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1. INTRODUCTION 
 In three-dimensional variational data assimilation, 
the random vector fields of the background wind 
errors are assumed to be statistically homogeneous and 
isotropic in the horizontal and statistically stationary in 
time. Under these assumptions, the observation error 
variance and background error covariance can be 
estimated from time series of radiosonde innovation 
(observation minus background) data by using the 
conventional innovation method (Hollingsworth and 
Lönnberg 1986; Xu et al. 2001). However, due to the 
limited resolution and coverage of the radiosonde 
observations, the estimated background error 
covariance structures are confined to the synoptic and 
subsynoptic scales.∗  
 Doppler radar observations have high spatial and 
temporal resolutions, but the observed velocity is 
limited to only a single component of the vector wind, 
that is, the radial component projected onto the radar 
beam. Under the same assumptions as mentioned 
above, the random scalar fields of background radial-
velocity errors are not isotropic. By using the non-
isotropic form of error covariance function derived for 
radial-velocity fields on conical surfaces of low-
elevation radar scans (Xu and Gong 2003), the 
conventional innovation method was reformulated by 
Xu et al. (2007) to estimate radar radial-velocity 
observation error covariance and background vector 
wind error covariance from time series of radar radial-
velocity innovation fields.  
 The method of Xu et al. (2007) was designed and 
applied to radial-velocity observations from a single 
Doppler radar, while the background winds were 
analyses of independent radial-velocity observations 
from another radar. When the background fields are 
provided by the operational model predictions, the 
range of the background wind error correlation is often 
too large to be covered by innovation data obtained 
from a single Doppler radar. Thus, for operational 
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applications, the method needs to be extended and 
applied to multiple-radar observations. The required 
extension is done recently and the method is applied to 
innovation data produced from multiple-radar radial-
velocity observations and NCEP WRF-NMM model 
predictions. The preliminary results are represented in 
this paper. 
 
2. THE METHOD 

2.1 Basic Assumptions and Velocity Error Covariance Tensor 
 As mentioned in the introduction, the random 
vector fields of background wind errors are traditionally 
assumed to be horizontally homogeneous and isotropic 
over local (or regional) areas in the widely used 
statistical interpolation and three-dimensional 
variational techniques for large-scale and synoptic-scale 
atmospheric data assimilation (see Chapters 4-5 of 
Daley 1991). This assumption is likely to be less valid 
at the mesoscale and storm-scale, but it is still adopted 
commonly and implicitly along with the statistical 
interpolation and three-dimensional variational 
techniques in mesoscale data assimilation. This 
assumption is adopted in Xu et al. (2007) while the 
projection of the background wind error on each conical 
surface of radar scans was treated approximately as a 
horizontal component and is denoted by v(x) = (u(x, y), 
v(x, y))T  or, simply, v = (u, v)T where ( )T denotes the 
transpose of ( ).  
 The covariance function of the random vector field 
v(x) involves two points, say, xi = (xi, yi) and xj = (xj, 
yj) and is defined by the following second-order tensor 
function: 
 
  Cvv(xi, xj) ≡ <v'iv'jT>,  (1) 
 
where <(•)> denotes the expectation or statistical mean 
of (•), v'i = vi - <vi> and vi = v(xi). The velocity vector 
v'i can be projected onto the l-direction along vector xj - 
xi (from point xi to point xj) and onto the t-direction 
that is perpendicular to the l-direction with positive to 
the left (see Fig. 1). The resulting components are 
denoted by li and ti, respectively. These two 
components are related to v'i = (u'i, v'i)T by (li, ti)T = 
Rv'i where R = R(α) is the rotational matrix that rotates 



 

the x-axis to the l-direction and α ≡ tan-1[(yj - yi)/(xj - 
xi)] is the angle of the rotation, measured positively 
counterclockwise (see Fig. 1).  
 Under the assumed homogeneity and isotropy, the 
canonical form of the covariance tensor defined by C ≡ 
<li, ti)(lj, tj)T> is diagonal and invariant with respect to 
translations and rotations of the system of points xi and 
xj. This implies that C = C(r) = diag[Cll(r), Ctt(r)] is 
independent of α, where Cll(r) ≡ <lilj>, Ctt(r) ≡ <titj>, 
and r = |xi - xj| = [(xj - xi)2 + (yj - yi)2]1/2 is the 
horizontal distance between the two points. The four 
component equations of Cvv(xi, xj) = R(α)C(r)RT(α) 
yield explicit expressions for the four components of 
Cvv [see Eq. (2.4) of Xu et al. 2007]. 
 

