrop concentration, 
µ is the dimensionless shape parameter of the 
distribution, and λ  is the scale parameter. The 
gamma distribution is widely accepted by the radar 
meteorology and cloud physics communities (e.g. 
Wong and Chidambaram, 1985; Chandrasekar 
and Bringi, 1987; Kozu and Nakamura, 1991; 
Haddad et al., 1996; Tokay and Short, 1996; Ul-
brich and Atlas, 1998; Zhang et al., 2003), al-
though measurements of RSDs show that even 
the gamma distribution is not general enough to 
represent adequately the full range of observed 
RSDs. 
  

Feingold and Levin (1986) used another func-
tion to represent RSD, i.e., the three-parameter 
lognormal distribution. The lognormal distribution 
is related to the normal distribution through the 
fact that it involves a logarithmic transformation of 
the data, with the assumption that the resulting 
transformed data are described by a normal distri-
bution (Wilks, 1995; Cerro et al., 1997). In terms of 
raindrop diameters, the lognormal distribution can 
be written as 
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where NT is the total number concentration; Dg is 
the scale parameter, which represents the geo-
metric mean of the raindrop diameters (or median 
diameter) and is defined by 
  
 ( ) ( )[ ]DEDg lnln = . (4) 

The dimensionless shape parameter, σln , is the 
standard deviation of the natural log of the rain-
drop diameters (standard geometric deviation) and 
is defined by 
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 ( )[ ]2lnlnln gDDE −=σ . (5) 

Typically, in statistical literature the notation for the 
lognormal shape parameter is σ  rather than σln , 
but the meaning is the same with (5). 
  

Regardless of the function chosen to repre-
sent the RSD, some means of determining the 
parameters appropriate for any given set of obser-
vations is needed. Apart from fitting by eye, as in 
Marshall and Palmer (1948), possibilities include 
the method of moments, the method of maximum 
likelihood (ML), and the L-moment method. These 
three methods and the corresponding equations in 
 the case of the gamma distribution are discussed 
in detail in Kliche et al. (2007a).  

 

2. Data 
 

During T-28 Flight 817 (28 July 2003), the 
precipitation particles were imaged with a PMS 
optical array probe (2D-C). This probe produces 
shadow images of precipitation-size particles with 
a vertical window height of 0.8 mm and a pixel 
resolution of 0.025 mm. A brief discussion of the 
T-28 probe is given in Detwiler and Hartman 
(1991). One important limitation of this probe is its 
poor sampling capability in the diameters range 
< 0.2 mm (due to optical and resolution problems) 
as well as in the larger sizes due to the small vol-
ume sampling capability (0.05 m3/km). This probe 
performed well during this flight, and an example 
of the recorded data is shown in Figure 1. 

 
This research flight originated in Greeley, in 

the northeast corner of the state of Colorado, 
USA, in the western High Plains of North America. 
The terrain is rolling short grass prairie. The target 
of the flight was a disorganized group of thunder-
storms with echo tops reaching 12 km MSL. The 
aircraft conducted a series of passes through rain 
shafts at an altitude of 3 km MSL, roughly 1.5 km 
AGL and just below cloud base. Cloud base tem-
perature was 10 0C and the temperature at flight 
level was about 12 0C. Polarimetric radar showed 
peak echo magnitudes of 50 dBZ, and Zdr ranging 
from zero to one dB, at altitudes above the 0 0C 
level. A distinct bright band was visible at 4.7 km 

MSL (3.2 km AGL) in the stratiform regions down-
shear of the convective cores. These observations 
are consistent with precipitation formation in the 
convective region producing the rainshafts by the 
growth of graupel through the riming of ice crystals 
and crystal aggregates, with melting to rain below 
cloud.  

 
We selected one minute of the data collected, 

from 21:44:29 to 21:45:31 UTC. We considered 
samples each taken during 5 seconds of flight, i.e. 
about 500 meters traveled by the T-28 aircraft. A 
total of 13 samples were acquired from the data 
collected during the one minute interval. We se-
lected only particles that were equal to or greater 
than 3 pixels in size (i.e., 0.075 mm or larger); we 
refer to the samples as being “censored.” The di-
ameters for particles that were only partially im-
aged by the probe were determined based on an 
algorithm described in Detwiler and Hartman 
(1991). The effective sample volume varies with 
the particle diameter, but the data have not yet 
been adjusted to account for that fact. Table 1 
shows the number of drops collected, and the 
minimum and maximum drop diameter, for each 
sample. The sample sizes correspond (with only 
one exception) to the medium sample size classi-
fication (20 ≤ NT < 100), based on the classifica-
tion described in Kliche et al. (2006). 

