
 

6B.1A    TIME-EXPANDED SAMPLING FOR ENSEMBLE-BASED FILTER WITH COVARIANCE LOCALIZATION: 
ASSIMILATION EXPERIMENTS WITH A SHALLOW-WATER EQUATION MODEL 

 
Qin Xu1*, Li Wei2, Huijuan Lu2, Qingyun Zhao3 and Chongjian Qiu4 

 
1NOAA/National Severe Storms Laboratory, Norman, Oklahoma 

2Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma 
3Naval Research Laboratory, Monterey, California 

4College of Atmospheric Sciences, Lanzhou University, China 
 
 
 

 
 

1. INTRODUCTION 
 When the probability density function (pdf) of the 
model state is represented by an ensemble of state 
vectors in an ensemble-based filter, such as the 
ensemble square root filter (EnSRF) – a variant of the 
EnKF (Whitaker and Hamill 2002; Tippett et al. 
2003), the mean and covariance are directly estimated 
from and updated through the ensemble. This makes 
the filter much easier to implement than the four-
dimensional variational assimilation (4DVar). 
Computationally, however, an ensemble-based filter is 
still very expensive for operational applications due to 
large ensemble sizes required by the Monte Carlo 
method that the filter is based on. Theoretically, the 
ensemble size should be sufficiently large to 
adequately represent the pdf. Practically, however, an 
ensemble-based filter has to use a limited or even 
small ensemble to reduce the computational cost. How 
to deal with problems caused by limited or small 
ensemble is thus a primary issue for ensemble-based 
filters. Another primary issue for ensemble-based 
filters (also for 4DVar) concerns how to solve or 
alleviate problems caused by unknown model errors. 
In this paper, a time-expanded sampling is proposed to 
treat or alleviate problems concerned above in a 
simple and effective way. The potential merits of the 
proposed approach are demonstrated by assimilation 
experiments with a shallow-water equation model. 
∗ 
2. DESCRIPTION OF THE METHOD 
 It is well recognized that a weather system 
predicted by a numerical model often develops and/or 
propagates either faster or slower than the truth and 
thus often contains amplitude and/or phase errors. If 
the predicted system develops or propagates faster (or 
slower) than the true system, the predicted field at a 
time level before (or after) the analysis time will very 
likely better represent the true field than the predicted 
field at the analysis time, at least over the local area 
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covered by the weather system. Thus, the difference 
between the predicted field sampled before (or after) 
the analysis time and the one at the analysis time may 
represent the prediction error associated with the 
aforementioned amplitude and/or phase errors. This 
implies that the mean and localized covariance may be 
computed from an ensemble of predicted fields 
sampled before, at and after the analysis time within a 
certain time window.  
 Based on the above considerations, we propose a 
time-expanded sampling approach for ensemble-based 
filters. For an ensemble of size N, the conventional 
approach with an ensemble-based filter updates N 
ensemble members at each analysis step to initialize N 
prediction runs and then propagates the ensemble to 
the next analysis time. At each analysis step, only one 
perturbed state vector is sampled at the analysis time 
from each prediction run. In our proposed approach, 
however, a series of perturbed state vectors are 
sampled from each prediction run not only at the 
analysis time but also at other time levels properly 
selected in the vicinity of the analysis time. All the 
sampled state vectors are used to compute the 
background covariance for the analysis so that the 
ensemble size is increased without increasing the 
number of prediction runs. For a given ensemble size 
of N, the number of prediction runs are thus reduced 
from N to N/S and so is the computational cost, where 
S is the number of sampling time levels. 
 The EnSRF serial algorithm (Whitaker and 
Hamill 2002) is used in this paper to test the proposed 
time-expanded sampling approach in comparison with 
the conventional approach. This EnSRF algorithm 
uses a compactly-supported smooth correlation 
function to localize the background covariance 
computed from the ensemble and thus to reduce the 
adverse impact of noise and spurious long-range 
correlation caused by limited ensemble size 
(Houtekamer and Mitchell 2001). The localization is 
necessary for an ensemble-based filter when the 
ensemble size is not sufficiently large. The EnSRF 
serial algorithm is particularly convenient for 
covariance localization and thus is used with the 
proposed time-expanded sampling in this study.  
 
