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Abstract
The parameter-fitting method of L-moments is applied to measurements of raindrop sizes collected
with the two-dimensional cloud probe (2D-C) instrument on the T-28 research aircraft. We consider expo-
nential, gamma, and lognormal approximations of the observed size distributions. The results for the fitted
parameters obtained from these observations are compared with results from the alternative methods of
moments or maximum likelihood, and with computer-simulated results.

1. Introduction

To describe analytically a raindrop spectrum
collected, one has to assume first a certain
mathematical distribution that could be appropriate
to describe the raindrop population from which the
sample was taken. The raindrop size distribution
(RSD) is expressed in terms of a distribution func-
tion n(D), which represents the number of drops
per unit size interval per unit volume of space.

The most used description for the raindrop
spectrum in space is the size distribution of Mar-
shall and Palmer (1948), which is of exponential
form and has two parameters:

n(D) = ny exp(-AD), (D>0) (D)

where D is the drop diameter, ng is the value of
n(D) for D = 0 and A is the scale (size) parameter.
In a semi-logarithmic plot, equation (1) becomes
the graph of a straight line with A as slope and ng
as the y-intercept. However, the exponential dis-
tribution is not able to describe the variety of the
observed spectra (Waldvogel and Joss, 1970;
Waldvogel, 1974; Joss and Gori, 1978; Ulbrich,
1983; Steiner and Waldvogel, 1987; Tokay et al.,
2002; Lee and Zawadzki, 2005). Use of the
gamma distribution (Ulbrich, 1983; Willis, 1984),
which seemed to give a more appropriate descrip-
tion of the natural variations of the observed
RSDs, was therefore proposed (the exponential
distribution is a special case). A gamma RSD can
be expressed by

n(D) = n,D* exp(-AD), (D>0) )
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where n; is related to the raindrop concentration,
u is the dimensionless shape parameter of the
distribution, and 4 is the scale parameter. The
gamma distribution is widely accepted by the radar
meteorology and cloud physics communities (e.g.
Wong and Chidambaram, 1985; Chandrasekar
and Bringi, 1987; Kozu and Nakamura, 1991;
Haddad et al., 1996; Tokay and Short, 1996; Ul-
brich and Atlas, 1998; Zhang et al., 2003), al-
though measurements of RSDs show that even
the gamma distribution is not general enough to
represent adequately the full range of observed
RSDs.

Feingold and Levin (1986) used another func-
tion to represent RSD, i.e., the three-parameter
lognormal distribution. The lognormal distribution
is related to the normal distribution through the
fact that it involves a logarithmic transformation of
the data, with the assumption that the resulting
transformed data are described by a normal distri-
bution (Wilks, 1995; Cerro et al., 1997). In terms of
raindrop diameters, the lognormal distribution can
be written as

2
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where Nr is the total number concentration; Dy is
the scale parameter, which represents the geo-
metric mean of the raindrop diameters (or median
diameter) and is defined by

In(D, )= E[In(D)). )

The dimensionless shape parameter,Ino, is the
standard deviation of the natural log of the rain-
drop diameters (standard geometric deviation) and
is defined by



Ino = JE[InD-InD, P|. (5)

Typically, in statistical literature the notation for the
lognormal shape parameter is o rather thanIno,
but the meaning is the same with (5).

Regardless of the function chosen to repre-
sent the RSD, some means of determining the
parameters appropriate for any given set of obser-
vations is needed. Apart from fitting by eye, as in
Marshall and Palmer (1948), possibilities include
the method of moments, the method of maximum
likelihood (ML), and the L-moment method. These
three methods and the corresponding equations in
the case of the gamma distribution are discussed
in detail in Kliche et al. (2007a).

2. Data

During T-28 Flight 817 (28 July 2003), the
precipitation particles were imaged with a PMS
optical array probe (2D-C). This probe produces
shadow images of precipitation-size particles with
a vertical window height of 0.8 mm and a pixel
resolution of 0.025 mm. A brief discussion of the
T-28 probe is given in Detwiler and Hartman
(1991). One important limitation of this probe is its
poor sampling capability in the diameters range
< 0.2 mm (due to optical and resolution problems)
as well as in the larger sizes due to the small vol-
ume sampling capability (0.05 m3/km). This probe
performed well during this flight, and an example
of the recorded data is shown in Figure 1.

