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1. INTRODUCTION

The standard rain profiling algorithm for the TRMM
Precipitation Radar, which is known as 2A25, uses the
Hitschfeld-Bordan (H-B) method for the rain attenua-
tion correction (Hitschfeld and Bordan, 1954). Unless
the path integrated attenuation (PIA) is very small, the
attenuation estimate from the H-B method is compared
with the PIA estimate given by the surface reference
technique (SRT). By taking into consideration of meas-
urement errors, the specific attenuation assumed in the
H-B method is adjusted so that the PIA from the H-B
method with the modified specific attenuation is con-
sistent with the PIA estimate from the SRT. Adjusting
the specific attenuation is equivalent of adjusting the
initially assumed drop size distribution (DSD). Thus,
when the PIA is significant, one parameter in the DSD
model which is assumed to be constant at all ranges
along the radar beam can be estimated. This informa-
tion is used to adjust the Z-R relationship with which
the attenuation corrected radar reflectivity factor Ze is
converted into rainfall rate R in the current algorithm.

In practice, however, the deviation of the model
DSD function from the real DSD is not the only fac-
tor that causes the discrepancy between the attenua-
tion estimates from the H-B method and those from
the SRT. There are several other factors that also cre-
ate the discrepancies in the attenuation estimates. In
the current algorithm, all such possible factors are ig-
nored and the discrepancy is totally attributed to the
deviation of the model DSD. In this paper, effects of
ignoring other possible factors are examined in terms of
resultant biases in the estimated DSD parameter. Such
factors include biases in the assumed vertical profile of
precipitating particles and their properties, biases in the
PIA estimates by SRT, non-uniform beam filling effect,
and biases caused by a particular choice of estimation
method.

2. STRUCTURE OF THE ALGORITHM

In this section, the structure of the rain profiling
algorithm 2A25 is described (Iguchi et al. 2000, Iguchi
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2007). In order to show the essential issues conspicu-
ously, the algorithm described here ignores almost all
minor details which include, for example, the attenua-
tion correction for cloud liquid water and water vapor,
and handling of data in surface-cluttered range bins.
Similarly, to have a clearer insight into the structure,
range dependent variables such as the measured radar
reflectivity factor Zm as a function of range r are treated
as a continuous function of range rather than a function
defined only at discrete range bins at which the actual
data are sampled.

In 2A25, measured radar reflectivity factor Zm(r)
is converted into rainfall rate R(r) in two steps. The
first step is to correct for the attenuation to obtain the
effective radar reflectivity factor Ze(r) and the second
step is to convert Ze(r) into R(r).

The first step of attenuation correction is carried
out by dividing Zm(r) by the estimate of attenuation
factor A(r).

Ze(r) =
Zm(r)
A(r)

(1)

The problem is to find the best estimate of A(r). We

denote the true attenuation to surface rs by As (As
def=

A(rs)) and define yt as the true attenuation to surface
expressed in dB:

yt
def= −10 log10(As). (2)

If we know the relationship between the specific at-
tenuation k and Ze, we can estimate the attenuation
to range r from the profile of Zm by the Hitschfeld-
Bordan method. The Hitschfeld-Bordan estimate of
A(r) is given by

AHB(r) = [1 − ζm(r)]1/β (3)

where

ζm(r) def= 2q

∫ r

0

α0Z
β
m(s) ds (4)

and q = 0.1β ln 10. α0 and β are coefficients in the
assumed k–Ze relationship k = α0Z

β
e .

In the α-adjustment method, ζm is adjusted by mul-
tiplying α0 by ε in such a way that the attenuation to
surface from the H-B method agrees with the true at-
tenuation yt.

yt = −10
β

log10[1 − εζm(rs)] (5)



or

ε =
1 − 10−βyt/10

ζm(rs)
(6)

Once ε is determined, we can calculate the attenuation
factor A(r) at any range r by the α-adjustment method:

Aα(r) = [1 − εζm(r)]1/β (7)

If we define xt by

xt
def= ln[1 − exp(−qyt)], (8)

and xm by
xm

def= ln(ζm(rs)), (9)

then (5) is equivalent of

xm = xt − ln(ε). (10)

If we rewrite − ln(ε) as ex, (10) becomes

xm = xt + ex (11)

This equation shows that the observable xm is the sum
of its true value xt and the error term ex. Since xt is
related to yt as in (8), xm is an observable that enables
us to estimate the attenuation.