 
3.  Method of Analysis  

 
The process has to begin with assuming some 

form for the drop size distribution function, say, 
exponential, gamma or logarithmic. For example, 
given a measured sample of drops, one may as-
sume that an exponential distribution should de-
scribe analytically the raindrop spectrum. The next 
step is to estimate the parameters for the as-
sumed distribution using the sample data.  

 
The traditional approach with experimental 

RSD data has been to use the method of mo-
ments to estimate the parameters for the RSDs. 
The moments calculated from the sample data can 
be used to estimate the parameters of the as-
sumed underlying exponential (or gamma or log-
normal) distributions. In Kliche et al. (2007a) the 
three-moment combinations M2M3M4, M2M4M6 and 

Figure 1: Example of the 2D-C recorded data during T-28 Flight 817 (28 July 2003). The duration for 
this buffer was 1.003 s and the distance traveled by the airplane during this time is about 100 m. 

Buffer image: from 21:45:17.996 to 21:45:18.999  Duration: 1.003 s  Distance: 100 m 



 

 

M3M4M6, where Mi represents the ith moment of 
the distribution, are discussed in detail, and the 
corresponding equations for the gamma estima-
tors are also given. The exponential case is pre-
sented in detail in Smith and Kliche (2005) and 
Smith et al. (2005). 

 
However, the moment method is known to be 

biased (Robertson and Fryer, 1970; Wallis, 1974; 
Haddad et al., 1996, 1997; Smith and Kliche, 
2005; Uijlenhoet et al., 2006), which means that 
the fitted functions often do not correctly represent 
the raindrop populations, and sometimes not even 
the samples. Smith and Kliche (2005), Smith et al. 
(2005), Kliche et al. (2006) and Kliche et al. 
(2007a) describe that the skewness in the sam-
pling distributions of the RSD moments is the main 
cause for this bias. The bias is stronger when 
higher-order moments are considered in calculat-
ing the parameters of the “fitted” functions, and the 
combination of 2nd, 3rd

, and 4th moments typically 
gives the smallest bias for three-parameter distri-
butions. (Although lower-order moments would be 
desirable in such estimations, they can be poorly 
determined because of instrumental deficiencies.)  

 
A second approach with experimental RSD 

data would be to use the maximum likelihood (ML) 
method to estimate the parameters for the RSDs. 
For the exponential distribution the ML method is 
equivalent to the moment method (if the zeroth 
and first moments are used); in the case of the 
gamma or lognormal distribution, the calculation of 
the maximum likelihood estimators requires more 
effort. The steps to be followed in using this 
method and the corresponding equations for the 

gamma distribution are given in Kliche et al. 
(2007a). 

   
A third approach with the data would be to use 

the L-moment method (Hosking and Wallis, 1997), 
which has been used for the first time for RSDs by 
Kliche et al. (2006). The L-moment approach is 
typically superior to ML with small samples. The 
corresponding equations for the gamma RSD case 
are given in Kliche et al. (2007a).  In the case of 
the exponential distribution the moment (with M0 
and M1), ML and L-moment methods are identical 
(Hosking and Wallis, 1997). 

 
We applied each of these methods for the 13 

samples listed in Table 1. We assumed that the 
samples come from drop populations that can be 
described by an exponential, gamma or lognormal 
RSD.  

 
4.  Results for Assumed Exponential  
Distributions 

Table 2 gives the mean, median, and standard 
deviation values for the 13 scale parameter esti-
mates using the moment, ML and L-moment 
methods, in the case of assuming that the drop 
samples came from exponential RSD. Comparing 
the values obtained for the scale parameter, it is 
obvious that higher order moments give larger es-
timates; according to Smith and Kliche (2005), the 
best moment estimators are ones derived using 
the lower order moments. In the case of ML or L-
moment estimators, the expectation is to get re-
sults with essentially no bias for samples of these 
sizes (Kliche et al., 2006). Those estimators also 
yield the smallest standard deviation.  

