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. INTRODUCTION 

eather forecasts are not only provided by 
ational weather services, but by many 
rivate weather forecast companies, as well.  
uch of this information is freely available to 

he general public.  There are a wide 
umber of potential forecast sources 
vailable to the public.  Do the forecasts of 
ational weather services still hold up well to 

he other providers? 

his presentation examines the precipitation 
nd temperature forecast performance of a 
umber of major forecast providers for the 
ity of Winnipeg, Manitoba, Canada.  Their 
erformance is weighed against the 
xpectations of the public as indicated in 
ublic surveys.   

he commercial providers chosen were 
icked from a larger group.  The final group 
f providers assessed represented the 
etter performers and encompassed a broad 
ange of NWP input. 

he temperature forecasts were assessed 
or the day-time high.  The primary 
ssessment used was Mean Absolute Error, 
ince the end user normally compares the 
redicted values versus actual values to 
scertain error. 

he precipitation forecasts from each 
rovider were categorized and these 
ategories were assessed.  The categorical 
orecasts were assessed against the 
bserved precipitation. 

inally, this paper examines one approach 
hat could significantly improve the utility of 
edium to long range temperature 

orecasts. 

 
 
2. METHODOLOGY 
 
Choosing the forecast providers 
 
Over a dozen commercial providers were 
used at various times throughout the project.  
Many were dropped for one of three 
reasons: 
 

1) the forecasts were routinely of poor 
quality 

2) the forecasts were routinely 
unavailable 

3) the forecasts were essentially identical 
to another provider 

 
In the end, only 4 providers in addition to 
Environment Canada (EC) were used.  
Since the aim of this paper is not to critique 
any of the 4 unofficial forecast providers, 
their names will not be used in the document 
or references.  The providers did represent 
companies from a number of countries who 
incorporated information from a number of 
major national weather service organizations 
into the forecast process. 
 
The forecast approach for each provider 
typically contained some level of automation 
and human intervention.  EC’s forecasts 
typically had significant human intervention 
for days 1-2 while the forecasts beyond day-
2 were routinely automated using model 
output statistics (MOS) and performance 
optimizing algorithms. 
 
Some providers were fully automated relying 
solely on the information provided by the 
national weather service of their choice.  
Other providers further modified this 
information automatically with their own 
algorithms, etc., or at times with selective 
intervention by a meteorologist.  Some 
providers could select the national weather 
service dataset “of the day”, or even use one 
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dataset for part of their forecasts and 
another dataset for another part. 
 
Initially, the project was simply an 
assessment of Environment Canada’s 
official forecasts in comparison to readily 
available forecasts from commercial 
providers.  Early in the project it was 
decided that this was a good opportunity to 
test the old forecasters’ trick of the “poor 
man’s ensemble” (PME).  Normally, this 
ensemble approach is used for the 
averaging of independent operational 
numerical weather prediction (NWP) 
models.  For this project, the PME, referred 
to in the project as “Pat’s Ensemble”, is the 
mean of the model-based forecasts, not the 
direct output from the models themselves.  
Climatology was used as a control. 
 
Temperature verification 
 
The project used a user-based approach.  
The forecasts had to be meaningful to the 
public.  Public surveys (e.g. Decima 
Research Inc., 2002) indicated that the 
majority of the public used the morning 
forecasts as their primary decision-making 
information.  Therefore, all temperature 
forecasts had to arrive by 0900 local time to 
be used in the project.   
 
Environment Canada produces forecasts at 
0500 local time. Most provider forecasts 
arrived in the following 4 hours.  If no new 
forecasts were available at 0900 local time, 
the existing forecasts were used.  Forecasts 
were recorded for all day-time highs 
provided.  Some providers only had 
forecasts to day-5 while some went to day-
15.  For verification purposes, the day-time 
high was assumed to the highest 
temperature recorded between 0500 – 2400 
local time.  This approach was used for two 
reasons: 
 

1) The same public surveys showed that 
the public’s decision-making is made 
primarily in the morning and that they 
expect the “day-time” high will occur 
during the day and not overnight. 

2) To ensure that the forecasts for day-1 
and the following days were equally 
assessed, the 0500 local time forecast 
for day-1 requires all subsequent 
forecasts have the same period of 

time.   This point was generally moot 
since almost all day-time highs 
occurred between 0500-2400 local 
time over the course of the 
experiment. However, when 
exceptions occurred, this rule was 
applied. 

