1. INTRODUCTION

In order to observe solid precipitation by
ground-based as well as space-borne cloud
radars, precise knowledge of the scattering
behavior of frozen hydrometeors at centimeter-
and millimeter-wavelengths is required. Only
for homogeneous spherical particles, the
scattering of electromagnetic waves can be
computed in a mathematically exact way using
the conventional Mie-theory. However, frozen
hydrometeors exist in a huge variety of non-
spherical shapes.

In this study single scattering parameters
(radar cross section, scattering cross section,
absorption cross section) for simplified shape
classes of frozen hydrometeors were
calculated using the discrete-dipole
approximation (DDA) method. The particles
were modeled as hexagonal plates, columns,
needles and dendrites as well as rather
spherical graupel particles. The calculations
were carried out over a wide range of
centimeter- and millimeter-wavelengths.

2. THE DDA

The discrete-dipole approximation (DDA) is
a powerful technique for computing scattering
and absorption by targets of arbitrary geometry
(Draine and Flatau, 1994). The DDA models
the actual particle by an array of dipoles. Each
dipole may be thought of as representing a
particular subvolume of the particle. Each
dipole is subject to the incident wave and is
also subject to the electric fields of all other
dipoles.

In this study the applicability of the DDA
method to calculate scattering of radar waves
by liquid and frozen precipitation particles is
tested. By employing the DDA to water and ice
spheres with a diameter D comparable with
the size of natural cloud and precipitation
particles and comparing the results to the Mie-
solution, it was evaluated how many dipoles
have to be used to reach a certain accuracy
for given refractive indices and wavelengths.
This number of dipoles can be a guiding value
when modeling non-spherical precipitation
particles with no exact scattering solution.

The scattering parameters were simulated
for incoming plane waves from 2.8 GHz to 150
GHz. The frequency and temperature
dependant refractive indices of water and ice
were chosen according to Ray (1972). The
calculations were carried out with the ADDA
software package in the version 0.76 (Yurkin
and Hoekstra, 2006). Initially the spheres were
modeled with a grid of 16 (2176 dipoles) as
shown in Figure 1. The separation d between
the dipoles was slightly altered so that the
volume of the dipole representation of the
sphere is exactly correct with the volume of the
sphere. Instead of $d = D/16 = D \times 0.0625$, the
value $d = D \times 0.0622$ was used.

* Corresponding author address: Franz Teschl, Graz
University of Technology, Dept. of Broadband
Communications, 8010 Graz, Austria; e-mail:
franz.teschl@tugraz.at

Figure 1: Dipole assignment for the modeled water
and ice spheres (2D projection). Assigned dipoles
are gray and void dipoles are white. For the whole
sphere 2176 dipoles were assigned.
A principal criterion for the applicability of the DDA is that the separation d between the dipoles is small compared to the wavelength λ. Numerical studies e.g. Draine and Flatau (1994) indicate that this is adequately satisfied if

$$|m| \cdot k \cdot d < 1$$ \hspace{1cm} (1)

where m is the complex refractive index of the target material and $k = 2\pi / \lambda$.

However, for accurate calculations of the scattering phase function (e.g., for radar cross-sections), a more conservative criterion

$$|m| \cdot k \cdot d < 0.5$$ \hspace{1cm} (2)

is suggested by Draine (2000).

The calculations of this study comply with the more conservative criterion (2), and often go considerably below. Figure 2 compares the scattering parameters of an ice sphere ($D = 5$ mm) determined with the DDA with the correct Mie solutions. Table 1 summarizes characteristic figures for this example. The sphere was initially modeled with a grid of 16. It can be seen that the results show a tendency to differ if $|m| \cdot k \cdot d > 0.5$. When using a grid of 64 however $|m| \cdot k \cdot d < 0.5$ and the calculation is again quite exact.

When modeling water spheres with the DDA it was found that $|m| \cdot k \cdot d$ should be smaller than 0.05 in order to get reliable scattering results.

Table 1: Characteristic size figures of a modeled ice sphere with $D = 5$ mm for frequencies up to 150 GHz. For frequencies higher than 43 GHz $|m| \cdot k \cdot d > 0.5$. For these frequencies therefore the sphere were modeled with a grid of 64.

| Frequency [GHz] | Grid | Dipoles/\lambda | $|m| \cdot k \cdot d$ |
|-----------------|------|-----------------|---------------------|
| 2.8 | 16 | 342.9 | 0.033 |
| 5.6 | 16 | 171.4 | 0.065 |
| 9.6 | 16 | 100.0 | 0.112 |
| 14 | 16 | 68.6 | 0.163 |
| 35 | 16 | 27.4 | 0.408 |
| 78 | 16 | 12.3 | 0.909 |
| 94 | 16 | 10.2 | 1.095 |
| 150 | 16 | 6.4 | 1.748 |
| 78 | 64 | 49.2 | 0.227 |
| 94 | 64 | 40.9 | 0.274 |
| 150 | 64 | 25.6 | 0.437 |

Figure 2: Efficiency factors for scattering Q_{sca} (a), absorption Q_{abs} (b) and backscattering Q_{back} (c) for an ice sphere $D = 5$ mm as a function of the size parameter circumference of the sphere over wavelength. The solid blue lines represent the correct Mie solution. The blue crosses represent the results of the DDA with a grid of 16 (2176 dipoles). The red crosses those with a grid of 64 (137376 dipoles).
3. SCATTERING PARAMETERS OF SIMPLE ICE CRYSTALS

With the DDA-method also the scattering parameters of several simple ice crystal shapes as they were classified by Magono and Lee (1966) were calculated. The particles were represented by dipoles in a way that at every frequency the model at least complies with criterion (2). The ice crystals were assumed to consist of pure ice at -5\(^\circ\) C. The refractive index of ice at this temperature and at the calculated frequencies were chosen according to Ray (1972).