Table 1: Summary of the T-28 Raindrop Samples 

 
Sample  

# 

Number 
of drops 

Minimum 
Diameter 

[mm] 

Maximum  
Diameter 

[mm] 

 
Sample 

# 

Number 
of drops 

Minimum 
Diameter 

[mm] 

Maximum 
Diameter 

[mm] 
1 44  0.075  2.875  8 87 0.075 2.550 

2 78 0.075 3.756 9 67 0.075 1.750 

3 32 0.075 0.900 10 81 0.075 3.381 

4 100 0.075 2.350 11 80 0.075 2.800 

5 107 0.075 2.075 12 95 0.075 2.375 

6 67 0.075 1.156 13 18 0.075 4.450 

7 99 0.075 4.100     

 



 

 

A probability plot for the combined samples 
using the exponential distribution model is shown 
in Figure 2. The data plotted against this distribu-
tion, if valid, are expected to give an approximately 
straight line; any departure from the straight line is 
an indicator of the departure from this distribution. 
Three blue lines which are very close to each 
other in this figure show the fitted distribution (cen-
ter blue line) and the 95% confidence intervals 
(blue lines to the left and right of the center blue 
line). The points to the right of the blue lines, in the 
lower half of the plot, indicate that there are fewer 
data in the small diameter region than one would 
expect based on the exponential distribution. The 
points to the right of the lines, in the upper half of 
the plot, indicate that there are more data in the 
large diameter region than expected. The output 
table on the right side of the graph gives the mean 
drop size of 0.423 mm (for the N = 955 drops), the 
Anderson-Darling (AD) test statistic value of 
18.794 and p-value < 0.003. 

 
We calculated the probability plot correlation 

coefficient (PPCC), which is also a measure of the 
goodness of the fit, for the exponential distribution 
having the scale parameter of 2.365 mm-1 (inverse 
of the mean value indicated in Figure 2). The 
value for the PPCC in this case is 0.979.  

 
5.  Results for Assumed Gamma Distributions 

 
In the case of assuming that the drop samples 

came from gamma RSDs, Table 3 summarizes the 
corresponding estimated values for the shape and 
scale parameters using the methods of moments, 
maximum likelihood and L-moments. The results 
for the gamma case appear consistent with our 

findings (see also Kliche et al., 2007a) that the 
moment estimators give substantial bias, when 
compared to ML or L-moments; the bias is larger 
when higher order moments are used in the esti-
mators. In addition, the standard deviations when 
ML or L-moments are applied are much smaller 
than in the case of the moment estimators. The 
findings of Kliche et al. (2006) suggest that the 
shape parameter of the gamma distribution tends 
to be overestimated by all methods; the ML and L-
moment methods give superior results to moment 
estimators, with slightly better results given by the 
L-moment method with these sample sizes. For 
the samples collected, the L-moment estimators 
indicate that the shape parameter is about zero 
(even after adjusting for sample-volume varia-
tions), which would correspond to the special case 
of the gamma distribution, i.e., exponential distri-
butions. However, the probability plot for the ex-
ponential model (Fig. 2) seems to disagree with 
the findings through the L-moment estimator. 

 
The probability plot for the gamma distribution 

model is shown in Figure 3. In the lower half of the 
plot to the right of the blue lines, the red points 
indicate that there are fewer data in the left tail 
than one would expect based on the gamma dis-
tribution. The points to the right of the lines, in the 
upper half of the plot, indicate that there are more 
data in the right tail than expected. The output ta-
ble on the upper right corner of the graph gives the 
estimated parameters: the estimated shape pa-
rameter is 198.0ˆ =μ , and the estimated scale 

parameter is 833.2ˆ =λ , the Anderson-Darling test 
statistic value is 20.765 and p-value  
< 0.005, for the sample of 955 drops. In this case 
the calculated PPCC value is 0.972. 

Table 2:  Mean, median and standard deviation of the estimated scale parameters (mm-1) for expo-
nential distributions using the moment, ML and L-moment methods. The first column lists the moment 
pair used for the moment estimates.  

