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1. INTRODUCTION

Although data quality has been a recognized problem
since the early days of radar, utilizing numerical quality
information in actual processing has been rare until the
recent years.

In Europe, extensive common efforts in describing,
assessing and applying radar data quality have been car-
ried out in COST-717 (Michelson et al., 2005) and EU-
METNET/OPERA projects (Divjak et al., 1999; Holleman
et al., 2006). Likewise in the United States, the state-of-
art seems to be towards incorporating quality information
in national radar composites (mosaics) (Langston et al.,
2007).

In this paper, we continue the discussion on radar
data quality information, focusing on data quality in terms
of both accuracy (in measurement units) and reliability (in
a probabilistic framework). We have already showed how
radar data quality can be applied in data visualization,
client-specific basic products and radar image compos-
ites (Peura et al., 2006). In this study, we review these
techniques and focus on using radar data quality also in
computing nowcasting products.

Originally, end users of weather radars had much
of the responsibility in understanding, recognizing and
correcting data quality problems such as those origi-
nating from bad calibration, Earth curvature and non-
meteorological targets.

Many of these problems still remain, but neverthe-
less automated quality control is widely used at least in
detecting evident or likely errors and then marking (flag-
ging) and/or deleting them. There is also automated cor-
rections that change measured values (dBZ, wind) con-
tinuously. Examples of these are corrections based on
vertical profiles of reflectivity (VPR) and radar-gauge cor-
rections.

Increased computational power has enabled devel-
oping and computing various quality descriptors and in-
dices. In fact, it is slowly starting to be a problem to prop-
erly manage and exploit miscellaneous quality informa-
tion. It is evident that just like bin-resolution radar data
undergoes various transformations and interpolations in
product generation, quality information should be treated
similarly as well, in parallel. Practically, this means com-
bining quality descriptors - some kind of quality algebra.

Of course, within a closed system, one is free to de-
sign and use whatsoever combination rules — summing,
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multiplying, taking averages, maxima, or applying if-then
decision trees. However, problems will rise if quality infor-
mation should be exhanged between separate systems.
Then, one needs more conformal notations, scales, se-
mantics and policies.

In this paper, our purpose is no either to re-invent
the wheel but to emphasize the usability of standard mea-
surement conventions also in the context of our “difficult”
radar data.

In the following sections, we first remind about gen-
eral measurement issues and address also probabilistic
aspects, because not all uncertainty can be characterised
with standard error intervals. Then, we embed these con-
cepts in mathematics familiar to radar data users. Finally,
we show how the resulting “algebra” can be used in gen-
erating quality-weighted composites and motion vectors,
for example.

2. CONCEPTS
2.1 Measurement accuracy

The International Organization of Standardization (ISO)
defines “uncertainty” as “a parameter, associated with the
result of a measurement, that characterizes the disper-
sion of the values that could reasonably be attributed to
the measurement” (ISO, 1993; D’Agostini, 2003).

Using the standard notation, a result of measuring x
is

X=puto 1)

where p = % ZiN=1 X; is the average obtained from repeated
measurements x; and o is an accuracy measure, often
called “error interval”, typically defined as a root mean
square error (RMSE), from o® = X s, (xi — p)*. Never-
theless, in weather radar community it seems rare to ap-
ply accuracies of this kind although radar measurements
are based on repeated sampling. (The only exception in
this respect might be the Doppler spectrum width.)

One should keep in mind that there are also other
definitions for . and o; for example maximum-likelihood
values and respective peak-widths.

2.2 Probabilistic aspects and beyond

However, even measurements reported in the standard
form (1) do not capture many central quality problems in
radar — for example, undesired signals like bird echoes,
sea clutter or signals from other electromagnetic devices.
Specifically, a radar measurement originating from such a
“wrong” target may indeed be accurate in terms of (1) but
still useless. Hence, we propose extending the scheme



with a further characterization P, the probability of correct
target:

X = u £ o,with P 2
This probability may originate from statistical data (fre-
guentist approach), physical models or expert's assump-
tions (Bayesian-belief approach).

Further on, probabilistic value P can be generalized
to a quality descriptor! reporting degree of confidence,
availability, relevance, or representativeness.

In notations, let us use q instead of P to underline
this generality:

X = pu =+ o,with q 3)
Thus, we are including, but not limited to, probabilistic
quality indices. Often, it is sufficient to assume that this
quantity q be scaled, monotonically increasing with qual-
ity and compatible with other corresponding values within
a system — a national radar network or international ex-
change of radar data, for example.