 
 
Fig. 1. Velocity vectors (bold arrows denoted by v'i and 
v'j), their radial components (hollow arrows denoted by 
vr'i and vr'j), l-components (thin arrows denoted by li 
and lj), and t-components (thin arrows denoted by ti and 
tj) at two correlated points xi = (xi, yi) and xj = (xj, yj). 
Angles α, βi and βj are defined in the text. The two 
black dots mark the locations of radar A and radar B at 
xA and xB, respectively. 
 
2.2 Radial-velocity Error Covariance Function 
 As shown in Fig. 1, with respect to radar A at xA, 
the radial component of v'i = (u'i, v'i) at xi is given by 
vr'i = u'icosβi + v'isinβi where βi = tan-1[(yi – yA)/(xi – 
xA)]. Similarly, with respect to radar B at xB, the radial 
component of v'j = (u'j, v'j) at xj is given by vr'j = 
u'jcosβj + v'jsinβj where βj = tan-1[(yj – yB)/(xj – xB)]. 
By using these expressions, the covariance function of 
vr' can be obtained in the following form: 
 
 Crr ≡ <vr'ivr'j> = [C+(r)cosβ- + C-(r)cosβ+]/2. (2) 
 
where C+(r) = Cll(r) + Ctt(r), C-(r) = Cll(r) - Ctt(r), β- = 
∆βi - ∆βj, β+ = ∆βi + ∆βj, ∆βi = βi - α and ∆βj = βj - α. 
Note that ∆βi (or ∆βj) is the angle of vector xi (or xj) 
with respect to vector xj - xi (measured positive 
counterclockwise), while β- = ∆βi - ∆βj = βi - βj is the 
angle of vector xi with respect to vector xj. This result 

and its derivation are essentially the same as in Eq. 
(2.6) of Xu and Gong (2003) except that βi and βj are 
defined with respect to two different radars. If the two 
radial velocities at points xi and xj are observed by the 
same radar, then xA = xB and the result in Eq. (2) 
reduces to that in Eq. (2.6) of Xu and Gong (2003). For 
given radars, Crr depends on the function forms of 
Cll(r) and Ctt(r). These function forms can be estimated 
from the partitioned innovation covariance as shown in 
Xu et al. (2007). The method is reviewed briefly in the 
next subsection. 
 
2.3 Innovation Covariance Partition 
 In addition to the basic assumptions stated in 
section 2.1 for the background wind error, radar radial-
velocity observation errors are assumed to be (i) not 
cross-correlated with background errors and (ii) not 
auto-correlated when r > ro, where ro is the range of 
observation error correlation. The second assumption 
should be valid as long as ro is properly selected (based 
on the structure of binned innovation covariance in the 
vicinity of r = 0). This assumption considers the 
possible observation error correlation between 
neighboring or nearby beams or gates, and thus is a 
more relaxed condition than assumed in the 
conventional innovation method. As explained in the 
introduction of Xu et al. (2007), radar instrumentation 
errors may be weakly or moderately correlated between 
adjacent beams or adjacent gates, but the correlation 
decreases rapidly to near zero beyond two beams or two 
range gates. Radar sampling errors may be also 
correlated between partially overlapped radar resolution 
volumes. Thus, the correlation range ro for the 
observation (instrumentation plus sampling) error could 
be several times as large as the beam width or range 
gate distance.  
 With the above assumptions, the innovation 
correlation (that is, the normalized innovation 
covariance) can be partitioned as follows  
 

         Crr/σd2 for r ≥ ro  
  <didj> =    
        (Crr + Crro)/σd2 for 0 ≤ r < ro, (3) 
 
where di = (vrdi - <vrdi>)/σdi is the normalized 
innovation at the i-th observation point xi, vrdi = vroi