Estimator Mean Median Standard Deviation 

32MM  2.25  2.26  1.08  

43MM  2.44 2.36 1.29 

63MM  2.76 2.53 1.51 

moment-L/ML  2.46 2.33 0.55 

 



 

 

Figure 2: Probability plot of the data (red) against an assumed exponential distribution. The three blue 
lines represent the fitted distribution (centered blue line) and the confidence interval lines (to the right 
and left of the centered line). Population RSD: assumed to be exponential. The “D-censored” refers to 
the sample having drop diameter D ≥ 0.075 mm. 

Table 3: Mean, median and standard deviation of the estimated shape ( )μ̂  and, in parentheses, scale 

( )λ̂ parameters for the gamma distributions using the moment, ML and L-moment methods. 

Estimator Mean Median Standard Deviation 

432 MMM  2.12   (3.97)  1.21   (2.75)  2.95   (3.90) 

642 MMM  6.80   (6.71) 3.89   (4.50) 9.53   (7.40) 

643 MMM  18.94   (10.72) 6.02   (5.37) 42.10   (13.27) 

ML  0.27   (3.22) 0.23   (2.87) 0.25   (1.22) 

momentL −  -0.01   (2.51) -0.01   (2.19) 0.27   (1.08) 

 



 

 

  

   With the data shown in the probability plots 
for exponential and gamma approximations, one 
could conclude that the measured raindrop sample 
probably cannot be approximated by either expo-
nential or gamma distributions. However, the fit 
shown in Figure 2 seems to be superior to the one 
shown in Figure 3. The left tail in Figure 2 is 
caused by a lack of sufficient small drops in the 
data, but it is also due to the truncation imposed 
by us for the smaller drop diameters (D ≥ 0.075), 
and by the pixel quantification of the drop sizes. 

 

6.  Results for Assumed Lognormal  
Distributions 

Similarly, we assumed that the population 
from which the samples were taken could be de-
scribed by the lognormal function (3). Table 4 
gives the mean, median, and standard deviation 
values for the shape and scale estimators using 
the methods of moments, maximum likelihood and 
L-moments. In the case of the lognormal distribu-
tion (Kliche, 2007), the ML and L-moment meth-
ods should give results without significant bias. 

Figure 3: Probability plot of the data (red) against an assumed gamma distribution. The three blue 
lines represent the fitted distribution (centered blue line) and the confidence interval lines (to the 
right and left of the centered line). The shape parameter estimate given in the box is ( μ̂1+ ), and 

the scale parameter estimate is λ̂1 . Population RSD: assumed to be gamma. The “D-censored” 
refers to the sample having drop diameter D ≥ 0.075 mm. 

Table 4: Mean, median and standard deviation of the estimated shape ( )σ̂ln  and, in parentheses, 

scale ( )gD̂  parameters for the lognormal distribution using the moment, ML and L-moment methods. 

Estimator Mean Median Standard Deviation 

432 MMM  0.45   (1.02)  0.46   (0.75) 0.09   (0.75) 

642 MMM  0.34   (1.34) 0.35   (1.01) 0.08   (0.89) 

643 MMM  0.29   (1.56) 0.30   (1.10) 0.08   (0.99) 
ML  0.93   (0.27) 0.90   (0.27) 0.09   (0.05) 

momentL −  0.98   (0.26) 0.96   (0.26) 0.12   (0.05) 



 

 

The mean value for the shape parameter from 
the ML and L-moment methods in Table 4 is about 
0.9-1.0, which represents a wide lognormal distri-
bution with a very long tail to the right. This means 
that the distribution function (3) would have to be 
truncated at some realistic maximum diameter, 
and the estimators recalculated accordingly. The 
widest lognormal distribution discussed by Kliche 
(2007) had a shape parameter of 0.5; therefore, 
for the purpose of this work, only the gamma dis-
tribution form was studied in further detail. 

 
7. Results for Individual Samples 

 
For each 5 s sample we consider here, the 

gamma RSD parameters were calculated using 
the two moment combinations, M2M3M4, and 
M3M4M6, as well as the ML and L-moment estima-
tors. Figure 4 shows a comparison of cumulative 
histograms of the estimates of the scale parameter 
λ for a gamma RSD.  This and the next figure 
demonstrate how the increase of the sampling 
skewness with the moment order translates into 
greater biases for the estimated parameters when 
higher-order moments are used. The M2M3M4 
combination seems to agree well with the ML or 
L-moment estimators, except for two samples. 