 



 

3. MODEL SYSTEM AND DESIGN OF EXPERIMENTS 

3.1 Model Equations and Simulated Observations 
 To test the proposed approach, assimilation 
experiments are designed with a shallow-water 
equation model. The shallow water equations are 
formulated in the f-plane by  
 
 ∂tu = -u∂xu - v∂yu + fv - g∂xh + µ(∂x

2 + ∂y
2)u, 

 ∂tv = -u∂xv - v∂yv - fu - g∂yh + µ(∂x
2 + ∂y

2)v, 
∂th = -u∂xh - v∂yh - (H + h)(∂xu + ∂yv) + µ(∂x

2 + ∂y
2)h. 

 
Here, (u, v) denote the velocities, h is the perturbation 
height, H = 3000 m is the basic-state depth; f = 10-4 s-1 

is the Coriolis parameter at 45o N, g = 9.8 m s-2 is the 
acceleration of gravity, and µ = 105 m2 s-1 is the 
coefficient of eddy diffusivity. The model domain is a 
square with periodic boundary conditions at x, y = 0 
and D, where D = 13200 km is the length of one side 
of the model domain. The spatial derivatives are 
discretized by the first-order central finite difference 
scheme. The local time derivatives are discretized by 
using the two-step backward difference scheme of 
Matsuno (1966). 
 The "true" state is produced by integrating the 
above model on an 89×89 grid with D = 88d, where d 
= ∆x = ∆y = 150 km is the grid spacing. The time step 
is set to ∆t = 6 min to ensure the computational 
stability. The integration is initialized 48 hours before 
the starting time of data assimilation with the 
following geostrophically balanced initial conditions: 
 
 h = H{1 + (y’/π)exp(-2y’2)[1 + 0.1sin(4πx/D)]}-1, 
 u = -f--1g∂yh and v = f--1g∂xh at t = -48 hours, (1) 
 
where y’ = 2πy/D – π for 0 ≤ y ≤ D over the model 
domain. This initial state is a zonal jet flow 
superimposed with a small-amplitude wave, which is 
similar to the initial state used in section 5.2 of Frank 
and Reich (2002) for a barotropic instability 
experiment. The wave grows to moderate amplitude 
after 48 hours of integration, and then develops further 
to large-amplitude wave perturbations and nonlinear 
eddies in the subsequent 5.5 days over the time period 
of data assimilation.  
 By adding samples of simulated observational 
error to the above model-produced "true" fields on a 
coarse grid spaced every 900 km in the x- and y-
directions, "observations" are generated every 12 
hours during the time period from t = 12 to 132 hour. 
The observation errors are uncorrelated between 
different variables and different points in both space 
and time. The observation error standard deviations 
are 12 m for h and 1.2 m s-1 for u and v. The above 
generated observations can be sorted into three types: 
(i) height h observations only (type-1), (ii) velocity (u, 
v) observations only (type-2), and (iii) both height and 
velocity observations (type-3). To examine the 

robustness of the proposed approach with respect to 
incomplete observations, we will consider mainly the 
type-1 observations. 
 