 - 
vrbi is the innovation obtained by subtracting the 
background radial wind vrbi from the observed radial 
velocity vroi at the i-th observation point, σdi2 = <(vrdi - 
<vrdi>)2> is the innovation variance computed at the i-
th observation point, σd2 is the averaged innovation 
variance computed from σdi2 over all observation 
points, and Crro denotes the radar radial-velocity 

 



 

observation error covariance. The statistical mean on 
the left-hand side of Eq. (3) is given by the time mean 
computed from the time series of the normalized 
innovations for each qualified pair of observation 
points. (A pair is qualified only if the time series of didj 
covers at least 60% of the total 55 time levels).  
 The background error covariance Crr in Eq. (3) is 
modeled by Eq. (2) with C+(r) and C-(r) expressed by 
truncated spectral expansions [see Eq. (3.2) of Xu et al. 
2007]. According to Eq. (3), C+(r) and C-(r) can be 
estimated by fitting the spectral expansion of Crr/σd2 to 
the innovation correlation <didj> over the range of ro ≤ 
r ≤ D where D is the maximum range of background 
error correlation. For the background fields produced 
by analyses of independent observations from another 
radar in Xu et al. (2007), D is about 50 km and can be 
covered by innovation data obtained from a single 
radar. In this study, the background fields are provided 
by WRF-NMM model predictions, so D is much larger 
than 50 km and cannot be covered by single-radar 
innovation data. Because of this, radial-velocity 
innovation data are collected from six radars to estimate 
the background wind error covariance in this study. 
 As shown in Eq. (4.1) of Xu et al. (2007), Crr in 
Eq. (2) reduces approximated to a quadratic function of 
r in the small-scale range (r ≤ 10 km). By fitting this 
quadratic function to innovation correlation data 
obtained from a single Doppler radar over the small-
scale range of ro ≤ r ≤ 10 km, the background error 
variance can be estimated by extrapolating the 
quadratic function from r = ro to r = 0, and then the 
observation error variance can be estimated by 
subtracting the background error variance from the 
innovation variance according to Eq. (3). The residuals 
of the fitting (obtained by subtracting Crr/σd2 from the 
innovation correlation) can be used to estimate the 
observation error covariance Crro over the unfitted 
range of 0 ≤ r ≤ ro according to Eq. (3). The observation 
error covariance function Crro can be modeled similarly 
as the background error covariance Crr, but the spectral 
expansions should now represent C+o(r) and C-o(r) and 
thus diminish rapidly as r increases toward ro. In other 
words, C+o(r) and C-o(r) should be compactly 
supported and confined within the range of 0 ≤ r ≤ ro 
(instead of 0 ≤ r ≤ D).  
 
3. INNOVATION DATA 

3.1 Observation and Background Data 
 The radial-velocity observations used in this study 
were collected from six radars (KINX, KLZK, KSGF, 
KSRX, KTLX and KVNX as shown in Fig. 2) on 
05/21/2005 under a clear but windy weather condition. 
Each radar scanned roughly every 10 minutes per 