The surface reference technique (SRT) also gives an
estimate of the attenuation to the surface. We denote
this estimate by ym. If we denote the error associated
with SRT by ey, then ym is related to yt as follows:

ym = yt + ey (12)

The combination of (11) and (12) together with
(8) gives the coupled set of equations that define the
structure of the problem of attenuation correction. In
other words, we have two observables, xm and ym, for
a given true value of attenuation yt. (Note that xt is a
function of yt.) Both xm and ym contain some unknown
amount of errors of which magnitudes are known only
statistically. The problem is to find the best estimate
of yt for a given set of xm and ym.

Since the radar beam loses energy as it propagates,
the attenuation (yt) is always positive. This is already
implicitly assumed when we define xt by (8). Equa-
tion (8) also indicates that xt must be negative, which
guarantees that the H-B solution does not blow up.

xt < 0, (13)

yt > 0. (14)

These conditions limit the domain of solution.
Once the estimate yt is obtained, we can calculate

the value of ex from xm and xt in each case. As will be

described in the next section, the error ex consists of
several factors. But in both V5 and V6 of 2A25 ex is
assumed to be equal to − ln(ε) and the deviation of xm

from xt is totally attributed to the deviation of true α

from the initially assumed value of α0 in the k–Ze rela-
tionship. Since the adjustment of the k–Ze relationship
corresponds to the modification of the DSD, the Ze–R

relationship with which the attenuation corrected Ze is
converted into R is also modified in conformity with the
modified k–Ze relationship.

If the deviation of xm from xt is caused by a different
error source rather than the DSD difference, the mod-
ified Ze–R relationship does not reflect the true DSD.
Similarly, if xt (and hence yt) is estimated with some
bias, we again end up with a biased Ze–R relationship
and hence a biased estimate of R. In other words, the
DSD parameter can be estimated correctly only when
the assumptions on the causes of errors ex and ey are
valid. It is the major objective of this paper to examine
these assumptions and to evaluate the effect of errors
if there is any deviation from the assumptions.

To carry out the above program, we need to know
the characteristics of errors ex and ey. However, know-
ing the characteristics of ex and ey is not enough to
determine the best estimate of yt or xt in a unique way.
We need to define the meaning of the “best” estimate
and select the appropriate estimator. For example, de-
pending on whether we regard yt as an unknown but
fixed parameter or as a random variable, the solution
changes. In the former case, the classical maximum
likelihood estimate will give the solution, and in the
latter case, Bayesian method should give a statistically
better solution. Before we go into this philosophical
issue, we look at the error characteristics of ex and ey

first. We will come back to this issue in section 4.

3. ERROR SOURCES

Since xm is the logarithm of ζm(rs), and since ζm is
defined by (4), the error consists of two factors.

The first factor is the deviation of the k–Ze model
profile assumed in 2A25 from the true one. The as-
sumption that this relationship can be represented by
a power law k = αZβ

e is already an approximation. In
our model, β is assumed constant and independent of
range. The dependence of α on the altitude is also as-
sumed for each type of rain. The value of ζm calculated
with these assumptions may create a deviation from the
true value in individual cases even if they cause no bias
statistically.

The second factor is the error in the measurement of
Zm. It includes both the fading noise of 0.7 dB due and
the calibration error. We assume that the correction



for attenuation due to water vapor (WV) and cloud
liquid water (CLW) has already been included in Zm.
Since the vertical profile models of WV and CLW do
not perfectly match with the true profiles in individual
cases, the differences may contribute to the total error
in Zm.