3.2 Experiment Set-up 
 In all the experiments, the prediction model uses a 
doubly coarsened grid (with d increased from 150 to 
300 km) so the model is not perfect. The initial 
background state (at t = 0) is also imperfect and is 
produced by averaging “true” fields over 4 days 
centered at t = 0. The background root-mean-square 
(RMS) errors (estimated by spatially averaged RMS 
differences between the background state and the 
"true" state) are 28 m in height h and 3.4 m s-1 in 
velocity v = (u, v). We denote by Nr the number of 
perturbed predictions runs, so the ensemble size is N = 
NrS where S is the number of sampling time levels as 
introduced earlier. The Nr prediction runs are 
initialized at t = 0 (the starting time of data 
assimilation) by adding Nr geostrophically-balanced 
pseudo-random fields to the above background state. 
The pseudo-random height fields are generated by 
using the spectral method in Appendix E of Evensen 
(2003) with the de-correlation length set to 3d (= 900 
km) and the standard deviation set to 22 m (which is 
close to the above estimated background RMS error in 
h). The pseudo-random velocity fields are given by the 
geostrophic balance conditions as in Eq. (1) and their 
standard deviation for Nr = 30 (or 10) is very close to 
(or slightly larger than) the above estimated 
background RMS error in v.  
 Three control experiments, denoted by E5, E10 
and E30, are designed with the conventional approach 
in which S = 1 and N = Nr = 5, 10 and 30, respectively. 
To optimize the performance of these experiments, 
(especially the E10), the covariance computed from 
the ensemble forecasts in each assimilation cycle is 
localized by using a compactly-supported smooth 
correlation function (Gaspari and Cohn 1999) with the 
localization cut-off radius tuned to 12d = 3600 km 
(which is optimal for the control experiment E30). The 
time length of each data assimilation cycle is the same 
as the observation time interval, which is T = 12 hours.  
 With the time-expanded sampling, the ensemble 
consists of both the standard members and the time-
expanded members. The Nr standard members are 
sampled at the analysis time from Nr perturbed runs. 
The time-expanded members are sampled at equally 
separated time levels before and after the analysis 
time. In particular, the sampling time levels centered at 
the jth analysis time are t = tj + mτ for m = 0, ±1, ±2, 
… ±M, where t = tj denotes the jth analysis time (j = 1, 
2, … 11) and τ is the sampling time interval. For each 
analysis, the number of sampling time levels is S = 2M 
+ 1 and the sampling time window is 2Mτ. The 
ensemble size is thus increased by S = 2M + 1 times, 
that is, from N = Nr to NrS.  



 

 To examine the effectiveness of the time-
expanded sampling in comparisons with the 
conventional approach, test experiments are designed 
by setting Nr to be the same as in E10 but with S = 2M 
+ 1 > 1. For the experiment with Nr = 10 and S = 3, 
the initial 10 standard ensemble members are 
generated by random perturbations in the same way as 
in E10, but the total ensemble size for each analysis is 
expanded to N = NrS = 10×3 by the time-expanded 
sampling. We denote this experiment by E10×3τ3 (or 
E10×3τ5, …) for τ = 3 (or 5, …) hours. Similarly, 
E5×3τ3 (or E5×3τ5, …) represents the experiment 
with Nr = 5 and S = 3 for τ = 3 (or 5, …) hours. 
 As we will see later, when M is increased from 0 
to 1 and thus S is increased from 1 to 3, the analyses 
are improved significantly compared with those 
obtained from the conventional approach with S = 1. 
However, when M is further increased from 1 to 2 and 
S from 3 to 5, the time-expanded members are 
sampled more frequently and become more similar to 
each other (as the sampling time window is confined 
between the previous analysis time and next one, that 
is, 2Mτ ≤ 2T). In this case, the analyses can hardly be 
further improved but the computational costs will 
increase. Because of this, the test experiments are 
performed with S = 3 only and compared with the 
control experiments with S = 1.   
 
4. RESULTS AND DISCUSSIONS 

4.1 Optimal Sampling Time Interval  
 The above designed control and test experiments 
are conducted with different settings of Nr (= 30 10, 
5), S (= 1, 3, 5) and τ (from 3 to 9 hours). The 
performances of the filter in each experiment can be 
evaluated by spatially-averaged RMS errors of the 
assimilated ensemble mean height h  and velocity v  
= (u,v) . These two RMS errors are defined by 
 