We would like to stress that defining quality in-
dices (g-values) as closely as possible to a probabilis-
tic framework is advantageous by facilitating mathematics
(in adopting concepts and formulae analogous to estab-
lished probabilistics) as well by clarifying semantics (eg.
in discussing products with end-users).

A simple example of defining and visualizing q is
shown in Fig. 1.

FiG. 1: Visualizing quality: areas of high quality (q) are
rendered with clear colors. In this example, q is a degree
of measurement representativeness motivated by, but not
equivalent to, actual (narrower) beam power distributions.

2.3 Towards “quality algebra”

How should quality information obtained in the form of (1)
or (3) be applied in processing data? Before proceeding
to examples, we need to define some further ingredients.

Practically, one may think of generating a radar im-
age composite as a “measurement task”: it certainly 1)
involves multiple samples to be somehow combined into
a single measurement (target pixel) and 2) involves mul-
tiple sources (radars).

At first for simplicity, assume that one has obtained
two measurements of the same event: x1 = p1 £ o1 with
(o[ and X2 = 2 + oy, with gz.

lIn the OPERA WP1.2 report by Holleman et al. (2006),
quality descriptor was defined as an expert-oriented, physically
meaningful quantity and quality index as its end-user oriented,
scaled or normalized quantity (possibly simplifying and combin-
ing several quality descriptors).

First, assume that q; and g, are the sizes — or nor-
malized values of the sizes — of the repeated measure-
ment sets. Then, when combining these measurement
sets into one of (normalized) size g1 + g2 = d, one gets
(see Peura et al. (2006))

u= Qupa + Qap2 )
q
and
g2 = dulont 1) :; Qa(o2 +p15) 2. (5)

These formulae generalize to any number of sets, and
can be computed incrementally. One should also relax
the strict semantics of “measurement set size”, yet treat-
ing q's rather analogously. Essentially, our point here is
that information of type (3) can be propagated through a
production system in a disciplined manner.

Next, let us focus more to x and q. Like above,
one wishes to combine them to single values. Some
general-purpose rules are shown in Table 1. If quality
is discarded in decision, one probably takes the AVER-
AGE or MAXIMUM of x;. If quality is considered essential,
one can pick up X; MAXIMUM-BY-QUALITY. A maximum-
expectation-kind of a choice is QUALITY-WEIGHTED Av-
ERAGE. The QUALITY-(p, )-WEIGHTED AVERAGE, tricky
at first sight, allows for smooth transitions between the
other functions mentioned. For example, with r — oo it
approaches MAXIMUM-BY-QUALITY. In the following sec-
tions, we show how these rules of using “probabilistic ac-
curacy” can be applied in practice.

Table 1: Decision rules (or mixture functions) for obtain-
ing a single value from multiple x;. The g column sug-
gests respective selections of associated quality; notice
that quality information may be propagated in the process
even though it is not used in the “decisions”.

| X | a | |
Y Xi 2% | AVERAGE
L 28 [ QUALITY-WEIGHTED AVG.
maxxi gi MAXIMUM
Xi i g = max o] MAXIMUM-BY-QUALITY
Q/% [/ 285 | QUALITY-(p, 1)-WEIGHTED AVG

3. APPLICATIONS

Most of the rules of Table 1 must be familiar to those
dealing with radar composites. Examples their applica-
tions have been illustrated in Figs. 2 — 6. Notice that
the definition of q is left open in Table 1. If one de-
fines it as a function proportional to the radar proxim-
ity, one gets DISTANCE-WEIGHTED AVERAGE, or similarly,
nearest-radar algorithm using MAXIMUM-QUALITY algo-
rithm. In software it might be handy to keep selection
of quality input and algorithms separated.



Also the standard deviation ie. RMSE as defined in
(5) can be computed in each pixel of a radar composite
image. An example corresponding to AVERAGE (Fig. 2) is
shown in Fig. 3. This accuracy data can be used also as
an input to further processing, say a NWP model.

FiG. 2: A three-radar composite applying AVERAGE
compositing rule. Korppoo, Vantaa and lkaalinen radars
9th Aug 2005, 1630 UTC.