In Figure 4 the scattering parameters of a hexagonal prism (Figure 3) are presented. The prism has a volume of 1 mm\(^3\). The incident wave is assumed to propagate along the principal axis c.

Table 2 gives the size parameters for the regarded prism.

![Hexagonal prism with principal axis c and secondary axes a1, a2, a3.](image)

Figure 3: Hexagonal prism with principal axis c and secondary axes a1, a2, a3.

Table 2: Observed frequencies and corresponding size parameters \(2 \pi r_{ev} / \lambda\) for a hexagonal prism with a volume of 1 mm\(^3\). \(r_{ev}\) is the radius of a equal volume sphere and \(\lambda\) is the wavelength.

<table>
<thead>
<tr>
<th>Frequency [GHz]</th>
<th>Size parameter (2 \pi r_{ev} / \lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8</td>
<td>0.04</td>
</tr>
<tr>
<td>5.6</td>
<td>0.07</td>
</tr>
<tr>
<td>9.6</td>
<td>0.12</td>
</tr>
<tr>
<td>14</td>
<td>0.18</td>
</tr>
<tr>
<td>35</td>
<td>0.45</td>
</tr>
<tr>
<td>78</td>
<td>1.01</td>
</tr>
<tr>
<td>94</td>
<td>1.22</td>
</tr>
<tr>
<td>125</td>
<td>1.62</td>
</tr>
<tr>
<td>150</td>
<td>1.95</td>
</tr>
<tr>
<td>175</td>
<td>2.27</td>
</tr>
<tr>
<td>200</td>
<td>2.60</td>
</tr>
<tr>
<td>225</td>
<td>2.92</td>
</tr>
</tbody>
</table>

![Scattering efficiency factors for a hexagonal prism.](image)

Figure 4: The blue crosses show the efficiency factors for scattering Qsca (a) and absorption Qabs (b) for a hexagonal prism with a volume of 1 mm\(^3\). The solid lines show the exact Mie solution of the equal volume ice sphere \((r_{ev} = 0.62\ mm)\).

Up to a size parameter of about 2 the scattering parameters of the ice crystal fit with that of the equal volume sphere. For size parameters higher than 2 the specific shape of the particle becomes important.

4. SCATTERING PARAMETERS OF GRAUPEL PARTICLES

Graupel occurs nearly spherical in shape and therefore their scattering behavior can simply be approximated by that of spheres. They can reach diameters up to 5 mm. For the following calculation a rimed graupel particle (5 mm in diameter) was regarded. A rimed graupel particle has many interstices between
the droplets that instantly freeze on the surface. The density of graupel particles varies greatly – from about 0.05 g/cm to as high as 0.89 g/cm (Pruppacher and Klett, 1978). For the modeling of the inhomogeneous material of such a particle, the Maxwell-Garnett (1904) approximation was used. Figure 5 shows the backscattering or radar cross section (RCS) of a rimed graupel particle with 5 mm in diameter under the assumption that 80 % of the particle consist of ice while the remaining 20 % represent air-locks. The RCS of the rimed graupel particle is on the average about 3 dB lower in the plotted frequency range than that of a solid ice sphere with the same size.

In Figure 6 the RCS of a spherical rimed graupel particle is compared with that of an equal volume solid ice sphere. If we assume that the rimed graupel particle has a diameter of 5 mm and consists of 80 % ice, the equal volume ice sphere has a diameter of 4.64 mm. Up to 40 GHz, exceeding the characteristic notch of the RCS function of ice spheres, the RCS of the two particles are almost identical. This again would correspond with a size parameter of about 2.

5. CONCLUSION

In this study the scattering parameters of non-spherical ice crystals and nearly spherical graupel particles were observed. The results show that if the size parameter $2 \pi r_{eq} / \lambda < 2$ exclusively the ice volume is crucial for scattering and absorption. For such small sizes the actual shape of the particle needs not to be modeled - just the Mie solution of an equal volume ice sphere can be used to calculate the scattering parameters.

The results also indicate that the DDA is an applicable tool for calculating scattering and absorption of centimeter- and millimeter wavelengths from of non-spherical ice particles. For particles that consist of water (e.g. melting particles) however, the DDA does not seem applicable because of the higher refractive index of water than that of ice. In addition it was found, that for water $|m| \ast k \ast d$ should be smaller than 0.05 which makes the scattering calculation especially at millimeter wavelengths a time consuming task.

REFERENCES