 
The original project assessed the daytime 
high temperature forecasts for five Canadian 
Prairie cities (Winnipeg, Regina, Saskatoon, 
Calgary, and Edmonton).  The official 
forecasts from Environment Canada were 
used plus the forecasts from a small number 
of commercial providers whose information 
was readily available from the Internet. 
 
After approximately 6 months, it was clear 
the performance of temperatures forecasts 
was essentially the same for all 5 cities.  To 
reduce workload, four of the cities were 
dropped from the project, leaving only the 
forecasts for the city of Winnipeg being 
verified. 
 
The measure of performance was also user-
based.  Typically, the public will assess a 
forecasts performance as the difference 
between the forecast and what was 
observed.  Temperature bias tends to be 
secondary.  The Mean Absolute Error (MAE) 
of the temperature forecasts most closely 
matches the public’s assessment and this 
approach was used in this project.  Other 
statistics can be derived from the dataset, 
but they will not be provided here. 
 
Precipitation verification 
 
Canadian public surveys (e.g. Decima 
Reseach Inc., 2002) indicate the day-time 
highs and precipitation forecasts are the 
most important forecast elements.  Over a 
year into the project, precipitation forecasts 
were added to the assessment. 
 
Assessing precipitation forecasts turned out 
to be rather challenging.  While each 
provider readily provides a daytime high, the 
each have a different approach to 
communicating precipitation.  Some only 
use icons, some use descriptions, some use 
a mix of icons and descriptions, while others 
may use probability of precipitation (POP).   
 



The Canadian public attributes POP and 
descriptive precipitation terms to specific 
precipitation events (Environics, 1999).  All 
forecast providers were contacted to 
understand what was meant by their icons, 
descriptions, etc.  Sometimes, the 
commercial providers treated this 
information as “trade secrets”.  Still, there 
was adequate information provided to help 
interpret their precipitation forecasts.  With 
this information, a period of assessment was 
employed to gain familiarity with approaches 
the providers used to communicate their 
precipitation forecasts.  From that 
assessment, a consistent process was 
defined.  The precipitation approach breaks 
the forecasts down into 6 categories: 
 

0 <30 % POP (no precipitation 
mentioned) 

1 30 to <50% POP (e.g. chance of 
showers/flurries) 

2 50 to <80% POP (e.g. scattered 
showers, chance of rain) 

3 ≥ 80% POP (e.g. showers, snow, 
periods of rain) 

4 ≥ 60% of warning criteria amounts 
(e.g. “heavy” rain, specific amounts 
mentioned.) 

5 warning level accumulations (e.g. 
“heavy” snow, specific amounts 
mentioned) 

 
The categorization of the observed 
precipitation followed the following 
guidelines: 
 

0 no precipitation 
1 brief precipitation with minimal 

amounts or observations reporting 
precipitation nearby 

2 light precipitation reported for at 
least 2 hours 

3 measurable (at least 1 mm/1 cm) 
precipitation and reported for 3 or 
more hours  

4 ≥ 60% of warning criteria measured 
5 warning level accumulations 

measured 
 
The assessment was similar to the 
temperature approach.  The period of 0500 
to 2400 local time was used for all forecast 
periods.  Icons and precipitation descriptions 
were changed to a POP and the highest 

POP category for the day was used as the 
category forecast. 
For precipitation, Winnipeg typically 
experiences measurable precipitation for 
30%-40% of the days annually.  If one 
forecast no precipitation all year, you would 
be correct 56%-70% of the time.  For dry 
years, your performance would be even 
better.  During the 500+ days of this project, 
the 500+, the weather was actually wetter 
than normal, with some form of precipitation 
52% of the time. Climatology would suggest 
a slight chance of precipitation (30%-40%) 
every day.  Both climatology and “no 
precipitation” (category 0) were used for 
comparison. 
 
Since the public uses these categories in 
their decision-making, the difference 
between the predicted category and the 
observed category was the measure of 
error.  A linear relationship was used for this 
error.  Again, other traditional measures 
could be utilized, but none are presented 
here. 
 
Daily forecasts of maximum temperature 
and POP were collected for over 500 days 
of data were collected with each day having 
a 5-day forecast for each provider.  Each 
forecast for days 1-5 were verified for both 
temperature and precipitation. 
 
