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1. INTRODUCTION 

     Radar-based extrapolation utilizes observations 
in an optimal way to generate accurate 
precipitation forecast. Recent advance in data 
assimilation techniques facilitates the use of 
observations in numerical models and leads to the 
improved precipitation forecast. However, they still 
suffer from phase and intensity errors, possibly 
due to imperfect parameterization of various 
physics.  Small phase errors can easily undermine 
the use of the traditional point-by-point skill scores 
(Ebert and McBride 2000). Thus, the separate 
evaluation of phase and intensity errors is 
extremely important to better represent the model 
performance.  In addition, their consistency should 
be evaluated to better understand dynamics and 
parameterization in numerical models. In this work, 
we demonstrate the systematic evaluation of 
model errors (phase and intensity errors) from a 
meso-scale model and their consistency in space 
and time.  Furthermore, we apply a correction 
algorithm of these errors to improve the accuracy 
of model precipitation forecast. This correction 
algorithm assumes the consistency of model 
errors in time and utilizes radar extrapolation 
techniques to advect model errors into the future. 
The applicability of this correction technique at the 
scale of North America is already shown (Lee and 
Zawadzki 2006).   
 

2. Data and model used  

     A meso-scale, real-time, four-dimensional data 
assimilation and short-term forecasting system 
(RTFDDA) has been built upon a high-resolution 
MM5 and the Newtonian Relaxation (nudging) 
scheme. This MM5-RTFDDA incorporates three-
dimensional mosaic radar data to modify the latent 
heat and is cycled every three-hours (Cram et al. 
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2001; Liu et al. 2002; Xu et al. 2005). The mosaic 
reflectivity is first converted into precipitation fields 
and is interpolated into the model grid. Then, the 
precipitation field is nudged into the model and the 
latent heat is modified.  Various other observations, 
such as those from the traditional surface and 
upper air sounding network, mesonet, profilers, 
aircraft reports and satellites, are assimilated 
using an observational nudging approach. 

     A field demonstration of MM5-RTFDDA was 
conducted around Illinois and Indiana areas during 
May 15 – August 31, 2006. This uses three nested 
domains with 45 km, 15 km, and 5 km horizontal 
resolutions. The insertion of radar data is 
performed every 15 minutes up to t0 – 0.25 hours 
and the forecast is made from t0 hours to t0 + 12 
hours. We have used the precipitation forecast at 
the temporal resolution of five minutes and at the 
grid spacing of 5 km by 5 km in the domain of 
about 1000 km by 750 km.  

     Three-dimensional mosaic radar data is 
obtained from the National Mosaic and Next 
Generation QPE project (NMQ; Zhang et al. 2005; 
http://www.nmq.nssl.noaa.gov/). Data from the 
individual radars are first quality controlled and 
then are analyzed into eight tiles from which three-
dimensional continental US grid data are formed 
at the resolution of 0.01 degree in horizontal, 0.25 
km ~ 2 km in vertical, and 5 minutes in time. 
These three-dimensional radar mosaic data are 
used in the nudging. The hybrid surface rain rate 
maps (HSR) are derived from the mosaic by taking 
the lowest non-missing values at each grid column 
and then by applying convective and stratiform R-
Z relationships. The convective and stratiform 
regions are identified from the derived vertical 
profiles of reflectivity. The HSR is used to quantify 
the model errors and to verify the correction 
results. 
 

3. Methodology 

a. Overall procedure 
     The following describes the general procedure of 
correcting phase and intensity errors of model 
precipitation forecasts: 



1) Derive the local initial phase errors at the current 
time, tc using the variational echo tracking  (VET) 
between HSR and model precipitation fields. 

2) Derive the local phase errors at previous time 
steps (tc – nΔt, ···, tc – Δt). This could be done by 
applying the VET between HSR and model fields 
at each time step. The derived phase errors 
should rely on the performance of models. Thus, 
this procedure does not guarantee the temporal 
continuity of phase errors when the model 
performance is especially poor.  Instead, we 
have applied the semi-Lagrangian advection 
scheme to derive the phase errors. The two 
matching grids from HSR and model in which 
the local initial phase errors are corrected are 
advected backward to each previous time step 
using model and radar echo motions. Then, the 
phase errors at each time step are derived from 
the locational difference between the two 
advected grids. That is, we derive n phase errors  
at each model grid and these errors follow the 
echo motions.  

3) These (n + 1) time-dependent phase errors 
[including initial phase errors derived from the 
procedure 1)] are fitted with a linear regression 
as a function of time. Thus, each grid  has the 
linear time-tendency equation of phase errors. 
The procedure 1) to 3) refers to as the derivation 
of Lagrangian time-dependent phase errors. 

4) In addition to the phase errors, we can derive 
the intensity (or amplitude) errors and their 
tendency at each grid. Here, we have derived 
the intensity errors by calculating the difference 
between HSR and phase error corrected model 
precipitation field at tc. The tendency of the 
intensity errors could be derived in a similar way 
as in the phase errors.   