This research flight originated in Greeley, in
the northeast corner of the state of Colorado,
USA, in the western High Plains of North America.
The terrain is rolling short grass prairie. The target
of the flight was a disorganized group of thunder-
storms with echo tops reaching 12 km MSL. The
aircraft conducted a series of passes through rain
shafts at an altitude of 3 km MSL, roughly 1.5 km
AGL and just below cloud base. Cloud base tem-
perature was 10 °C and the temperature at flight
level was about 12 °C. Polarimetric radar showed
peak echo magnitudes of 50 dBZ, and Z4 ranging
from zero to one dB, at altitudes above the 0 °C
level. A distinct bright band was visible at 4.7 km

MSL (3.2 km AGL) in the stratiform regions down-
shear of the convective cores. These observations
are consistent with precipitation formation in the
convective region producing the rainshafts by the
growth of graupel through the riming of ice crystals
and crystal aggregates, with melting to rain below
cloud.

We selected one minute of the data collected,
from 21:44:29 to 21:45:31 UTC. We considered
samples each taken during 5 seconds of flight, i.e.
about 500 meters traveled by the T-28 aircraft. A
total of 13 samples were acquired from the data
collected during the one minute interval. We se-
lected only particles that were equal to or greater
than 3 pixels in size (i.e., 0.075 mm or larger); we
refer to the samples as being “censored.” The di-
ameters for particles that were only partially im-
aged by the probe were determined based on an
algorithm described in Detwiler and Hartman
(1991). The effective sample volume varies with
the particle diameter, but the data have not yet
been adjusted to account for that fact. Table 1
shows the number of drops collected, and the
minimum and maximum drop diameter, for each
sample. The sample sizes correspond (with only
one exception) to the medium sample size classi-
fication (20 < Ny < 100), based on the classifica-
tion described in Kliche et al. (2006).

3. Method of Analysis

The process has to begin with assuming some
form for the drop size distribution function, say,
exponential, gamma or logarithmic. For example,
given a measured sample of drops, one may as-
sume that an exponential distribution should de-
scribe analytically the raindrop spectrum. The next
step is to estimate the parameters for the as-
sumed distribution using the sample data.

The traditional approach with experimental
RSD data has been to use the method of mo-
ments to estimate the parameters for the RSDs.
The moments calculated from the sample data can
be used to estimate the parameters of the as-
sumed underlying exponential (or gamma or log-
normal) distributions. In Kliche et al. (2007a) the
three-moment combinations M,M;M,, M,M,Mg and

Buffer image: from 21:45:17.996 to 21:45:18.999 Duration: 1.003 s Distance: 100 m
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Figure 1: Example of the 2D-C recorded data during T-28 Flight 817 (28 July 2003). The duration for
this buffer was 1.003 s and the distance traveled by the airplane during this time is about 100 m.




Table 1: Summary of the T-28 Raindrop Samples

Number Minimum Maximum Number | Minimum | Maximum
Sample | of drops | Diameter Diameter Sample | of drops | Diameter | Diameter
# [mm] [mm] # [mm] [mm]
1 44 0.075 2.875 8 87 0.075 2.550
2 78 0.075 3.756 9 67 0.075 1.750
3 32 0.075 0.900 10 81 0.075 3.381
4 100 0.075 2.350 11 80 0.075 2.800
5 107 0.075 2.075 12 95 0.075 2.375
6 67 0.075 1.156 13 18 0.075 4.450
7 99 0.075 4.100

MsM,Ms, where M; represents the ith moment of
the distribution, are discussed in detail, and the
corresponding equations for the gamma estima-
tors are also given. The exponential case is pre-
sented in detail in Smith and Kliche (2005) and
Smith et al. (2005).

However, the moment method is known to be
biased (Robertson and Fryer, 1970; Wallis, 1974,
Haddad et al., 1996, 1997; Smith and Kliche,
2005; Uijlenhoet et al., 2006), which means that
the fitted functions often do not correctly represent
the raindrop populations, and sometimes not even
the samples. Smith and Kliche (2005), Smith et al.
(2005), Kliche et al. (2006) and Kliche et al.
(2007a) describe that the skewness in the sam-
pling distributions of the RSD moments is the main
cause for this bias. The bias is stronger when
higher-order moments are considered in calculat-
ing the parameters of the “fitted” functions, and the
combination of 2™, 3 and 4™ moments typically
gives the smallest bias for three-parameter distri-
butions. (Although lower-order moments would be
desirable in such estimations, they can be poorly
determined because of instrumental deficiencies.)