volume with radial-velocity data collected at high 
spatial resolutions: 0.25 km in the radial direction and 
near 1o in the azimuthal direction. Technically the 
radial range coverage is 230 km for each radar, but 
significant echoes and radial-velocity measurements 
were available mainly within 100 km even for scans at 
the lowest elevation angle (= 0.5o) from each radar (see 
Fig. 2). Under such a clear weather condition, the data 
coverage reduces rapidly as the elevation angle 
increases. The scans used in this study are thus limited 
to the five lowest elevation angles (that is, 0.5, 1.5, 2.5, 
3.5 and 4.5 degree for most cases). Since migrating-
bird contaminations are detected for the nighttime scans 
(Zhang et al. 2005; Liu et al. 2005), only daytime scans 
(from 13:00 to 24:00 UTC) are used. After dealiasing 
(Gong et al. 2003) and quality control, radial-velocity 
volume scans are selected at 55 time levels.  
 The background wind fields were provided by 
WRF-NMM 3-hour forecasts on a 321x321x61 E-grid 
with a sigma vertical coordinate and 8 km horizontal 
resolution over the central US. The background wind 
fields are interpolated onto 55 time levels in 
synchronization approximately with the radial-velocity 
volume scans from the six radars. The synchronized 
background vector winds are then interpolated in space 
to each radar observation point and projected onto the 
radar beam direction to obtain the background radial 
wind. By subtracting the synchronized and interpolated 
background radial wind from their respective 
observations in the observation space, radial-velocity 
innovation data are generated at the 55 time levels in 
the three-dimensional space covered by volume scans 
from the six radars.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Sampled radial-velocity images at 0.50 elevation 
angle from the six radars (KINX, KLZK, KSGF, 
KSRX, KTLX and KVNX) on 05/21/2005. The circles 
show 250 km range rings from each of the six radars. 
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3.2 Innovation Correlation Data Binning  
 The innovation data are confined in vertical 
between z = 0.2 and 2.2 km. This depth is equally 
divided into five contiguous layers centered at z = 0.4, 
0.8, 1.2, 1.6 and 2 km, respectively, above the ground 
level. Within each layer, the statistical mean of didj, that 
is, <didj> on the left-hand side of Eq. (3) is computed as 
the time mean of didj for each qualified ij-pair of 
observation points. A ij-pair is qualified only if the time 
series of didj cover at least 60% of the total 55 time 
levels. The computed innovation correlation data clouds 
are then binned every 0.25 km in r, every ±0.1 for 
|cosβ-| < 0.9 and |cosβ+| ≤ 0.9, and every 0.1 for 0.9 ≤ 
|cosβ-| ≤ 1 and 0.9 ≤ |cosβ+| ≤ 1. The lowest layer (z = 
0.4 ± 0.2 km) has the largest number of qualified pairs. 
The number of qualified pairs in each bin box in this 
lowest layer is plotted as discrete functions of r in Fig. 
3 for three sets of bin intervals in the vicinities of (i) 
cosβ- = 1 and cosβ+ = 1, (ii) cosβ- = 1 and cosβ+ = 0, 
and (iii) cosβ- = 1 and cosβ+ = -1. The innovation 
correlation (averaged in each bin box) is plotted as 
discrete functions of r in Fig. 4 for the same three sets 
of cosβ- and cosβ+ as in Fig. 3. 
 As shown in Figs. 3 and 4, there is no qualified 
innovation data pair over the middle range between 40 
< r < 110 km. Over the far range between 100 < r < 250 
km, all the innovation pairs are formed by observations 
from two different radars and the number of qualified 
pairs in a bin box can rarely exceed 5000. Over the near 
range of r < 40 km, the innovation pairs are formed by 
observations from a single radar and the number of 
qualified pairs in a bin box can be very large 
(occasionally even beyond the plotted range 60000).  
 
4. ESTIMATED ERROR STATISTICS 

4.1 Background Error Covariance 
 The background wind error covariance functions 
C+(r) and C-(r) can be estimated for each layer by the 
two-step fitting method of Xu et al. (2007). In the first 
step, the background (component) wind error variance 
(denoted by σ2) is estimated as the value of Crr at r = 0 
by fitting the quadratic-function form of Crr/σd2 to the 
binned innovation correlation data points over the range 
of 10 km ≥ r ≥ ro (= 2 km) according to Eq. (3). In the 
second step, the truncated spectral expansions of C+(r) 
and C-(r) are estimated by fitting Crr/σd2 to the binned 
innovation correlation data points over the range of ro ≤ 
r ≤ 250 km according to Eqs. (2) and (3). However, due 
to the general lack of qualified pairs over the far range, 
all the binned innovation correlation data are used in 
the fitting in this study. 
 Three fitted curves of Crr/σd2 are plotted in Fig. 4 
for the three sets of cosβ- and cosβ+. As shown, the 

three curves follow the innovation correlation data 
reasonably well, although the accuracy of the estimated 
functions may be adversely affected by the absence of 
qualified pairs over the middle range. As the vertical 
layer goes higher from z = 0.4 ± 0.2 km to z = 0.8, 1.2, 
1.6 and 2 ± 0.2km, the lack of qualified pairs becomes 
more serious and the estimate appears to be less 
accurate (not shown). To alleviate this problem, more 
qualified innovation data need to be sampled over 
longer time period in future studies. Nevertheless, the 
intercept point of the fitted curves of Crr/σd2 at r = 0 in 
Fig. 4 appears to yield a reasonably good estimate of 
σ2/σd2 (≈ 0.27).    