 
3. RESULTS 
 
Temperature 
 
Figures 1 and 2 summarize the temperature 
performance of EC’s forecasts, 4 internet 
forecast providers, PME, and climatology.  
The project assessed the performance only 
out to day-5 because all providers produced 
forecasts for this period.  Some providers 
extended their forecast for varying lengths 
beyond day-5 and their performance was 
also captured and presented here.  
However, only the results for day-1 to day-5 
should be considered to have complete and 
equal datasets. 
 
Temperature forecasts are in Celsius and 
recent public surveys (e.g. Decima, 2002) 
note the the public can tolerate errors up to 
4 degrees Celsius.  The majority of the 
public considered forecast errors within 2 



degrees Celsius were very good while errors 
greater than 4C were unacceptable. 
 
For the day-1 (today) and day-2 (tomorrow)  
forecasts, the best performer was the 
human-produced official forecasts by EC.  
The commercial providers had a larger MAE 
of almost 1 degree Celsius.  This should be 
expected as the forecasters’ role is to bring 
to bear additional resources to enhance the 
automated output.  This advantage 
disappears by day-3 and the EC 
performance is comparable to the others.  
By day-5 all providers have crossed into the 
“unacceptable MAEs of 4 degrees C. 
 
Winnipeg is in the heart of the North 
American continent and it faces the typical 
extremes of a temperate continent air mass.  
Daytime highs can be -30C in the winter and 
over +35C in the summer.  Wide ranges in 
daily maximum temperature mean the 
climatology tends to be a very poor 
predictor.  The average MAE error for 
climatology in the non-summer months 
ranged from approximately 5C in autumn to 
approximately 7C in winter.  The winter 
forecasts also suffered with unacceptable 
performance being reached in the day-3 to 
day-4 period, while spring and autumn 
climatology performance exceeded this 
threshold near day-5 and day-6, 
respectively. 
 
During the summer, climatology proved to 
be a strong performer during this project 
with a MAE only near 3C.  Climatology, 
therefore, would provide acceptable 
forecasts for the public in most situations, 
and it outperformed all providers beyond 
day-4.  Other than the summer period, most 
providers outperformed climatology out to 
day-10. 
 
It is interesting to note that the performance 
of all providers seems to level off around 
day-8, as if hitting some sort of “predictability 
wall”. 
 
Like EC, the PME was a very strong 
performer, outperforming everyone but EC 
for day-1 and day-2.  Beyond day-2, the 
PME dominated, consistently outperforming 
the rest over the entire 10-day period.  More 
importantly, the PME had “acceptable” 

forecasts out day 6-7 for most months, the 
longest of the group. 
 
The PME also had more consistent 
predictions from forecast to forecast.  The 
PME forecasts tended to trend to the correct 
solution over time, whereas the provider 
forecasts were often prone to more 
pronounced changes in their day-to-day 
forecasts, particularly beyond day-3.  
 
Precipitation 
 
Figure 3 and Table 1 show the distribution of 
each category forecast for each provider.  
For the majority of the forecasts, the lowest 
probability for precipitation was forecast.  
This matches climatology since, as indicated 
earlier, the majority of the days over the 
course of the year in Winnipeg have no 
precipitation.   
 
Provider #2 was a notable exception.  Its 
dominant forecast was the 30% to <50% 
category.  If fact, this provider was the least 
prone to forecast a dry day.   
 
Provider #5 rarely forecast category 2 and 
this was an artifact of their dissemination 
system.  They used the “dominate weather 
of the day” approach and a lower chance of 
precipitation was rarely deemed dominant.  
The result was the high frequency of 
category 0 days and the highest frequency 
of category “4” (≥ 80% POP).  However, 
their approach also meant that they were 
most prone forecast for the highest POPs 
(category 3) and were the closest to meeting 
the observed frequency in this category. 
 
Provider #3 was most prone to forecast 
precipitation with a probability ≥ 50%. 
   
Environment Canada’s forecasts were the 
only one to have decreasing frequency 
towards higher categories.  However, their 
category 3 forecasts were well under what 
was observed.  Overall, EC’s forecasts had 
a dry bias. 
 
The PME offset these varying biases to also 
produce a decreasing frequency towards 
higher POPs.  However, the result was an 
almost linear reduction rather than a 
significant low POP frequency as reality 
would dictate.  Therefore, the PME tends to 



over-forecast POPs in the middle categories 
while under-forecasting in the extreme 
categories. 
 