A second approach with experimental RSD
data would be to use the maximum likelihood (ML)
method to estimate the parameters for the RSDs.
For the exponential distribution the ML method is
equivalent to the moment method (if the zeroth
and first moments are used); in the case of the
gamma or lognormal distribution, the calculation of
the maximum likelihood estimators requires more
effort. The steps to be followed in using this
method and the corresponding equations for the

gamma distribution are given in Kliche et al.
(2007a).

A third approach with the data would be to use
the L-moment method (Hosking and Wallis, 1997),
which has been used for the first time for RSDs by
Kliche et al. (2006). The L-moment approach is
typically superior to ML with small samples. The
corresponding equations for the gamma RSD case
are given in Kliche et al. (2007a). In the case of
the exponential distribution the moment (with M,
and M), ML and L-moment methods are identical
(Hosking and Wallis, 1997).

We applied each of these methods for the 13
samples listed in Table 1. We assumed that the
samples come from drop populations that can be
described by an exponential, gamma or lognormal
RSD.

4. Results for Assumed Exponential
Distributions

Table 2 gives the mean, median, and standard
deviation values for the 13 scale parameter esti-
mates using the moment, ML and L-moment
methods, in the case of assuming that the drop
samples came from exponential RSD. Comparing
the values obtained for the scale parameter, it is
obvious that higher order moments give larger es-
timates; according to Smith and Kliche (2005), the
best moment estimators are ones derived using
the lower order moments. In the case of ML or L-
moment estimators, the expectation is to get re-
sults with essentially no bias for samples of these
sizes (Kliche et al., 2006). Those estimators also
yield the smallest standard deviation.



Table 2: Mean, median and standard deviation of the estimated scale parameters (mm™) for expo-
nential distributions using the moment, ML and L-moment methods. The first column lists the moment

pair used for the moment estimates.

Estimator Mean Median Standard Deviation
M,M, 2.25 2.26 1.08
M;M, 244 2.36 1.29
MsMq 2.76 2.53 1.51
ML/L - moment 2.46 2.33 0.55

A probability plot for the combined samples
using the exponential distribution model is shown
in Figure 2. The data plotted against this distribu-
tion, if valid, are expected to give an approximately
straight line; any departure from the straight line is
an indicator of the departure from this distribution.
Three blue lines which are very close to each
other in this figure show the fitted distribution (cen-
ter blue line) and the 95% confidence intervals
(blue lines to the left and right of the center blue
line). The points to the right of the blue lines, in the
lower half of the plot, indicate that there are fewer
data in the small diameter region than one would
expect based on the exponential distribution. The
points to the right of the lines, in the upper half of
the plot, indicate that there are more data in the
large diameter region than expected. The output
table on the right side of the graph gives the mean
drop size of 0.423 mm (for the N = 955 drops), the
Anderson-Darling (AD) test statistic value of
18.794 and p-value < 0.003.

We calculated the probability plot correlation
coefficient (PPCC), which is also a measure of the
goodness of the fit, for the exponential distribution
having the scale parameter of 2.365 mm™ (inverse
of the mean value indicated in Figure 2). The
value for the PPCC in this case is 0.979.

5. Results for Assumed Gamma Distributions

In the case of assuming that the drop samples
came from gamma RSDs, Table 3 summarizes the
corresponding estimated values for the shape and
scale parameters using the methods of moments,
maximum likelihood and L-moments. The results
for the gamma case appear consistent with our

findings (see also Kliche et al., 2007a) that the
moment estimators give substantial bias, when
compared to ML or L-moments; the bias is larger
when higher order moments are used in the esti-
mators. In addition, the standard deviations when
ML or L-moments are applied are much smaller
than in the case of the moment estimators. The
findings of Kliche et al. (2006) suggest that the
shape parameter of the gamma distribution tends
to be overestimated by all methods; the ML and L-
moment methods give superior results to moment
estimators, with slightly better results given by the
L-moment method with these sample sizes. For
the samples collected, the L-moment estimators
indicate that the shape parameter is about zero
(even after adjusting for sample-volume varia-
tions), which would correspond to the special case
of the gamma distribution, i.e., exponential distri-
butions. However, the probability plot for the ex-
ponential model (Fig. 2) seems to disagree with
the findings through the L-moment estimator.