     σh ≡ {{( h - ht)2}}1/2 and σv ≡ {{ | v  - vt|2}}1/2, (2) 
 
where the overbar denotes the ensemble average, {{ }} 
the spatial average, and ( )t the “true” value of ( ). The 
velocity RMS errors computed from E5, E10, E30, 
E10×3τ4, E10×3τ5, and E10×3τ6 with the type-1 
(height only) observations are plotted as functions of 
cycle number over the entire data assimilation period 
(from t = 0 to 132 hour) in Fig. 1. As shown, except 
for E5, the filter reduces the RMS error at each 
analysis time and an overall convergence has been 
reached through the assimilation in each experiment in 
spite of the vigorous growth of the forecast RMS error 
between every two adjacent analyses (from one cycle 
to the next) caused by barotropic instability and 
unknown model errors. Measured by the RMS error σv 
plotted in Fig. 1, the three test experiments E10×3τ4, 
E10×3τ5 and E10×3τ6 perform much better than E10. 

For the last four assimilation cycles, these test 
experiments even slightly outperform E30. Among the 
test experiments, E10×3τ5 performs best. These 
results suggest that (i) the performance of an 
ensemble-based filter can be improved by time-
expanded sampling, and (ii) the improvement can be 
optimized by properly selecting the sampling time 
interval.  
 The RMS errors σh and σv for the ensemble mean 
forecast (from t = 120 to 132 hour) and analysis (at t = 
132 hour) in the last assimilation cycle are listed in the 
first four columns of Table 1, where nine experiments 
are listed and they are all performed with the type-1 
(height only) observations. Measured by the RMS 
errors listed in Table 1, the four test experiments 
E10×3τ3 E10×3τ4, E10×3τ5 and E10×3τ6 perform 
significantly better than E10 and slightly better than 
E30. Again, among the four test experiments, E10×3τ5 
performs best. As Nr reduces to 5, E5 fails to converge 
(as shown in Fig. 1), but E5×3τ5 converges well, and 
the convergence can be further improved when τ is 
further increased up to τ = 9 hours as shown by 
E5×3τ9 in Table 1. Similar experiments have been 
performed with the type-2 (velocity only) and type-3 
(both height and velocity) observations, and the results 
(not shown) are qualitatively the same as those in 
Table 1. All these results support the aforementioned 
two points, and their implications are further examined 
in the next subsection. 
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Fig. 1. Velocity RMS errors σv plotted as functions of 
cycle number over the entire assimilation period (from 
t = 0 to 132 hour) for three control experiments (E5, 
E10 and E30) and three test experiments (E10×3τ4, 
E10×3τ5 and E10×3τ6) performed with the type-1 
(height only) observations. The drop of the error curve 
at each analysis time (every 12 hours) corresponds the 
error reduction made by the analysis. See Eq. (2) for 
the definition of σv. 



 

Table 1. RMS errors [σh and σv defined in Eq. (2)] and normalized consistency ratios [rh and rv defined in Eq. (3)] 
for the ensemble forecasts (denoted by superscript f) and analyses (denoted by superscript a) produced in the last 
assimilation cycle. Nine experiments are listed and they are all performed with the type-1 (height only) observations. 
  

Exp#   σh
f   σh

a   σv
f  σv

a    rh
f   rh

a    rv
f   rv

a 
 E5 28.981 26.231  3.748 3.630 0.109  0.110 0.140  0.135 

 E5×3τ5 12.316 9.677  1.822 1.795 0.546  0.418 0.581  0.407 
 E5×3τ9 9.315 7.511  1.473 1.437 1.192  0.574 1.133  0.535 
 E10 8.336 7.224  1.358 1.297 0.474  0.485 0.485  0.475 
 E10×3τ3 6.959 5.779  1.203 1.150 0.737  0.681 0.688  0.606 
 E10×3τ4 6.637 5.624  1.173 1.132 0.903  0.730 0.810  0.646 
 E10×3τ5 6.375 5.560  1.150 1.127 1.070  0.757 0.941  0.674 
 E10×3τ6 6.529 5.792  1.167 1.149 1.158  0.736 1.049  0.688 
 E30 7.050 5.872  1.216 1.155 0.633 0.665 0.620  0.614 
 
 
Table 2. As in Table 1 but for three control experiments with covariance inflation. The inflation factor c is optimally 
tuned in each experiment, and the tuned value of c is listed for each experiment. 
 