Cat. Obs EC 2 3 4 5 PME

0 52.2 67.5 30.0 56.5 64.1 74.9 39.6 
1 14.6 11.7 56.1 14.9 17.5 0.3 32.0 
2 9.1 10.9 9.8 20.6 7.4 8.2 18.1 
3 20.9 9.1 3.7 7.9 10.8 14.9 9.1 
4 1.9 0.6 0.3 0.0 0.3 1.3 1.1 
5 1.0 0.1 0.2 0.0 0.0 0.5 0.2 

Table 1.  Percentage of precipitation forecasts for each 
category per provider versus what was observed 
(Obs.).   
 
Overall, the individual providers were 
unlikely to forecast a near warning or 
warning event with all falling well below the 
observed frequency (Figure 7).  Much of this 
has to do with the reduced amount of detail 
within the forecasts beyond Day-2, 
employed by most providers.  Another factor 
is that warning level information may be 
added in the forecasts not issued in the 
morning.  For Environment Canada, the 
warning information is often added outside 
the normal issue times for the public 
forecasts once the likelihood of the event 
has been assessed.  Still provider “5”, with 
its “dominant weather” approach was most 
likely the one to predict this category.  
Surprisingly, the PME was the second most 
likely, suggesting that on many of these 
days the majority were forecasting high 
category POPs with at least one provider 
forecasting significant amounts. 
 
It terms of performance, Figure  4  shows 
the  categorical error for day-1 forecasts.  
Included in these charts is the performance 
of climatology and the performance of 
simply forecasting no precipitation (category 
“0”).  Generally, there is a high level of 
accuracy simply because most days are dry.  
The figure shows that most providers over-
forecast precipitation.  The PME is the best 
provider overall. 
 
In the medium range, Figure 5 shows the 
performance for Day-3 forecasts.  The 
performance is weaker such that most 
providers do little better in performance that 
simply picking a dry day.  Since climatology 
is usually Category 1 and provider 2 tends 
not to forecast Category 0, both tend to 
over-forecast for dry periods.  In spite of 
that, the majority still tend to under-forecast 

precipitation. PME remains competitive 
though it no longer dominates as in the day-
1 forecasts. 
 
In the longer term, Figure 6 shows the day-5 
forecast performance.  The results are 
similar to the day-3 performance, with the 
majority over-forecasting precipitation and 
with the PME competitive with the group.  
However, overall skill is comparable to the 
controls (climatology and simply forecasting 
dry) other than on days with high POPs. 
 
4. DISCUSSION 
 
This project demonstrated that taking the 
average of temperature forecasts from 
various providers could produce better 
performing forecasts.  This should not be 
unexpected.  Over 30 years earlier, Sanders 
(1973) noted that “consensus” forecasts 
(mean of forecaster forecasts) showed on 
average more skill than any individual 
forecaster.  Forecaster consensus also 
showed some improvement to temperature 
and precipitation forecasts out to day-4, 
though it was noted that this approach could 
hinder day-one quality (Bosart, 1975).  
Indeed, in this project the human forecasts 
were typically best performers for day-1.  
However, this advantage was relatively 
small. 
 
With the growing capabilities of numerical 
weather prediction around that time, Leith 
(1974) proposed that a “Monte Carlo” 
(ensemble) mean was a practical and 
objective approach for NWP.  It could 
produce better skill over the long term by 
reducing small scale variability while 
preserving easy to predict large scale 
features.  Thompson (1977) mathematically 
demonstrated that combining independent 
numerical predictions shows better skill on 
average.  He argued that this approach is 
very similar to the human “consensus” 
approach, but the NWP system would be 
objective. 
 
Gyakum (1986) continued to find that 
consensus temperature and precipitation 
forecasts were “virtually unbeatable” by any 
individual forecaster. 
 
Operational ensemble forecasts emerged in 
the 1990’s.  More concerted efforts were 



made to explore the value of the “poor 
man’s ensemble” (multi-model), especially 
for the potential of a cost-effective 
(time/money) objective standard to measure 
the quality of EPS systems.  In this project, 
the PME required few resources and was 
simply the mathematical average of provider 
output. 
 
Atger (1999) examined a small member 
PME and demonstrated that this approach 
had “impressively high skill”.  Skill over 
standard EPS systems was demonstrated 
beyond 5 days.  This was consistent with 
this project for temperature as the small 
number of members was sufficient to 
produce a consistently better product on 
average.  In fact, when additional members 
were used, there was no significant 
improvement in overall performance; a 
mathematical reality when averaging a large 
number of similar values.  This advantage 
was more limited with precipitation. 
 