5) The next step is to advect the Lagrangian time-
dependent phase and intensity errors to the 
model forecast lead time, tc + nΔt. First, we have 
derived the model echo motions with VET 
between two-successive model precipitation 
fields.  Then, the model errors are advected to 
the forecast time with the derived motion vectors 
and the linear tendency is taken into account. 

6) Finally, these advected errors from the 
procedure 4) are applied to modify the model 
forecast.           

We refer all these procedure as “Adjustment of 
Rain from MOdels with Radar data (ARMOR)” 
ARMOR correct the linearly varying  phase 
errors along the echo motions. Thus, its 
performance relies on the persistence of the 
tendency of model errors.  The false alarms, 
misses, and intensity difference are corrected. 
The new storm development and dissipation that 
are predicted by models are incorporated in the 
corrected forecasts. The falsely predicted 

precipitation fields at tc are suppressed 
throughout the forecast time.  

 

b. Derivation of phase errors at tc 
     The variational echo tracking (VET) is applied to 
derive the radar and model echo motions that are used 
to derive and to advect the phase and intensity errors.  
This method minimizes the cost function that is 
composed of the difference (

ψJ ) between radar 

reflectivity maps at different time steps and the 
smoothness term ( sJ ) of motion vectors (Germann and 
Zawadzki 2002). The model echo motion vectors are 
derived in a similar way with converted reflectivity maps 
from model precipitation forecasts. The phase errors 
can be derived from the same procedure but using 
HSR and model fields at a given time t. Then, we 
can write the cost function as below: 

J = Jψ + Js   (1) 

where 

Jψ = a[ψR (x + α,y + β, t) −
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     (2) 
Here ΨR and ΨM are the radar reflectivity (in dBZ), 
as a function of space and time, converted from 
HSR and model precipitation forecast with Z = 210 
R1.47, respectively; Ω is the domain over which 
ARMOR is applied. α and β are the control 
variables of the minimization problem.  

     The solution of the minimization gives, for each 
pixel, a vector (α, β)T.  Here, we have assumed the 
time phase errors of model are zero. However, to 
account for time phase errors the cost function can 
be modified. When t = tc of the initiation of the 
correction, the ensemble of these vectors gives 
the x and y components of initial spatial phase 
errors within a domain Ω, that is, the matrix of 
errors ),( cP txτ . This matrix represents the full 
two dimensional field of vectors necessary to 
produce the displacements and deformations of 
the model output to match the observations at tc.   

     The minimization of the cost function is 
performed by a conjugate-gradient method.  In this 
manner a field of vectors (τP) is determined over 
the domain, one vector per each resolution pixel of 
the NWP precipitation output.  The parameters a 
and b are adjustable weights, with a representing 
the uncertainty in radar measurements and b 
chosen as an empirical compromise between 



eliminating noise in the retrieved spatial phase 
error vectors and the spatial variability in the 
phase error vectors.        
 

4. Results 
     The correction method is applied for the MM5 11z 
run (t0 = 11z) in which the observational nudging is 
performed from 08z, July 3, 2006 up to 11z July 3.  The 
precipitation forecasts are made from 11z. We have 

used 13 precipitation forecasts and HSRs five minutes 
apart between 11z and 12z to derive initial phase errors, 
tendency of phase errors, and intensity errors. That is, n 
= 12, tc = 12z, and Δt = 5 minutes. Different to the 
previous study in which hourly precipitation 
accumulations are used, the frequent model outputs (Δt 
= 5 minutes) make possible to use only 1-h window to 
derive the tendency of model errors. Then, the 
correction of model errors is applied for the precipitation 
forecasts from 12z  (tc = t0 + 1h: 1 h forecast) every five 
minutes (Δt = 5 minutes).  

 

 

Fig. 1: Precipitation rate from radar (HSR) and MM5 forecast at t = tc = 12z (t0 + 1 h).  MM5 forecasts are generated 
from 11z by incorporating radar data from 08z. (a) HSR, (b) MM5 precipitation forecast, (c) Initial phase errors 
overlaid with MM5 forecast, (d) MM5 forecast after correcting initial phase errors shown in (c).      

     

    Fig. 1 shows HSR and MM5 forecast at t = 12z in 
which the model correction is initiated. The comparison 
of HSR (Fig. 1a) and original 1-h forecast (Fig. 1b) 
demonstrates the model precipitation is predicted at the 

wrong locations with intensity difference. The model 
precipitation areas are much less than those of HSR, 
leading to significant misses. However, the general 
features are captured except for area A where the 
model completely misses precipitation band. Model 



precipitation at areas A and B should be shifted to 
south-east to match with HSR while that at area C to 
east direction. The derived initial phase errors 

),( cP txτ  (Fig. 1c) illustrates well these mis-matching. 
We have imposed the spatial smoothness with weight b 
in eq. (2) to avoid the spatial dis-continuity of phase 
errors.  The phase error correction (Fig. 1d) displaces 
the model precipitation forecast at proper position and 
expands precipitation areas to match with HSR. This 
illustrates the efficiency of the simple phase correction 
to improve model skills. However, the intensity 
difference and significant misses are still present. In 
addition to the phase error correction, the correction of 
intensity errors ensures that the corrected field is 

nearly identical to HSR in Fig. 1a (not shown in 
here).   
     Fig. 2 illustrates the effectiveness of the 
correction at 14z (3-h forecast and 2-h after 
initiating correction). The original forecast (Fig, 2b) 
shows the positional errors which in general are 
increased. The predicted Lagrangian phase errors 
(vectors in Fig. 2b) using their tendency between 
11z and 12z are quite different to the initial phase 
errors shown in Fig. 1c.  The significant increase is 
noticeable at west regions. The corrected model 
precipitation fields (Fig. 2c) better matches with 
HSR.  The overall position is well corrected with 
the predicted Lagrangian phase errors.  