Exp#   σh
f   σh

a   σv
f  σv

a    rh
f   rh

a    rv
f   rv

a 
 E5, c =1.5 13.196 10.769  2.334 2.312 0.585  0.667 0.655  0.686 
 E10, c = 1.1 6.602 5.726  1.226 1.191 0.842  0.877 0.814  0.827 
 E30, c =1.05 6.418 5.419  1.177 1.126 0.847  0.889 0.826  0.838 
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Fig. 2. As in Fig. 1 but for normalized consistency 
ratio rv. See Eq. (3) for the definition of rv. 
 
 
4.2 Ensemble Spread and Consistency Ratio 
 The spatially averaged ensemble spreads in h and 
v = (u, v) can be defined by  
 

sh ≡ {{(h ! h )
2 }}1/2 and  sv ≡ {{ |v - v |

2 }}1/2. 
 

Ideally, the ensemble spread in each variable should 
satisfy a consistency relationship with the ensemble-
mean RMS error. This consistency relation requires 
the ratio between the ensemble spread and the 
ensemble-mean RMS error to be statistically equal to 
[N/(N + 1)]1/2 (Murphy 1988). We call this ratio the 
consistency ratio. The normalized consistency ratios 
can be defined by 
 
 rh ≡ (sh/σh)[(N + 1)/N]1/2  and 
 rv ≡ (sv/σv)[(N + 1)/N]1/2 (3) 

  
for h and v, respectively. If the uncertainties of the 
ensemble mean are well quantified by the ensemble 
spreads, then rh and rv should be statistically equal to 1 
according to the consistency relationship. As 
mentioned in section 3.2, the initial Nr ensemble 
members are generated at the beginning of the 
assimilation by adding pseudo-random height fields 
and their associated geostrophic velocity fields to the 
background height and velocity fields, respectively. 
Since the initial ensemble spreads are close to the 
initial background RMS errors in h and v, 
respectively, the normalized consistency ratios rh and 
rv are close to 1 initially in all the experiments. These 
ratios, however, undergo different variations with time 
over the assimilation period in different experiments.  
 The variations of rv are shown in Fig. 2 for the 
same six experiments as in Fig. 1. As shown, rv is 
reduced sharply by the first analysis (at t = 12 hour) in 



 