3.1 Data correction

Anomaly detection systems (e.g. Sec. 5.1Michelson
et al., 2005; Peura, 2002) provide bin-resolution recog-
nition results. If the anomalies are relatively small in
size, the system should not just simply delete them —
by assigning zeros or other constant values. Instead,
on should try to restore correct values by spatial inter-
polation ie. propagating values from neighboring pixels.
Also that can be done using quality weighting. Modifying
WEIGHTED AVERAGE to two dimensions, we can reformu-
late it as

X'(i,i)=ZZQ(HK.JH)X(HKJH) (6)

where (k, j) are indices for traversing a local (typically rect-
angular) neighborhood of image location (i, ). The image
can be in polar or Cartesian coordinates. From a source
image this operator produces a new blurred image which
is dominated by values having high quality. If one makes
the effort of blurring the quality field as well, one can re-
construct a third, corrected image by choosing original
x(i,j) or blurred x’(i,j) — whichever has higher quality at
(i,j). This operation can be repeated recursively, creat-
ing spline-like spreading of data and quality fields. An
illustration of this recursive quality-weighted spatial in-
terpolation is shown in Fig. 7.

FiG. 3: Deviation (RMSE) of dBZ data originating from
three radars. The darkest areas are due to insects which
have been removed from the actual product (Fig. 2). Thin
contours apparent (also) in single-radar coverage areas
originate from bin deviations in subsequent elevations.

X
/

FIG. 4: Composite using MAXIMUM is often preferred in
aviation branch; no echo is removed.

This technigque can be used not only for intensities
but also for vector data.

Current operational numerical weather prediction
(NWP) models are not capable of predicting the closest
hours. Hence, as far as precipitation is considered, it has



FiG. 5: If radars have varying performance, their contri-
bution in composites can be set accordingly with (quality-
) WEIGHTED-AVERAGE. Weighting can be performed at
the single-bin level if quality data is available from e.g.

anomaly detection.

FIG. 6: MAX-BY-QUALITY is not yet widely in use but
should be more exploited in systems where quality data
streams are routinely available.

been natural to develop nowcasting methods based on
radar data — extrapolating measured precipitation fields
with atmospheric motion vectors (AMV’s) computed from
changes in subsequent frames.

Cartesian product

Raw polar data

FiG. 7: Correcting attenuation by means of quality-
weighted spatial interpolation. Top: attenuation marked;
bottom: corrected. Notice that when using this technique
it is not that critical how much data has been distorted but
where. (Attenuation has been exaggerated for illustration
purpose.)

In extracting the motion, a common problem has
been that the obtained vector field contains also many
erroneous vectors - typically appearing as discontinuities
and other discrepancies in the motion field. While dis-
continuity is an apparently promising feature to be moni-
tored in automated quality control, there always remains
the risk of deleting or smoothing too many true discontin-
uous details in data.

Hence, we suggest that motion field discontinuity
should be used cautiously, if at all. Instead, we believe
that there is still undiscovered quality information avail-
able in the underlying motion detection algorithms.

An example of moving precipitation area is shown in
Fig. 8. The 30 minutes earlier location is shown as a red
contour. Raw motion vectors extracted using optical flow
(Barron et al., 1994) is shown in Fig. 9. The green and
red vectors are of high and low quality, respectively. The
quality field as such is shown in Fig. 10. In this case, the
quality index has been derived from the determinant of an
involved matrix inversion (measuring the ambiguity of the
motion vectors, see e.g. Peura and Hohti (2004)).

The vector field corrected with spatial interpolation
(??) is shown in Fig. 11. Clearly, the quality of the result-
ing field is better as low-quality vectors and empty areas
have been taken over by high-quality vectors.

It should be pointed out that this technique is inde-
pendent of the motion vector extraction method. How-
ever, as mentioned, one must recognize a sensible
source of quality information within the selected method.

Many motion vectors methods are based on autocor-



FiG. 10: Quality of the motion field.

(Vantaa

Fic. 8: Example of a moving precipitation.

radar, 15th Aug 2006, 11:30 UTC.)
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FiG. 11: Motion vectors after recursive quality weighted

spatial interpolation.

FIG. 9: Mation vectors without quality control.

relation. There, for example, one could (incrementally)

keep record of the deviation of the correlation

obtaining

a natural characterization of the ambiguity of each motion

vector.

probabilistic character, can be used in generating radar

products in a disciplined manner.

Especially, all the il-

lustrated applications supported both input and output of

4. Conclusions

quality data — one can say that quality information prop-
agated through them — for potential further use of other

applications.

In this paper, we showed how standard concepts of mea-
surement accuracy, extended by quality indices having a
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