Since ym is obtained by subtracting the measured
apparent surface cross section from the reference cross
section, there are two kinds of errors in ym. The first
one is the error in the measurement of the apparent
surface cross section itself. The second one is the error
in the reference. The effect of attenuation due to WV
and CLW is also considered and corrected for in V6, but
this correction is also a source of error in ym. This error
can be regarded as the second kind of error that affects
the reference cross section. The error of the second
kind mainly consists of the fluctuation of sampled data
taken for reference. In the spatial reference method,
it consists of the fluctuation of surface cross sections
measured at 8 footprints in non-raining region adjacent
to the rain area. If the temporal reference is used, it is
the standard deviation of the cross sections measured
at the same incidence angle in the same x-degree grid
box that includes the location in the previous month.
ym may also contain some bias error because of the
difference in surface characteristics between the surface
in question and the reference surface (Seto and Iguchi,
2007). However, both V5 and V6 of 2A25 assume that
ey consists of only random errors and follows a normal
distribution.

4. BAYESIAN AND ML ESTIMATES

From the Bayesian point of view, the parameter yt

is regarded as a random variable, and the problem is to
find the a posteriori probability density function (pdf)
of yt (or xt) for given xm and ym. By applying the
Bayes theorem, we obtain

p(yt|xm, ym) ∝ p(xm|xt(yt))p(ym|yt)p(yt) (15)

p(xm|xt(yt)) is equal to the pdf of ex shifted by xt, and
p(ym|yt) is equal to the pdf of ey shifted by yt.

Once the a posteriori pdf is obtained, we still have
some freedom to choose the estimator, ŷt, of yt. Prob-
ably the most commonly used estimator in Bayesian
statistics is the mean of ŷt, i.e., the expected value of
ŷt with respect to p(yt|xm, ym). We will denote the ex-
pected value of any function f(yt) of yt by 〈f〉. Then,

〈yt〉
def= E[yt|xm, ym]

=
∫

ytp(yt|xm, ym) dyt

(16)

Since the expected value 〈yt〉 is the integral of yt

weighted by p(yt|xm, ym), it depends on the entire dis-
tribution of p(yt|xm, ym).

Another popular method is the maximum a poste-
riori (MAP) estimation in which the mode of the pos-
terior pdf is chosen as the estimator.

ŷt,MAP
def= arg max

yt

p(yt|xm, ym) (17)

Note that MAP estimation is not generally seen as a
Bayesian method because Bayesian methods are char-
acterized by the use of distributions to summarize data
and draw inferences.

The likelihood function of yt for given xm and ym is

l(yt|xm, ym) = p(xm, ym|yt) = p(xm|xt(yt))p(ym|yt)
(18)

and the maximum likelihood (ML) estimator ŷt,ML is
defined as

ŷt,ML = arg max
yt

l(yt|xm, ym) (19)

The comparison between (15) and (18) shows that the
ML estimator is a special case of the MAP estimator
with a uniform pdf of yt from a Bayesian point of view.

This fact implies that if the a priori pdf p(yt) is
nearly uniform in the region in which l(yt|xm, ym) takes
dominant values, the ML estimate and the MAP es-
timate are nearly the same. Even in the same condi-
tion, however, the ML estimate and the mean may differ
substantially if the a posteriori pdf is skewed. This is
actually the case in the current problem. Because of
the non-linear relationship between xt and yt as defined
in (8), p(xm|xt(yt)) in (15) is skewed as a function of
yt. In the region where p(xm|xt(yt)) is the determin-
ing factor of (15) or (18), i.e., when yt is small, the a
posteriori pdf p(yt|xm, ym) and the likelihood function
l(yt|xm, ym) are very skewed, and the mean 〈yt〉 differs
from the mode yt,MAP and the ML estimate yt,ML.

An important question is which estimator is a better
estimator, 〈yt〉 or yt,ML? V5 of 2A25 uses yt,ML, and
V6 adopts 〈yt〉. Although the choice between them does
not create a large difference in the total rain amount
or the attenuation correction when the attenuation is
large, the values of ε estimated in these two different
ways differ when the attenuation is small. In fact, the
deterministically calculated value of ε(yt,ML) is used in
V5, whereas the expected value 〈ε〉 is calculated in V6.
Specifically, in the former case,

ε(yt,ML) = exp[xt(yt,ML) − xm], (20)

whereas in the latter case

〈ε〉 =
∫

ε(yt)p(yt|xm, ym) dyt. (21)