E5 and then decreases continuously in subsequent 
cycles. The same feature is seen for rh (not shown) in 
E5. Since rh and rv decrease rapidly in E5 and become 
increasingly far below the ideal value of 1 during the 
assimilation, the ensemble spread is too small to cover 
the true state. This explains why E5 fails to converge 
toward the true state. In E10, rv and rh (not shown but 
similar to rv in Fig. 2) are reduced significantly by the 
first analysis and then decrease slowly and become 
nearly constant (around 0.5) toward the end of the 
assimilation. The ensemble spread in E10 is thus still 
not large enough to adequately cover the true state, 
and this explains the poor performance of E10. In E30, 
rv and rh increase (due to the decreases in σv and σh) 
after the first analysis and then decrease gradually in 
the subsequent. Clearly, the normalized consistency 
ratios in E30 are closer to the ideal value of 1 than 
those in E10. This explains why E30 performs 
significantly better than E10. In E10×3τ4, E10×3τ5 
and E10×3τ6, rv and rh (not shown but similar to rv in 
Fig. 2) are larger than those in E30, and they go up and 
down through each assimilation cycle. The sharp 
increases in rv and rh in each forecast step are caused 
mainly by the time-expanded sampling. Consequently, 
rv and rh can be kept close to the ideal value of 1 in 
these test experiments more persistently than in E30, 
especially in the last four assimilation cycles. This 
explains why these test experiments slightly 
outperform E30 in the last four cycles (see Fig. 1). 
 The normalized consistency ratios rh and rv for the 
ensemble forecasts and analyses in the last 
assimilation cycle are listed in the last four columns of 
Table 1. Judged by the closeness of the listed ratios to 
the ideal value of 1, the ratios produced in E10×3τ3 
E10×3τ4, E10×3τ5 and E10×3τ6 are clearly better 
than those in E10 and slightly better than those in E30. 
The ratios in E5×3τ5 and E5×3τ9 are much better than 
those in E5. For Nr = 10, E10×3τ5 produces the best 
ratios. When Nr is reduced to 5, E5×3τ9 produces the 
best ratios. Clearly, the consistency ratios listed in the 
last four columns of Table 1 further support and 
explain the relative performances of the nine 
experiments evaluated in section 4.1 based on the 
RMS errors listed in the first four columns of Table 1. 
 By including the time-expanded members (in 
addition to the standard members as described in 
section 3.2), the time-expanded sampling can not only 
enlarge the ensemble size but also improve the 
ensemble spread. As explained in section 2, the time-
expanded members represent possible amplitude 
and/or phase errors in the predicted fields. The 
inclusion of these members enhances the ensemble 
spread effectively in regions where the predicted fields 
undergo significant variations (such as local growths 
and/or propagations) over the sampling time period. In 
this sense, the time-expanded sampling can also enrich 
the spread structure and improve the spread 
representation of background forecast uncertainties. 

 As mentioned in section 3.2, the covariance 
computed from the ensemble forecasts is localized 
with the localization cut-off radius tuned to 12d = 
3600 km so that the correlation is reduced to zero as 
the separation goes beyond the cut-off radius. Within 
this cut-off radial range, the localized covariance in 
E10×3τ5 exhibits a significant level of geostrophic 
balance and has roughly the same gross structure as 
those in E10 and E30 (not shown). As the structure 
differences between these localized covariances in 
E10×3τ5, E10 and E30 are relatively small in 
comparison with their gross structures, the localized 
covariance structures do not seem to be significantly 
improved or changed by the time-expanded sampling 
in E10×3τ5. Besides, because the model is imperfect 
and the unknown model errors are neglected, it is 
difficult to identify or evaluate possible structure 
improvements in the localized covariance caused by 
the time-expanded sampling. This problem deserves 
further investigation.  
 
4.3 Covariance Inflation 
 With a limited ensemble size, the conventional 
EnKF tends to underestimate the analysis uncertainty 
especially when the model is imperfect. Because of 
this, matrix composed of the state vectors computed 
from the ensemble often needs to be inflated, and the 
inflation can be done simply by multiplying an 
empirically-tuned inflation factor, c > 1, to the 
computed covariance (Anderson 2001). In a sense, 
according to the results presented in section 4.2, the 
time-expanded sampling can be viewed as a way of 
inflation. What it does, however, is not just simply 
inflate the ensemble variance. It also enriches the 
spread structure and enlarges the space spanned by the 
ensemble. The time-expanded sampling is thus 
expected to be more effective than the conventional 
covariance inflation. 
 To compare the time-expanded sampling with the 
conventional covariance inflation, the control 
experiments E5, E10 and E30 are re-performed with 
the conventional covariance inflation. In each 
experiment, the inflation factor c is optimally tuned to 
minimize the RMS errors σh and σv of the ensemble 
mean analysis at the end of the assimilation (t = 132 
hour). The velocity RMS errors are plotted as 
functions of cycle number in Fig. 3 for three optimally 
tuned control experiments (E5 with c = 1.5, E10 with c 
= 1.1 and E30 with c = 1.05) against two optimally 
tuned test experiments (E5×3τ9 and E10×3τ5) 
performed with the type-1 (height only) observations. 
The RMS errors σh and σv and normalized consistency 
ratios rh and rv obtained in the last assimilation cycle 
from each experiment are listed in Table 2, where the 
optimally tuned value of c is also listed for each 
experiment. The improvement made by the 
conventional covariance inflation in each experiment 
in Table 2 can be evaluated by the reduced values of 