  

 
 

The corresponding cumulative histograms for 
the estimated gamma shape parameter ( μ̂ ) are 
given in Figure 5.  This figure demonstrates again 
that larger bias is given by using higher order mo-
ments. Based on our findings (Kliche, 2007), both 
the ML and L-moment estimators should be the 
closest to the true population value; they suggest 
a value not far different from zero (i.e., an expo-
nential RSD) for each individual sample.  

 
8.  Results for Composite Sample 

 
Figure 6 gives the composite histogram of all 

the drops from the samples collected during the 
one minute flight segment (955 drops). Overlaid 
distributions correspond to the estimated RSD pa-
rameters using the L-moment, ML and moment 
methods. The continuous red line corresponds to 
the M3M4M6 case, the continuous green line, dot-
ted red line and dash-dot red line (which all coin-
cide) correspond to ML, M2M3M4 and M2M4M6 re-
spectively. The blue line corresponds to the L-
moments case. Even though the curves differ, it 
appears from this figure, that all the estimators 
give comparable results over the range of sizes 
included in the analysis. This is not a surprise, 
since the composite sample (from adding all 13 
samples collected during one minute of T-28 flight) 
consisted of 955 drops. Based on the results de-
scribed in Kliche et al. (2007a), when large 
enough samples are available the three fitting 

Figure 4: Cumulative histograms of estimated 
gamma scale parameter, λ̂ , using the M2M3M4 
set (black), M3M4M6 set (red), ML (green) and 
L-moments (blue). Population RSD: assumed 
to be gamma. 

Figure 5: Cumulative histograms of estimated 
gamma shape parameter, μ̂ , using the M2M3M4 
set (black), M3M4M6 set (red), ML (green) and 
L-moments (blue). Population RSD: assumed 
to be gamma. 



 

 

methods are expected to give comparable results. 
A suitable goodness-of-fit test would be needed to 
discriminate among these estimators. 

 

 
9.  Correlation Issues 

 
The correlations between the sample mo-

ments and the maximum drop diameter Dmax in the 
sample were the first correlations investigated. 
Figure 7 shows an example of such correlation, for 
the case of the 6th moment (proportional to reflec-
tivity factor); these are individual samples, not 
necessarily from the same population, but a simi-
lar correlation with nearly identical correlation co-
efficient showed up in the simulations of repetitive 
sampling from an exponential RSD with mean 
sample size 100 drops (Kliche, 2007).  

 
The sample moments are also correlated with 

each other; Figure 8 shows such a correlation be-
tween the 3rd and 6th sample moments. The 
slope of this relationship would correspond to an 
exponent 2.44 in the “Z-W” relationship, but this 
“relationship” may be due here only to the variabil-

ity in the samples taken from a common raindrop 
population. 

  

 

 

 
The correlations of the various sample mo-

ments with the maximum drop size in a sample, 
and the associated correlations between mo-
ments, lead to correlation of the “fitted” gamma 
parameters with the maximum drop size. Figure 9 
shows the correlation between the mass-weighted 

Figure 6: Histogram corresponding to the T-28 
data collected during 21:44:29 to 21:45:31 UTC 
(955 drops); curves using the gamma PDF 
function (Kliche et al., 2007a) from the parame-
ters using the L-moment ( )01.0ˆ −=LMμ ,  
ML ( )27.0ˆ =MLμ  and moment (shape parame-
ter: M2M3M4 = 2.12; M2M4M6 = 6.8; M3M4M6 = 
18.94) fitting methods.  

Figure 7: Scatter plot of 6th sample moment 
values versus the maximum drop diameter in 
the sample; the correlation coefficient is 0.971.  

Figure 8: Scatter plot of 3rd versus 6th sam-
ple moment values; the correlation coefficient 
is 0.972.  



 

 

mean diameter estimates ( )mD̂  and the maximum 
drop diameter in the samples. This figure provides 
a comparison between the estimated values using 
the moments M3M4M6  with ones from the ML and 
L-moment estimators.  

 

 
A second example of such correlations is 

shown in Figure 10 for the normalized concentra-
tion parameter WN̂  (defined in Bringi and 
Chandrasekar, 2001) and the maximum drop size 
in the sample. The correlations in the case of the 
ML and L-moment estimators are weaker than in 
the case of the moment estimators. 