The probability plot for the gamma distribution
model is shown in Figure 3. In the lower half of the
plot to the right of the blue lines, the red points
indicate that there are fewer data in the left tail
than one would expect based on the gamma dis-
tribution. The points to the right of the lines, in the
upper half of the plot, indicate that there are more
data in the right tail than expected. The output ta-
ble on the upper right corner of the graph gives the
estimated parameters: the estimated shape pa-
rameter is £=0.198, and the estimated scale

parameter is 1 =12.833, the Anderson-Darling test
statistic  value is 20.765 and p-value
< 0.005, for the sample of 955 drops. In this case
the calculated PPCC value is 0.972.
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Figure 2: Probability plot of the data (red) against an assumed exponential distribution. The three blue
lines represent the fitted distribution (centered blue line) and the confidence interval lines (to the right
and left of the centered line). Population RSD: assumed to be exponential. The “D-censored” refers to
the sample having drop diameter D > 0.075 mm.

Table 3: Mean, median and standard deviation of the estimated shape ([1) and, in parentheses, scale

(j)parameters for the gamma distributions using the moment, ML and L-moment methods.

Estimator Mean Median Standard Deviation

M,M,M, 212 (3.97) 121 (2.75) 2.95 (3.90)

M,M, M, 6.80 (6.71) 3.89 (4.50) 9.53 (7.40)

M,M M 18.94 (10.72) 6.02 (5.37) 42.10 (13.27)
ML 0.27 (3.22) 0.23 (2.87) 0.25 (1.22)

L — moment -0.01 (2.51) -0.01 (2.19) 0.27 (1.08)
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Figure 3: Probability plot of the data (red) against an assumed gamma distribution. The three blue
lines represent the fitted distribution (centered blue line) and the confidence interval lines (to the

right and left of the centered line). The shape parameter estimate given in the box is (1+[1), and

the scale parameter estimate is ]//7? Population RSD: assumed to be gamma. The “D-censored”
refers to the sample having drop diameter D > 0.075 mm.

With the data shown in the probability plots
for exponential and gamma approximations, one
could conclude that the measured raindrop sample
probably cannot be approximated by either expo-
nential or gamma distributions. However, the fit
shown in Figure 2 seems to be superior to the one
shown in Figure 3. The left tail in Figure 2 is
caused by a lack of sufficient small drops in the
data, but it is also due to the truncation imposed
by us for the smaller drop diameters (D > 0.075),
and by the pixel quantification of the drop sizes.

6. Results for Assumed Lognhormal
Distributions

Similarly, we assumed that the population
from which the samples were taken could be de-
scribed by the lognormal function (3). Table 4
gives the mean, median, and standard deviation
values for the shape and scale estimators using
the methods of moments, maximum likelihood and
L-moments. In the case of the lognormal distribu-
tion (Kliche, 2007), the ML and L-moment meth-
ods should give results without significant bias.

Table 4: Mean, median and standard deviation of the estimated shape (iné) and, in parentheses,

scale (ﬁg) parameters for the lognormal distribution using the moment, ML and L-moment methods.

Estimator Mean Median Standard Deviation

MMM, 0.45 (1.02) 0.46 (0.75) 0.09 (0.75)

MM Mg 0.34 (1.34) 0.35 (1.01) 0.08 (0.89)

MM M 0.29 (1.56) 0.30 (1.10) 0.08 (0.99)
ML 0.93 (0.27) 0.90 (0.27) 0.09 (0.05)

L — moment 0.98 (0.26) 0.96 (0.26) 0.12 (0.05)




The mean value for the shape parameter from
the ML and L-moment methods in Table 4 is about
0.9-1.0, which represents a wide lognormal distri-
bution with a very long tail to the right. This means
that the distribution function (3) would have to be
truncated at some realistic maximum diameter,
and the estimators recalculated accordingly. The
widest lognormal distribution discussed by Kliche
(2007) had a shape parameter of 0.5; therefore,
for the purpose of this work, only the gamma dis-
tribution form was studied in further detail.