Ziehmann (2000) explored the performance 
of a 4 member PME against the ECMWF 
EPS.  She found that while an individual 
EPS member could have the most accurate 
solution, the PME routinely provided the 
better and most consistent solutions.  
Similar results were found by Fritsch et al 
(2000), and Chessa and Lalaurette (2001).  
Often in this project, individual providers 
were the best performing.  Still the 
averaging process ensured that the PME 
was always better than at least one provider. 
 
Ebert (2001a, 2001b) found that a 7-
member PME out-performed the  ECMWF’s 
EPS for precipitation for days 1-2 and 
speculated that this skill would extend 
beyond day-2.  The results in this project 
demonstrated that for some elements, this 
was likely, as the PME’s temperature 
forecast showed skill beyond 5 days.  
However, the PME for precipitation lost its 
advantage by day-3. 
 
Weighting of ensemble members improves 
the ensemble mean (van den Dool et al, 
1994, Woodcock and Engel, 2005), though 
the weighting approach can be challenging 
(Chien et al, 2004).  Eckel and Mass (2005) 
demonstrated the high skilled members add 
the most value to the ensemble while poorer 
performers need to perform well often to be 

of value.  In this project, occasional attempts 
were made to remove an apparent weak 
member to improve the ensemble.   That 
approach was often unsuccessful since 
sometimes the majority of members turned 
out to be in error, particularly for longer 
range forecasts. 
 
But what about extreme weather? It is often 
suggested (e.g. Young, 2002) that ensemble 
means are less sharp and thus are not 
sensitive to extremes.  Mathematically with 
is true, except, of course, when all members 
are forecasting an extreme event.  Still, this 
project found that for precipitation, the mean 
was more likely to forecast a significant 
precipitation more often than the majority of 
providers (Figure 7).  Figure 8 shows the 
categorical error for category 4 (near 
warning) and category 5 (warning level) 
precipitation events.  In general, EC and 
provider 5 forecast these categories the 
most.  This was likely due to EC’s extensive 
human intervention is days 1-2 and provider 
5’s penchant to forecast extremes.  The 
remaining provider forecasts, including the 
PME, were weaker in this area and 
performed very similarly. 
 
Mylne and Robertson (2002) and Arribas et 
al (2005), however, did find that a PME had 
its greatest for probabilistic skill for extreme 
events at T+24.  For this project, Figure 9 
shows the performance of each provider for 
categories 4 and 5 for each forecast period.  
The PME was the second best performer for 
day-1 but it did not exhibit any particularly 
advantage beyond that.   
 
Woodcock and Engel (2005) found that a 
well designed weighting system (bias 
correction and optimal weighting algorithms) 
could overcome some of this insensitivity to 
extremes.  They also noted that the 
ensemble mean is not to be used in isolation 
by forecasters.  Large ensembles are more 
likely to have members capturing extreme 
events than the much smaller PME.  
However, these are likely of lower 
probability.  They are important for 
forecasters to keep in mind and as useful 
information for certain decision-makers. 
 
Beyond the mathematical and statistical 
nuances of a PME, ultimately the quality of 
the output comes down to the value 



perceived by the end user.  Environment 
Canada forecasts are the most widely 
received forecasts by the Canadian public.  
Other forecasts by private providers, 
including some of the providers in this 
project, are also widely used.  The different 
predictions do cause confusion occasionally.  
For many people, all forecast products, 
regardless of the provider, are assumed to 
be official Environment Canada forecasts.  
Depending on who they listen to, the 
forecasts can appear very different.  
Environment Canada receives complaints 
from the public about forecast quality and 
often the source of the problem relates to 
provider confusion.   
 
Another source of criticism is significant 
changes to forecasts, particularly in the 
longer term.  The user makes plans or 
expectations based upon one forecast only 
to have them dashed by a new forecast.  
Sometimes the next forecast flips back to 
the original prediction, giving the impression 
that the forecasters do not seem to 
understand what is going on. 
 
This “flip-flopping” of forecasts is a common 
characteristic of automated medium to long 
range forecasts.  This is because the 
numerical weather models produce 
forecasts true to the data assimilated and by 
the physics encoded within the system.  If 
the new data produces different results, the 
model will dutifully output a new and 
different forecast.  Statistical modification of 
the model output can also introduce new 
changes.  A human forecaster often 
considers the impact of flip-flopping, and will 
try to temper the changes.  However, with 
automated forecasts common by 
commercial providers and beyond day-2 by 
Environment Canada, flipping of forecasts is 
common. 
 