 

σh and σv and the increased values of rh and rv toward 
1 compared to those from the same experiment 
without inflation (c = 1) listed in Table 1. By 
comparing Fig. 3 with Fig. 1 and comparing Table 2 
with Table 1, it is clear that E5 is improved 
significantly by the conventional covariance inflation 
(with c tuned to 1.5) but it still far underperforms 
E5×3τ9 with c = 1 (as shown in Fig. 3 and listed in 
Table 1). E10 is also improved by the conventional 
covariance inflation (with c = 1.1) but still 
underperforms E10×3τ5 with c = 1. E30 is slightly 
improved by the conventional covariance inflation 
with c = 1.05 and it performs just as well as E10×3τ5. 
Thus, for given Nr = 5 (or 10), the filter performance 
is improved more by the time-expanded sampling than 
by the conventional covariance inflation. 
 Finally, it is necessary to point out that the 
localization cut-off radius used in this paper is fixed at 
12d = 3600 km. This localization radius is optimally 
tuned for the control experiment E30 (as mentioned in 
section 3.2) but is not necessarily optimal for the test 
experiments and certainly not optimal for other two 
control experiments E10 and E5. Thus, without 
optimally tuning the localization radius for each 
experiment, the comparison presented in this paper is 
not complete. In view of this, additional experiments 
are performed to tune the localization radius for each 
experiment. The preliminary results indicate that the 
best test experiment with Nr = 5 (or 10) still 
outperforms the associated control experiment E5 (or 
E10) although the difference between each pair of the 
best test and control experiments is not as significant 
as presented above. 
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Fig. 3. As in Fig. 1 but for three optimally tuned 
control experiments (E5 with c = 1.5, E10 with c = 1.1 
and E30 with c = 1.05) and two test experiments 
(E5×3τ9 and E10×3τ5) performed with the type-1 
(height only) observations. 
 
 

5. CONCLUSIONS 
 In this paper, a time-expanded sampling is 
proposed for ensemble-based filters with localized 
covariances in data assimilation. Assimilation 
experiments have been conducted with the EnSRF 
serial algorithm (Whitaker and Hamill 2002) applied 
to an imperfect shallow-water equation model and the 
proposed approach is demonstrated to have the 
following merits:  
(i) By sampling ensemble members at several time 
levels in the vicinity of the analysis time rather than 
only at the analysis time (as the conventional approach 
does), the number of prediction runs (and hence the 
CPU cost) is reduced without reducing the ensemble 
size.  
(ii) By adjusting the sampling time interval, the 
proposed approach can optimally enhance the 
ensemble spread and thus improve the filter 
performance even thought the number of prediction 
runs is greatly reduced.  
(iii) As the ensemble spread is optimized (and inflated 
implicitly), the algorithm can alleviate the filter 
divergence problem caused by small ensemble in the 
presence of model errors (to a certain extent). 
 The assimilation experiments also suggest that the 
sampling time interval can be optimized 
approximately by tuning the ensemble spread based on 
the consistency relationship [see Eq. (3)] provided the 
RMS error of the predicted background mean field is 
known or well estimated (Xu et al. 2001). It is also 
possible to tune the sampling time interval adaptively 
if the RMS error of the predicted background mean 
field can be estimated and updated with the most 
recent ensemble forecasts in each assimilation cycle. 
This problem is under our investigation.  
 In this paper the time-expanded sampling is 
applied with the EnSRF serial algorithm to simulated 
observations of a developing wave excited owing to 
barotropic shear instability in a shallow-water equation 
model. This approach is also applied to simulated and 
real radar observations of a developing tornadic 
supercell storm with the EnSRF in a non-hydrostatic 
model (Xu et al. 2007; Lu 2007). The results are 
encouraging and will be highlighted at the conference.  
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