 
Correlations also exist between the estimated 

parameters; results from simulations of repetitive 
sampling (Kliche, 2007) suggest that one should 
be very cautious in inferring any physical relation-
ships between such “fitted” parameters. Figure 11 
gives examples of such correlations between the 
mass-weighted mean diameter ( )mD̂  versus total 

number concentration ( )TN̂ , in the case of  M2M3M4  

and  M3M4M6  estimators as compared to the ML 
and L-moment estimators. The ML and L-moment 
estimators are correlated, but their correlation is 
weaker than in the case of the moment estimators, 
and is not significant under an assumption of nor-
mally-distributed residuals. 

Figure 9: Scatter plot of estimated mass-weighted 
mean diameter ( )mD̂  versus the maximum diame-
ter in the samples:  M3M4M6  (black, r = 0.959), ML 
(red, r = 0.763), L-moments (green, r = 0.799).  

Figure 10: Scatter plot of the estimated nor-
malized concentration parameter ( )WN̂  ver-
sus the maximum diameter in the samples:  
M3M4M6  (black, r = -0.878), ML (red,  
r = -0.578), LM (green, r = -0.606). Popula-
tion RSD: assumed to be gamma. 

Figure 11: Scatter plot of the estimated total 
number concentration parameter ( )TN̂  versus 

the mass-weighted mean diameter ( )mD̂ :  
M2M3M4  (black, r = -0.527), M3M4M6  (red, 
r = -0.780) ML (green, r = -0.231),  
L-moments (blue, r = -0.351). Population 
RSD: assumed to be gamma. 



 

 

 

Special attention needs to be given to experi-
mental data when such correlations are investi-
gated. In many occasions one or two points in the 
scatter plot can affect this correlation dramatically. 
We show such an example for the case of the 
M3M4M6 estimators, λ̂  vs. μ̂ , in Figure 12. The 
correlation coefficient in this case is calculated to 
be 0.705. However, a careful look into this graph 
shows two experimental points well separated 
from the main cluster; these points correspond to 
the “outlier” cases in Figures 4 and 5. Figure 13 
shows the same graph as in Figure 12, with the 
two outlying points removed. Now the correlation 
is not significant. 

 

For the L-moment and ML estimators, the λ̂  
vs. μ̂  correlation still exists and there is no indica-
tion of outlier points. Figure 14 gives the corre-
sponding scatter plot for these estimators, show-
ing a correlation of about 0.9. Simulation results in 
Kliche (2007) show similar correlation coefficients 
for the ML and L-moment, λ̂  vs. μ̂  estimators, 
arising from repetitive sampling from the same 
population. 

 

Figure 12: Scatter plot of the estimated 
M3M4M6  scale parameter λ̂  vs.  M3M4M6  

shape parameter μ̂ ; the correlation coeffi-
cient is r=0.705.  Population RSD: assumed 
to be gamma. All 13 samples considered. 

Figure 13: Scatter plot of the estimated 
M3M4M6   scale parameter  λ̂  vs.  μ̂  shape 
parameter. Correlation coefficient is 0.284. 
Only 11 samples considered. 

Figure 14: Scatter plot of the estimated scale 
parameter  λ̂  vs.  shape parameter μ̂ : ML  
(r = 0.899) in black; L-moments (r = 0.902) in 
red. Population RSD: assumed to be gamma. 
All 13 samples are considered. 



 

 

10.  Conclusions 
 
The main goal for the present work was to ap-

ply the L-moments method described in Kliche et 
al. (2007a) to real raindrop data collected during 
T-28 Flight 817, and to compare the results with 
findings from those simulations. The L-moments 
method was applied, and the results were com-
pared to the ones obtained with the moment 
method and the maximum likelihood method. 

  
As shown in Kliche et al. (2007a), the L-

moment parameters for gamma distributions have 
the smallest bias of the three fitting methods stud-
ied (moments, ML, L-moments). The results for 
the real data used in this study appear to be con-
sistent with those simulation results. The least bi-
ased estimators suggest that these raindrop size 
distributions, observed just below cloud base at 
about 12 0C, are approximately exponential. 
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