The PME is much less prone to flipping 
since it will offset the various opposing 
forecasts.  Therefore in the longer term, the 
PME is less extreme and it will trend to the 
correct solution over time, as the various 
members of the PME form a consensus.  
The result is a less volatile product that 
forms a “reasonable” solution rather quickly, 
given the public’s willingness to allow some 
measure of error.  Amoung staff at the 
PASPC, this project’s PME continues to be 

produced internally and it is the preferred 
forecast beyond day-2 for temperature. 
 
 
5. SUMMARY 
 
This project examined the performance of a 
number of providers against the 
performance of the official forecast for one 
major city in Canada.  In general, the official 
forecast was the top performer, though its 
advantage was confined to the first two days 
when the weather service’s meteorologists 
could add value.  Since the majority of the 
public uses forecast information for 
decisions in this period, the value of human 
intervention is clear.  The best performer for 
temperature overall was the PME approach.  
It produced good forecasts, as deemed by 
the Canadian public well beyond the 
individual providers 
 
For the most part, all providers provide 
quality precipitation forecasts in the short 
term.  Because of the averaging process, 
the PME tended to over forecast 
precipitation for Winnipeg, which climatology 
had a majority of days with no precipitation.  
Still, the PME performed well for extreme 
precipitation events for the 1st 2 days. 
 
The PME also has value but maintaining a 
level of credibility with the public.  Which the 
forecasts may not be the most accurate, 
they tend to be the “least wrong”, 
consistently.  The PME significantly reduces 
the magnitude of flip-flopping and, instead, 
trends to the correct solution over time. 
 
The value of using different models in an 
ensemble is also evident.  Each brings its 
own bias to the ensemble and the PME 
helps smooth those out.  The PME is a good 
starting point for the public and it is a good 
starting point for forecasters.  Their analysis 
and diagnosis should help them understand 
the likelihood of one solution over another, 
and whether they have enough confidence 
to make an appropriate adjustment from the 
PME.  However, it is important that forecast 
realize that the PME is purely a 
mathematical process and contains no 
meteorology. 
 
Finally, the PME is a simple and cost-
effective way to improve existing forecasts 



beyond day-2.  Trying to improve forecasts 
by continually creating bigger and faster 
ensembles may not be cost-effective.  
Refining a smaller set of multi-modal 
ensemble members to perform better, 
utilizing the PME to improve overall 
performance, and giving forecasters the 
training and tools to excel in the short-term 
forecasts would likely be a far more cost-
effective approach. 
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Figure 1. Temperature forecast performance 
for Environment Canada, 4 commercial 
providers, the PME, and climatology. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Temperature forecast performance 
for EC, the average of the 4 commercial 
providers, PME, and climatology. 
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Figure 3. Categorical precipitation forecasts 
for all providers plus the observed frequency 
of each category. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  Categorical errors for precipitation 
for each provider, climatology and 
forecasting category 0 for day-1. 
 
 
 

 
 
 
 
 
 
 

0
10
20
30
40
50
60
70
80

OBS EC 2 3 4 5 PME

<30%  POP
>30%  - <50% POP
50%  - <80%  POP
80%  - 100%  POP
Near Warning Accum.
Warning level Accum.

C a t e g o r i c a l  Er r o r  D i st r i b u t i o n  -  D a y  1

0

10

20

30

40

50

60

70

80

90

-5 -4 -3 -2 -1 0 1 2 3 4 5

C a t e gor i c a l  E r r or

EC

2

3

4

5

6

PE

" 0"

Nor mal



 D i st r i b u t i o n  o f  C a t e g o r i c a l  Er r o r  -  D a y  3

0

10

20

30

40

50

60

70

-5 -4 -3 -2 -1 0 1 2 3 4 5

C a t e gor i c a l  E r r or

EC

2

3

4

5

6

PE

" 0"

Nor mal

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.  Categorical errors for precipitation 
for each provider, climatology and 
forecasting category 0 for day-3. 
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Figure 6.  Categorical errors for precipitation 
for each provider, climatology and 
forecasting category 0 for day-5. 
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Figure 7.  Frequency of forecasts for 
categories 4 and 5 by each provider, the 
PME and what was observed. 
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Figure 4.  Categorical error for each provider 
when a category 4 or 5 event is observed. 
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Figure 9. Combined mean absolute 
error (per category) for category 4 
and 5 forecasts for each provider for 
days 1-2. 