Note that (21) is different from ε(〈yt〉).
In the region where p(xm|xt(yt)) is the determin-

ing factor of (15) or (18), xt,ML
def= xt(yt,ML) is nearly

equal to xm, and ε(yt,ML) remains close to the ini-
tially assumed value of unity if the pdf of error model
p(xm|xt(yt)) is properly chosen in conformity with the
assumption of the ML estimation. However, 〈ε〉 may
differ from unity even in the same circumstances. This
happens because the a posteriori distribution of ε is
skewed. The skewness comes not only from the non-
linear dependence of ε on xt, but from the condition
that xt must be negative, i.e., ζt

def= exp(xt) must be less
than 1 in order that the H-B solution exists. This can
be easily seen if we transform the independent variable
of integration from yt to xt and use the approximation
p(yt|xm, ym) ≈ p(yt|xm) ∝ p(xm|xt)(dxt/dyt).

〈ε〉 =
∫

ε(xt, xm)p(xt|xm, ym) dxt.

≈
∫ 0

−∞
exp(xt − xm)p(xm|xt) dxt.

(22)

In V6, p(ε) def= p(exp(xt −xm)) without any constraint is
assumed to follow a lognormal distribution with mean
1.

p(ε) =
1√

2πσε
exp

(
− (ln(ε) − m)2

2σ2

)
(23)

with exp(m + σ2/2) = 1, or if the variance of ε is σ2
ε ,

then m = −(1/2) ln(1 + σ2
ε ) and σ2 = ln(1 + σ2

ε ). Since

pxm(xm − xt) = pln(ε)(ln(ε))

=
1√
2πσ

exp
(
− (ln(ε) − m)2

2σ2

)

=
1√
2πσ

exp
(
− (xm − (xt − m))2

2σ2

)

= p(xm|xt)

(24)

p(xm|xt) follows the normal distribution with mean xt−
m and variance σ2. Therefore, (22) becomes

〈ε〉 ≈
∫ 0

−∞
exp(xt − xm)p(xm|xt) dxt.

=
1√
2πσ

∫ 0

−∞
exp

(
− (xt − xm − m)2

2σ2
+ xt − xm

)
dxt

=
1√
2πσ

∫ 0

−∞
exp

(
− (xt − xm − m − σ2)2

2σ2

)
dxt

× exp(
σ2

2
+ m)

=1 − 1√
π

∫ ∞

−xm−m−σ2
exp

(
−t2

)
dt

=1 − 1
2
erfc(−xm − m − σ2)

(25)

where erfc(x) is the complementary error function. Note
that exp(σ2

2 + m) = 1 from the assumption. Since as
x → ∞, erfc(x) → 0, and as x → −∞, erfc(x) → 2,
〈ε〉 is nearly equal to 1 when ζm ¿ 1 or equivalently
xm ¿ 0. However, as ζm increases, xm increases toward
0 and when xm becomes comparable to −m− σ2 − 1 =
−(1/2) ln(1 + σ2

ε )− 1, 〈ε〉 starts decreasing and deviates
from 1 before the constraints by the SRT or the a priori
pdf of yt affect the a posteriori pdf. ε smaller than 1 will
modify the original R–Ze relationship so that a smaller
rainfall rate will result than that without modification
for the same Ze. Note that since in the cases we discuss
in this section, the attenuation correction is small and
Ze is nearly equal to Zm regardless of the method used.

Under the same conditions with the same pdf, the
ML estimate of ε becomes

εML = exp(m − σ2)

= exp(−(3/2) ln(1 + σ2
ε ))

=
1

(1 + σ2
ε )3/2

(26)

and the estimate is independent of ζm as long as ζm < 1
or xm < 0. The deviation of εML from unity is due to
the wrong choice of the parameters in the pdf. In this
case, m should be chosen to be σ2 so that εML = 1

5. DISCUSSION

The essence of the idea of attenuation correction in
2A25 is to use the attenuation estimate given by the
surface reference techinique to constrain the final at-
tenuation estimate. The DSD parameter is adjusted in
such a way that the modified k–Ze relationship derived
from the adjusted DSD model will give a total attenu-
ation that agrees with the final attenuation estimate.