7. Results for Individual Samples

For each 5 s sample we consider here, the
gamma RSD parameters were calculated using
the two moment combinations, M,M;M,, and
MsM,Msg, as well as the ML and L-moment estima-
tors. Figure 4 shows a comparison of cumulative
histograms of the estimates of the scale parameter
A for a gamma RSD. This and the next figure
demonstrate how the increase of the sampling
skewness with the moment order translates into
greater biases for the estimated parameters when
higher-order moments are used. The M,M;M,
combination seems to agree well with the ML or
L-moment estimators, except for two samples.
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Figure 4: Cumulative histograms of estimated

gamma scale parameter, 4, using the MoMsM,
set (black), MsM,Ms set (red), ML (green) and
L-moments (blue). Population RSD: assumed
to be gamma.

The corresponding cumulative histograms for
the estimated gamma shape parameter () are

given in Figure 5. This figure demonstrates again
that larger bias is given by using higher order mo-
ments. Based on our findings (Kliche, 2007), both
the ML and L-moment estimators should be the
closest to the true population value; they suggest
a value not far different from zero (i.e., an expo-
nential RSD) for each individual sample.
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Figure 5: Cumulative histograms of estimated
gamma shape parameter, & , using the MoMs;M,

set (black), MsM,Ms set (red), ML (green) and
L-moments (blue). Population RSD: assumed
to be gamma.

8. Results for Composite Sample

Figure 6 gives the composite histogram of all
the drops from the samples collected during the
one minute flight segment (955 drops). Overlaid
distributions correspond to the estimated RSD pa-
rameters using the L-moment, ML and moment
methods. The continuous red line corresponds to
the MsM, Mg case, the continuous green line, dot-
ted red line and dash-dot red line (which all coin-
cide) correspond to ML, M,MsM, and M,M,Ms re-
spectively. The blue line corresponds to the L-
moments case. Even though the curves differ, it
appears from this figure, that all the estimators
give comparable results over the range of sizes
included in the analysis. This is not a surprise,
since the composite sample (from adding all 13
samples collected during one minute of T-28 flight)
consisted of 955 drops. Based on the results de-
scribed in Kliche et al. (2007a), when large
enough samples are available the three fitting



methods are expected to give comparable results.
A suitable goodness-of-fit test would be needed to
discriminate among these estimators.

logw{Number of Cazes)

Figure 6: Histogram corresponding to the T-28
data collected during 21:44:29 to 21:45:31 UTC
(955 drops); curves using the gamma PDF
function (Kliche et al., 2007a) from the parame-
ters using the L-moment (i, ,, = —0.01),

ML (4, =0.27) and moment (shape parame-

ter: MoMsM, = 2.12; MoM ;Mg = 6.8; MsM,Mg =
18.94) fitting methods.

9. Correlation Issues

The correlations between the sample mo-
ments and the maximum drop diameter D,y in the
sample were the first correlations investigated.
Figure 7 shows an example of such correlation, for
the case of the 6" moment (proportional to reflec-
tivity factor); these are individual samples, not
necessarily from the same population, but a simi-
lar correlation with nearly identical correlation co-
efficient showed up in the simulations of repetitive
sampling from an exponential RSD with mean
sample size 100 drops (Kliche, 2007).

The sample moments are also correlated with
each other; Figure 8 shows such a correlation be-
tween the 3rd and 6th sample moments. The
slope of this relationship would correspond to an
exponent 2.44 in the “Z-W” relationship, but this
“relationship” may be due here only to the variabil-

ity in the samples taken from a common raindrop
population.
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Figure 7: Scatter plot of 6" sample moment
values versus the maximum drop diameter in
the sample; the correlation coefficient is 0.971.
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Figure 8: Scatter plot of 3 versus 6" sam-
ple moment values; the correlation coefficient
is 0.972.