 

 
Fig.2: Precipitation rate from radar (HSR) and MM5 forecast at t = 14z (t0 + 3 h). (a) HSR, (b) original MM5 
precipitation forecast with Lagrangian phase errors (vectors) predicted  from the tendency between 11z and 12z and 
then advected to 14z, (c) MM5 forecast after correcting Lagrangian phase errors, and (d) MM5 forecast with the 
correction of Lagrangian phase errors and intensity errors.      



 The precipitation band at the area A is not 
properly predicted. In fact, this band is intensified 
(see Fig. 1a and Fig.2a).  In addition to the 
Lagrangian phase error correction, the intensity 
correction generates this precipitation band. 
Although the model completely misses this band 
between 12z and 14z, the intensity error correction 
maintains this missed band. In such a case (miss 
case), the intensity correction is equivalent to 
radar extrapolation based on model echo motions.  
In addition, the intensity correction better predicts 
the shape of precipitation fields.  The precipitation 
fields at area B are properly located with the 
phase error correction although the trend of the 
intensity from HSR and model is opposite. It is 
interesting to note that the strong precipitation at 
the area C is properly predicted with the model 
although the locational errors exist. This proper 
prediction is well reproduced in the correction (Fig. 
2d). In the area D, the correction eliminates the 
wrong strong precipitation by identifying it as false 
alarms. In general, the intensity correction shows 
overall significant improvement. The precipitation 
at the area E is from the outside of domain at t = tc. 
Thus, no information for the correction is available. 

     A quantitative comparison is shown in Fig. 3 in 
terms of critical success index (CSI) and cross-
correlation (r). Unlike the typical trend of model 

forecast skills (Lin et al. 2005), in general, the 
forecast skills of original forecasts decrease with 
time and extremely low (CSI < 0.3 and r < 0.2). 
The correction of Lagrangian phase errors that are 
predicted from their tendency between 11z and 
12z significantly improves skills up to CSI ~ 0.4 
and r ~ 0.45, illustrating the importance of 
positional errors in model forecasts. Instead of 
applying predicted Lagrangian phase errors, the 
correction with the initial phase errors ),( cP txτ  
that assumes the geographical dependence of the 
model positional errors provides the similar 
performance as the Lagrangian phase correction 
only up to 3-h forecast time (not shown). The 
additional intensity correction that takes into 
account false alarms, misses, and intensity 
difference further improves the skill scores and 
performs better than radar extrapolation after 2-h 
forecast time. However, it should be noted that the 
skill scores after correction decrease rapidly with 
time. This is partially due to the drop of model skill 
scores with time and more importantly due to the 
nature of the correction algorithm that projects the 
past information into the future assuming the 
Lagrangian persistence of the model errors. Thus, 
all corrections are bounded to the persistence of 
errors.  

 

Fig. 3 Critical success index (CSI) and cross-correlation of model forecasts (the black line: original model forecast, 
blue line: correction with predicted Lagrangian phase errors, red line: intensity correction in addition to the Lagrangian 
phase correction, and green line: radar extrapolation).   
 



 5. Summary 

     We have demonstrated a way of determining 
and correcting model phase (or positional) and 
intensity errors in a meso-scale model run. We 
have used the variational echo tracking to derive 
motions vectors and model errors. From the model 
forecasts for 1-h, we have derived the tendency of 
phase errors and intensity errors. These derived 
errors are projected into the model forecast time 
from 1-h to 12 h. Then, the model forecasts are 
corrected with these projected model errors. In 
general, similar to the results in the previous 
studies at a continental scale, the correction 
method significantly improves the performance.     

     The model verification shows the existence of 
significant phase errors even at the model initial 
time, indicating that MM5-RTFDDA with frequent 
cycling is not sufficient to correct the model 
background phase errors. These initial phase 
errors increase with time. The correction of model 
errors significantly improves the accuracy up to 9 
hours. The corrected forecast is comparable to 
radar extrapolation up to 2 h and performs better 
afterward.  

     The correction method assumes the 
persistence of the model errors along the motion 
of precipitation fields. Thus, the performance of 
the correction is still bounded into the Lagrangian 
persistence of model errors, shown by the rapid 
drop of skill scores with time. As the model 
performance improves, so does the consistency of 
model errors. Subsequently, the correction method 
should further improve the model forecast.   
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