According to this idea, if the attenuation is very
small and if the constraint from the surface reference is
effectively negligible, we naturally think that the DSD
parameter should not be modified. In the previous sec-
tion, we have seen that this is not the case in the
Bayesian estimate. The expected value of ε decreases
as ζm increases from 0 because the upper limit of the
integral changes with ζm. This phenomenon may be
quite natural from Bayesian point of view. Neverthe-
less, if we imagine a situation in which a uniform light
rain is measured from space at several incidence an-
gles. Depending on the incidence angle, the maximum
depth we can measure the rain echo changes due to
the surface clutter. Since ζm defined by (4) monoton-
ically increases with range r, its value at the bottom
changes depending on how deep we can measure. The
Bayesian estimate indicate our estimate of DSD param-
eter changes with the depth of measurement. This con-
clusion appears to be inconsistent with our assumption



of the uniform rain. We want to choose an estimator
that gives the same estimate if the same rain system
is measured. The ML estimate satisfies this condition.
Does this mean that the Bayesian estimate is inappro-
priate? The answer is ”No”. The discrepancy comes
from the inconsistency between the assumption in the
formulation of the Bayesian estimator and the assump-
tion of the uniform rain. In fact, that the uniform rain
assumption is not used in the Bayesian formulation in
this example. From a Bayesian point of view, this im-
portant prior knowledge is not utilized in the formu-
lation, and hence seemingly inconsistent estimates. If
such knowledge is incorporated, the Bayesian method
should have also given intuitively appealing estimates.

Therefore, it seems that the issue is not the ques-
tion whether the Bayesian estimator is superior to the
ML estimator. The issue seems to be in a more prac-
tical point. As we have seen in the previous section,
the Bayesian estimate depends on the entire distribu-
tion of the a posteriori pdf whereas the ML estimate
depends only on the distribution in the vicinity of the
distribution maximum. This fact implies that to have
a good Bayesian estimate, we need to model the whole
distribution of pdf correctly. This seems to me a very
difficult task. The ML estimation seems to be an easier
way to go in a practical sense.

The case discussed in detail up to this point is prob-
ably not very important in terms of the total rain es-
timates. In fact, the effect of the truncation in the
calculation of the expected values in the Bayesian for-
mulation is minimal. The value of ε deviates from unity
by a few percent at most due to this effect.

When the attenuation increases, the determining
factor in (15) is taken by p(ym|yt), and p(xm|xt) gives
almost no effect in the a posteriori pdf. In such
cases, the issue discussed up to this point is imma-
terial. If the model assumptions are appropriate, our
estimates should correctly represent the DSD charac-
teristics. However, if the model assumptions are not to-
tally valid, the estimated DSD parameters contain bias
errors because any deviation of xm from xt is attributed
to the difference in the DSD parameters, although xt it-
self or parameters in xm may contain a bias error if the
model is not appropriate. Major error sources of this
kind have been already mentioned in section 3 within
the formulation of the algorithm structure described in
section 2.

There is one important error source not mentioned
there. That is the effect of non-uniform beam filling
(NUBF). The NUBF affects both xm and ym. If the
rain is not uniform within the field of view, ζm can
exceed unity even when the DSD and profile models

are correct. The attenuation estimate from the differ-
ence of apparent surface cross sections is smaller than
the corresponding attenuation that would result if the
same amount of rain is distributed uniformly in hori-
zontal direction at each height within the filed of view.
Underestimation of the attenuation results in the un-
derestimation of Ze, and possible overestimation of ζm

tends to give a small value of ε. The overall effect of
ignoring the NUBF effect in the retrieval is underesti-
mation of rainfall rates. The magnitude of this effect is
not negligibly small, especially when the attenuation is
large. However, we are not going to discuss this issue
in this paper any further.

6. SUMMARY

The basic structure of the TRMM/PR rain retrieval
algorithm is reviewed. The essential point is the method
of attenuation correction and the way it is linked to the
DSD parameter estimation. With the errors in meas-
urements taken into account, the problem is formulated
as a statistical inference problem. Two possible esti-
mators are explained. One is a classical ML estimator
used in V5 of 2A25, and the other a Bayesian estimator
adopted in V6 of 2A25.

Aside from the often-argued philosophical issues be-
tween classical and Bayesian statistics, an interesting
difference in estimates between these statistics is shown
and an advantage of the classical ML estimation is high-
lighted.
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