 
Fig. 3. Number of qualified pairs in each bin box over 
the range of 0 ≤ r ≤ 250 km for three sets of bin 
intervals in the vicinities of (i) cosβ- = 1 and cosβ+ = 1, 
(ii) cosβ- = 1 and cosβ+ = 0, and (iii) cosβ- = 1 and 
cosβ+ = -1 in the lowest layer (z = 0.4 ± 0.2 km). 
 
 

 
Fig. 4. Binned innovation correlation data points over 
the range of 0 ≤ r ≤ 250 km for the same three sets of 
cosβ- and cosβ+ bin intervals as in Fig. 3. Three fitted 
curves of Crr/σd2 are plotted for the three sets of cosβ- 
and cosβ+. 



 

 The estimated background error correlation 
functions in the lowest layer are plotted in Fig. 5, where 
R+(r) ≡ C+(r)/C+(0), R-(r) ≡ C-(r)/C+(0), and C+(0) = 
2σ2 is the background vector wind error variance. 
According to Eqs. (4.4)-(4.5) of Xu and Wei (2001), the 
estimated covariance function C+(r) can be partitioned 
into three parts, that is, 
 
  C+(r) = C0 + Cdiv(r) + Crot(r), (4) 
 
where C0 is the unresolved large-scale part, Cdiv(r) is 
the divergent part, Crot(r) is the rotational part. The 
correlation function R+(r) can be partitioned in the same 
way. Here, for simplicity, we can further and equally 
partition C0 and thus define the divergent and rotational 
parts of the correlation function by Rdiv ≡ [C0/2 + 
Cdiv(r)]/C+(0) and Rrot ≡ [C0/2 + Crot(r)]/C+(0), 
respectively. As shown in Fig. 5, the estimated Rdiv and 
Rrot have similar shape but slightly different 
amplitudes. The amplitude of Rdiv is slightly larger than 
that of Rrot, and this feature is dynamically consistent 
with the enhanced flow divergence in the boundary 
layer.  
 
4.2 Refined Error Variance Estimation  
 As shown in Fig. 4, the innovation correlation data 
points increase rapidly towards 1 at r = 0. These rapid 
increases are caused by correlated observation errors 
within the range of r < ro according to Eq. (3). By 
setting r = 0 in Eq. (3), we have Crro(0) = σo2 = σd2 - 
σ2, so the radar radial-velocity observation error 
variance σo2 can be estimated by subtracting the 
estimated background error variance σ2 from the 
innovation variance σd2. The estimated σo2, however, is 
an averaged observation error variance for the six 
radars, although the same procedure was used in Xu et 
al. (2007) to estimate σo2 for single-radar radial-
velocity observations at the lowest tilt.  
 In this section, the above procedure is applied to 
innovation data collected separately from each radar in 
each vertical layer. In this case, the innovation 
correlation data binning strategy can be refined and 
made simpler and more efficient than that used in 
section 4.1 (and in Xu et al. 2007). Note that a set of 
innovation data collected in a selected vertical layer 
from single-radar scans at a selected tilt is confined in a 
circular area (between two circles) on the selected tilt. 
In our case, each set of innovation data collected from 
single-radar scans at the 5 lowest tilts is confined in 5 
circular areas in each selected layer. Such a set of 
innovation data can be simply paired for short 
separations in only two directions; that is, (i) the radial 
direction along each radar beam with r ≤ 10 km and (ii) 

the azimuthal direction along each range circle with |β-| 
≤ 10o, where β- is defined Eq. (2). For short separations 
(with r ≤ 10 km or |β-| ≤ 10o), the binned innovation 
correlation patterns in these two directions can be 
expressed by [Cll + Cllo]/σd2 and [Ctt + Ctto]/σd2, 
respectively. Here, as explained in section 2.3, the 
background covariance functions Cll and Ctt can be 
modeled by quadratic functions of r and |β-|, 
respectively. 
 