The correlations of the various sample mo-
ments with the maximum drop size in a sample,
and the associated correlations between mo-
ments, lead to correlation of the “fitted” gamma
parameters with the maximum drop size. Figure 9
shows the correlation between the mass-weighted



mean diameter estimates (ﬁm) and the maximum

drop diameter in the samples. This figure provides
a comparison between the estimated values using
the moments M;M, Mg with ones from the ML and
L-moment estimators.

Figure 9: Scatter plot of estimated mass-weighted
mean diameter(ﬁm) versus the maximum diame-

ter in the samples: M;M,;Ms (black, r = 0.959), ML
(red, r = 0.763), L-moments (green, r = 0.799).

A second example of such correlations is
shown in Figure 10 for the normalized concentra-

tion parameter /\AIW (defined in Bringi and

Chandrasekar, 2001) and the maximum drop size
in the sample. The correlations in the case of the
ML and L-moment estimators are weaker than in
the case of the moment estimators.

Correlations also exist between the estimated
parameters; results from simulations of repetitive
sampling (Kliche, 2007) suggest that one should
be very cautious in inferring any physical relation-
ships between such “fitted” parameters. Figure 11
gives examples of such correlations between the

mass-weighted mean diameter(ﬁm) versus total

number concentration (IQT), in the case of M,M;M,

and M;M,Ms estimators as compared to the ML
and L-moment estimators. The ML and L-moment
estimators are correlated, but their correlation is
weaker than in the case of the moment estimators,
and is not significant under an assumption of nor-
mally-distributed residuals.

Figure 10: Scatter plot of the estimated nor-
malized concentration parameter (NW) ver-

sus the maximum diameter in the samples:
M;M,Ms (black, r =-0.878), ML (red,
r=-0.578), LM (green, r = -0.606). Popula-
tion RSD: assumed to be gamma.

Figure 11: Scatter plot of the estimated total
number concentration parameter (NT) versus

the mass-weighted mean diameter(f)m):
MoM;M, (bIaCk, r= '0527), M;MMs (red,
r =-0.780) ML (green, r =-0.231),
L-moments (blue, r = -0.351). Population
RSD: assumed to be gamma.
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Figure 12: Scatter plot of the estimated
MsM,Mg scale parameter A vs. MM, Mg
shape parameter f ; the correlation coeffi-

cient is r=0.705. Population RSD: assumed
to be gamma. All 13 samples considered.

Special attention needs to be given to experi-
mental data when such correlations are investi-
gated. In many occasions one or two points in the
scatter plot can affect this correlation dramatically.
We show such an example for the case of the

MsMsMs estimators, A vs. i, in Figure 12. The

correlation coefficient in this case is calculated to
be 0.705. However, a careful look into this graph
shows two experimental points well separated
from the main cluster; these points correspond to
the “outlier” cases in Figures 4 and 5. Figure 13
shows the same graph as in Figure 12, with the
two outlying points removed. Now the correlation
is not significant.

For the L-moment and ML estimators, the 1
vs. 4 correlation still exists and there is no indica-
tion of outlier points. Figure 14 gives the corre-
sponding scatter plot for these estimators, show-
ing a correlation of about 0.9. Simulation results in
Kliche (2007) show similar correlation coefficients
for the ML and L-moment, A vs. 4 estimators,

arising from repetitive sampling from the same
population.
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Figure 13: Scatter plot of the estimated
MsM,Ms scale parameter A vs. 4 shape

parameter. Correlation coefficient is 0.284.
Only 11 samples considered.
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Figure 14: Scatter plot of the estimated scale
parameter A vs. shape parameter j: ML
(r =0.899) in black; L-moments (r = 0.902) in
red. Population RSD: assumed to be gamma.
All 13 samples are considered.



10. Conclusions

The main goal for the present work was to ap-
ply the L-moments method described in Kliche et
al. (2007a) to real raindrop data collected during
T-28 Flight 817, and to compare the results with
findings from those simulations. The L-moments
method was applied, and the results were com-
pared to the ones obtained with the moment
method and the maximum likelihood method.

As shown in Kliche et al. (2007a), the L-
moment parameters for gamma distributions have
the smallest bias of the three fitting methods stud-
ied (moments, ML, L-moments). The results for
the real data used in this study appear to be con-
sistent with those simulation results. The least bi-
ased estimators suggest that these raindrop size
d|str|but|0ns observed just below cloud base at
about 12 °C, are approximately exponential.
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