 
Fig. 5. Estimated background wind error correlation 
functions in the lowest layer ((z = 0.4 ± 0.2 km).  
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Fig. 6. Estimated vertical profiles of σ (solid) and σo 
(dashed) over KTLX (in blue) and KINX (in red). 
 
 
 With the above refinements, the background and 
observation variances can by estimated efficiently in 
using only the first step of the two-step fitting method 
mentioned in section 4.1. Examples of the estimated σ 
and σo are plotted as functions of height (over the five 
vertical layers) for KTLX and KINX radars in Fig. 6. 
As shown, the two radars have roughly the same 



 

vertical profile of σo, but the background winds have 
quite different vertical profiles of σ above the two 
radars.  
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Fig. 6. Estimated (a) Rllo(r) and (b) Rtto(|β-|) for KTLX 
(in blue) and KINX (in red) observations in the lowest 
layer. Symbols + and × show the rescaled data from 
KTLX and KINX, respectively. 
 
 
4.3 Observation Error Correlation 
 By subtracting the estimated quadratic-function 
values of Cll/σd2 and Ctt/σd2 from their respective 
innovation correlation data binned in the radial and 
azimuthal directions, we can obtain binned data for 
Cllo/σd2 and Ctto/σd2, respectively. These binned data 
can be re-scaled by σo2 to yield binned data for Rllo(r) ≡ 
Cllo(r)/σo2 and Rtto(|β-|) ≡ Ctto(|β-|)/σo2, respectively. 
Here, by definition, Rllo(r) is the observation error 
correlation between neighboring gates on the same 

beam and Rtto(|β-|) is the observation error correlation 
between neighboring beams on the same range circle. 
As explained in section 2.3, the Rllo(r) and Rtto(|β-|) can 
be modeled by spectral expansions within the ranges of 
0 ≤ r ≤ ro (= 2 km) and 0 ≤ |β-| ≤ βo (= 3o), respectively. 
 The estimated function forms of Rllo(r) for KTLX 
and KINX observations in the lowest layer are plotted 
along with their fitted rescaled data in Fig. 7a. As 
shown, the estimated function forms of Rllo(r) are 
similar for the two radars, although the small-amplitude 
oscillations in these functions appear to be spurious 
miss-fittings (caused by spectral truncations). The 
estimated function forms of Rtto(|β-|) for KTLX and 
KINX observations in the lowest layer are plotted along 
with their fitted rescaled data in Fig. 7b. As shown, the 
estimated function forms of Rtto(|β-|) are nearly 
identical for the two radars, and they both fit their 
respective rescaled data very closely. 
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Fig. 8. Vertical profiles of estimated du, dv and |(du, 
dv)| over KTLX and KINX areas, where (du,dv) 
denotes the (observation minus background) wind bias 
difference .  
 
 
4.4 Bias Difference Estimation 
 When the normalized radial-velocity innovation is 
computed in Eq. (3), the innovation mean is subtracted 
from the innovation at each observation point. By 
definition, the radial-velocity innovation mean at the i-
th observation point is given by <vrdi> = <vroi>

 - <vrbi>, 
where <vroi> is the radial-velocity observation bias and 
<vrbi> is the radial-velocity background bias at the i-th 
observation point. By using the (modified and classic) 
combined VAD method of Gong et al (2003), the 
radial-velocity innovation mean field from each radar 
can be used to estimate the bias difference between the 



 

observation-estimated horizontal (vector) wind and 
background horizontal wind at each vertical level. The 
estimated bias differences are plotted as functions of 
height for KTLX and KINX radars in Fig. 8. As shown, 
the vector bias differences are quite different over the 
two radars but their absolute values have the same order 
of magnitude as the estimated observation and 
background error standard deviations (see Fig. 6).  
 
5. CONCLUSIONS 
 In this paper, the method of Xu et al. (2007) is 
extended and used to estimate the averaged radar radial-
velocity observation error variance and background 
wind error covariance from radial-velocity innovation 
data collected from six radars during the daytime period 
on 05/21/2005 under a clear but windy weather 
condition. The background wind fields were provided 
by WRF-NMM 3-hour forecasts (on a 321x161x61 E-
grid with a sigma vertical coordinate and 8 km 
horizontal resolution) over the central US. The results 
show that the observation and background) error 
variances can be reasonably well estimated along with 
the background wind error correlation functions in the 
boundary layer, although the accuracy of the estimated 
correlation functions may be adversely affected by the 
lack of qualified innovation data for the middle-range 
separations (between 40 < r < 110 km for the lowest 
layer within z = 0.4 ± 0.2 km). To alleviate the problem 
caused by insufficient data coverage, additional 
innovation data need to be collected (over multiple 
days) and used in future studies.  
 The method is also refined to estimate the radial-
velocity observation error correlation functions and the 
vertical profiles of observation and background error 
standard deviations over each radar area. The estimated 
vertical profiles show that the radial-velocity 
observation errors are about the same (≈ 2 m s-1) for 
different radars and decrease generally with height in 
the boundary layer. The background wind error is also 
about 2 m s-1 but have different vertical variations at 
different radar areas. The estimated observation error 
correlation functions have similar shapes for different 
radars, and they all show that radar radial-velocity 
observation errors are correlated in two different ways 
between neighboring range gates and between 
neighboring beams.   
 Observation-minus-background (vector) wind bias 
difference is estimated as a function of height over each 
radar area. The estimated bias differences are 
significantly different over different radar areas. Their 
absolute values have the same order of magnitude as 
the estimated observation and background error 
standard deviations. How to estimate the observation 
and background biases based on the estimated bias 
differences is an unresolved problem and requires more 
studies with additional assumptions. 

Acknowledgements. The research was supported by the 
ONR Grant N000140410312 to the University of 
Oklahoma and by FAA contract IA# DTFA03-01-X-
9007 and NOAA HPCC program to NSSL. Funding 
was also provided to CIMMS by NOAA/Office of 
Oceanic and Atmospheric Research under NOAA-
University of Oklahoma Cooperative Agreement 
#NA17RJ1227, Department of Commerce. 
 
 
REFERENCES 

Daley, R. 1991: Atmospheric Data Analysis. Cambridge 
University Press, 457 pp.  

Gong, J., Wang L. and Xu, Q. 2003: A three-step 
dealiasing method for Doppler velocity data quality 
control. J. Atmos. & Oceanic Technol., 20, 1738-
1748.  

Hollingsworth, A. and Lönnberg, P. 1986: The 
statistical structure of short-range forecast errors as 
determined from radiosonde data. Part I: The wind 
field. Tellus, 38A, 111–136. 

Liu, S., Xu, Q. and Zhang, P. 2005: Quality control of 
Doppler velocities contaminated by migrating 
birds. Part II: Bayes identification and probability 
tests. J. Atmos. Oceanic Technol.  22, 1114-1121.  

Xu, Q. and Gong, J. 2003: Background error covariance 
functions for Doppler radial-wind analysis. Q. J. R. 
Meteorol. Soc., 129, 1703-1720. 

Xu, Q., K. Nai, and L. Wei, 2007: An innovation 
method for estimating radar radial-velocity 
observation error and background wind error 
covariances. Quart. J. Roy. Meteor. Soc., 133, 407-
415. 

Xu, Q. and Wei, L. 2001: Estimation of three-
dimensional error covariances. Part II: Analysis of 
wind innovation vectors. Mon. Weather Rev., 129, 
2939-2954. 

Xu, Q., Wei, L., VanTuyl A. and Barker, E. H. 2001: 
Estimation of three-dimensional error covariances. 
Part I: Analysis of height innovation vectors. Mon. 
Weather Rev., 129, 2126–2135. 

Zhang, P., Liu, S. and Xu, Q. 2005: Quality control of 
Doppler velocities contaminated by migrating 
birds. Part I: Feature extraction and quality control 
parameters. J. Atmos. Oceanic Technol., 22, 1105-
1113.  

 
 
 


